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I INTRODUCTION

We consider a regular bounded domain 2 of R (n=1, 2, 3 for the applications) with a
sufliciently regular boundary I'= I’} U Iy ( |I'j|=meas(I';)>0 and |I'j|=mean(l'3)>0 ) and it is
assumed that the phase change temperature is 0°C . We denote with |I'| the (n—1)-dimensional

‘

Lebesque measure of T . On portion I'} of the boundary we have a Fourier boundary condition (a
Newton law with transfer cocflicient a>0 with an exterior temperature b>0), and on portion I'g of the
remaining boundary a heat flux q>0 is imposcd. We consider in {2 a steady-state heat conduction
problem and we are interested in studying under which condition on data we have a steady-state phase
change problem, i.e. the temperature is of non-constant sign in (2.

Following [Tal] we study the tempcrature ©=6(x), defined for x € . If we define the
function u in 1 as follows:
(1.1) . u=ky 6 —k; 0— inq,

where ©1 and 0— represent the positive and the negative parts of the function © respectively,
k; =const. >0 is the thermal conductivity of the phase i (i=1: solid phase, i=2: liquid phase), then the
variables u=u(x), q=q(x) on 9, a=const.>0, B=B(x)=ky b(x) >0 on '] are related in the

following way

(1.2) Au=0inQ, — %'l‘f a, — g':'h: a(n—-B),
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whosec variational formulation is given by

(1.3) ag(u,v) = Lan(v) , VVEV | nev ,

where

v=nl@), a(u,v)::IVu.Vv dx , lLq(v)= — qud-y :

(1.4) 0 Iy
ag(u,v)= a(u,v)+a I uvdy , Lan(v)qu(v) 4o J Bvdy .
' I'y )
The bilinear form aq is cocrcive on V for each a>0 because there exists My >0 such that
[KiSt,Tal]
(1.5) 8a (viv) 2 Ma IIVII* VveV ,

where || || represents the classic norm of the Sobolev space V.

In [TaTa] , a sufficient condition for the existence of a phase change in 2 was obtained (that
is, there exist in €1 the liquid and solid phascs, i.c. function u (or equivalently ©) is a solution of non-
constant sign of (1.2) or (1.3)) and it is given in the following way : There exists a steady-state two-

phase Stefan problem in € (i.c. u is of non-constant sign in Q) for

(1-6) qm(avn) <q< QM(G.B) ya>0,

for each B=const.>0, where the function q,, and Q) are given by

B|l|a

(1'7) qm(a'B)= Bﬂl'l;l)l 1] qM(a’B)= _ﬁ1'2—|—_ ]

and A=A(a) has an adequate expression. Moreover, q,, = q,,(a,B) is an increasing monotone
function of a>0, which satisfics

(1.8) am(0.B) = q),(01,B) = 0, am(+00,B) = q,(B) = !‘_gll ,

where C = C(Q, I', T9 ) > 0 is an adequate positive constant (Ta3,TaTa).

In §Il., a necessary and sufficient condition to obtain a steady-state two-phase Stefan problem
in €1 is given. Moreover; we obtain that for each a=const. >0 and B=const. >0 , there exists one and
only one interval ( ql(a,B), qz(a.B) ) for q in which the solution u of (1.2) or (1.3) is of non-constant
sign in §1. We also characterize the expression of 9 and q, a3 a function of >0 and B>0.

In §II1, for the general case q=q(x) on I'y and B=DB(x)>0 on I'; , we can state the following

optimization problem :
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Sup jqd‘y such that u > 0in 1,
q I
In §IV we give three examples in which the solution of the different problems presented is
explicitly known|[Ta2).
This paper was motivated by [GoTa, T'aTa). For a gencral introduction for studying a mixed

boundary value problem for the Laplace equation with the finality of deciding when it exhibits a

solution of non-constant sign, sce [I'ad].

Remark 1. The boundary portions I'y and I'9 may be scparated by a boundary portion I'y (disjoint
from T'j and g ) that will behave like a heat-isolating wall, i.c. with a null heat flux over it. This
new variant docs not introduce any essential modification in the analysis of the problems to be

formulated.

Il. NECESSARY AND SUFFICIENT CONDITIONS FOR A SOLUTION OF (1.3) OF NON-

We gcneralize Theorem 18 of [TaTa) for problem (1.2.) or (1.3) with a, q, B=const.>0.

Theotem 1. Problem (1.2) or (1.3) represcnts a steady-state two-phase Stefan problem (or
equivalently, the solution of (1.2) or (1.3) is of non-constant sign) if and only if the heat flux q verifics
the following inequalities

(2.1) ql(a,B)< q< qz(a,n) ,a>0 , B>0,

where q,= ql(a,B) and 9= qz(a,B), are given by (2.7) and (2.8) reapectively.
Proof. Function nu=u aqB solution of (1.2) or (1.3), can be expressed by

(2-2) “an=B—qUa inn,

where Ug=Uqg(x) is defined by
(2.3) AUy =0inq, — Wap — 4y, , ey, -
- a=0inf, == Vo o'l =1,

whose variational formulation is given by |KiSt]

(2.4) aa(Uaywv) = Iv dy,VvevVv, Ug€eV.
Iy
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I{ we choose v = Uy~ in (2.4), we obtain

Mg lUa I’ €aa (Ua W Ua" ) = - I Ug™ dy <0,
Iy
thatis Ug "= 0in 1, i.e. Ug>0 in 1 . Morcover, if we choose v= (Ug— Inl' Uqg)— €V in (2.4), we

also obtain that U, > ln[ Ugq in Q. Thercfore, we can deduce that [KiSt, l‘rWe]

Iy
(2.5) Uag>0inQD.

By using the following results for the function u aqB {TaTa)

(2.6) Mlll‘l u ‘_;1

) YaqB < YaqB < Max YaqB = Max YaqB in {2,

aqB Q1 r,

we can obtain the thesis by virtue of the following equivalences (a) and (b), given by

() “anZ“ inﬁ@uaqnzo on I'g ¢ qul(a,B),
where

— M3 Dy __ B
(2.7) ql(a,B) = Mull‘; (U;) = ﬁm )

2

and
(b) Uaqp <0 in 0o UaqBSO o0 T} ¢ q2qy(a,B) ,
where

= By _B___
(2.8) q2(a,l))--Ml\l§l (U—;) = Mil'.‘ W)

Remark 2. We can generalize the above results for a given B=B(x)>0 on I'; by considering
u
(29) ay(@B) = Min @D . ayam = Max (F))

where function u_p=u_p Sx) is deﬁ.ncd by

. du du
(2.10) Au p=0in2, — —5‘;—Blrl= a(u,p—B), B“, =0,

whose variational formulation is given by [KiSt]

(2.11) aa(uan,v) —a J Bvdy,VvevV, u.p€V,
'y

for each a>0. Moreover, we have

(2.2 bis) UgqB= YaB — 9 Un
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Now, we can obtain a relationship among functions q,,, and Ay defined by (1.7) [TaTa] ,
and functions 9 and 9 » defined by (2.7) and (2.8) respectively.

Theorem 2. (i) Function Uy verifics the following propertics (a>0):

(2.12) IUG dy =|%2| , (2.13) I Ugdy = A(a) ,
[‘l l‘z’
(2.14) a(Ua,Ua) =(ﬂidt—(a—)] ’

where function A=A(a)>0 is defined in [TaTa] .
(ii)) We have the following inequalitics:
(2.15) ql(("B)S qm(a'B) < qM(avB)S Q2(avn) y Va,B>0 .

Moreover, we have that (for all B>0):

(2.16) ql(a'B) = qm(a,B) L= Uall‘2= Const. (= 'l'F'zT) ’
(2.17) qz(a,B) = qM(a,B) o U"'['l= Const. (= Jrl‘ll ) -

(iii) The particular case, defined in §V of [TaTa] is characterized by
(2.18) a(Uq,Uqg) = Const. = C>0, V a>0,

where C>0 is a positive constant defined in [Tal] .

Proof. (i) By choosing v=1 € V in (2.4) we obtain (2.12). By using (2.2) and formula (1V-26) of
[TaTa) we deduce for A(a) the expression (2.13). Moreover, we have (2.14) by using formula (1V.40) of
[TaTa] and the fact that

(2.19) a(uan’“an) =q* a(Uq,Ua) , ¥V a,q,B >0.
Therefore we also obtain (iii).

(ii) By using the above expression (2.12) and (2.13) and the definitions of q,, , Yy 0 9 and q, we

deduce alter elementary manipulations the following incqualitics

(2.20) q,(a,B)< 9y, (2,B) and qp(a,B)< qz(a,B) .
The remaining incquality q,, < Uy for a,B >0 was proved in [TaTa) .

Remark 3. We remark here that function A(a) is explicitely known for the particular case, defined in

[TaTa). In this case, we have that



(2:21) A(@) =C+ }

Morcover, constant C can be also obtained by the following expression

(2.22) C = n(Ua,Ua) ’ V (4] >0 .

1. SOME OPTIMIZATION PROBLEM WITI STATE RESTRICTIONS
i

We consider the general case with q € L?(I'9) and bor B € I
Q — S be the application defined by

(I'y) and a=const.>0. Let T :

» T(q) = YaqB
where
S = {v€V/Av=0inQ,—%|rl =a(v=B)),
3.1)
So={veEeV/Av=0inQ2, — gﬁlrl =av), Q=L%Iy ,

and "aqh is the unique solution of problem (1.2) or (1.3). Let be the sct
(3.2) S+={v€S/v20in(—2],

and we define

(33) Qt=TXs*)=(aeQ /T@es ) ={aeQ/u g 20in T},
then the whole material €2 is in the liquid phase if the heat flux q € Q+.

Lemma 3. (i) Application T can be decomposed in the form 1" = T{+ Tq9 , where T9:Q—S, is a
lincar and continuous application and T'y: Q—S is a constant application defined by T)(q) = u B}
with u_u the unique solution of (2.11).
(i) Q+ is a convex sct.
Proof (i) Let ugy= uy(q) € S, be the unique solution of the variational equality [KiSt]
(3.4) aa(uz,v)z -—qu dy ,VveV , u,€eV.

Ty

From the uniqueness of (1.3) we have that UoqB =uan+u2(q). Therefore we can define
Tg(a)= uy(q) and then part (i) is achieved.
(ii) It follows from the fact that ‘T is an affine application (part (i)) and St is a convex set.

Iet F:Q — R and J : S — R be the functionals, defined by
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(3.5) F(a)= jq dy, In=-[JLar
I'g I'g

which are lincar and therefore convex functionals,

We consider the following optimization problem with state restrictions, defined by :
(P):  Swp  Fa)
q€Q
that consist in finding the maximum total hcat flow over I'y so that.the whole material is in the liquid
phase.
The following optimisation problem in St is conmidered by
(NP): Sup J(v)
veS
which turns to be a new formulation of ( I’ ).
We will assume that the domain 2, the boundary portions ') and I'9 , and the function B on
I’} satisfy the nccessary conditions to have the following regularity properties ( The three examples we
present to the end verify these propertics) : |
(i) Uoqis € C°(f1) (1t in sufficicnt that g € (1) for n<3),

(ii) ‘The clement u*, defined by (3.7), satifies that %I!n:' r,€ Q (It is sufficient that u* € 11%(12)).

(iii) The element v, defined by (3.16), satisfics that %‘:—"—’l r,€ Q and %v'_:_,' r’>0 a.c on I'9 (It

is sufficient that v, € u*(Q) n C°(9)).

We have the following theorem of cxistence and uniquencss of solution for problems (') and

(NP) which follows the method developed in [GoTal.

TIEQREM 4 (i) 'There exists an unique solution q*= q‘all € Q+ of the optimization problc_:m (P)
which is given by ‘ :

.
(3.6) a*= -G,

where u* is the solution of the problem

G.7) Aw*=0 inQ, — %':T"l‘n = a(w*-D), v’lp,=0,

whose variational formulation is given by

(3.8) aq(v,v)= aI Bvdy ,Vvevy, wt e Vq,
l‘l .



with
(3.9) Vo={vevV/ v|l‘2 =0} .

(ii) ‘The optimization problemn (NP) has an unique solution which is given by n* .

Proof- (a) Element u* , defined by (3.7) or (3.8) verifics that u*>0 in 2 and u* >0in @, because if

we choose v==w € V5 in (3.8) with w=(u*)—, we obtain
Mo Il wIl® < sa(ww)= — a[Bwdy <0,
Iy
that is w=0in {1 . -

Let ug(=vu an) € S be the element that corresponds to q € Q+ , that is T(q)=n

Then, function a=uq-—u* € S, satisfies the problem

(3.10) As=0in O, — %|r1= as , l|r2 = “q|r2 >0, .,

whose variational formulation is given by

(3.11) ag(s,v)=0 ,VvEVy , 2 €uq + Vg,

and verifies that 320 in {1 by choosing v=2— € V4 in (3.11).

Therefore, we deduce that

(3.12) F(a*) —F(q) = I(«I‘—q) dy = I%’: dy = —j % dy =

Iy Iy ry

then q* realises the maximum of functional F.

(b) let ¥ = C° (I'g) . Let D : S — ¥ be the application defined by
3.13 D —vip ’
(313) )= iy,

and the cone P= { peV¥ / p>0 on I'; } which has a non empty interior.

aqB

‘Taking into account (2.6) [TaTa), problem (NI’) may be reformulated as follows

(NPbis) Sup I(v) .
veS, D(v)<0

(c) Let u be a solution of (NPbis). From [Be, EkTc] we deduce that there exists a Lagrange multiplier
p € ¥ (dualof W), p >0 (ie. <p,p> >0, Vpe P ) so that the following conditions are satisfied
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(i) =I(v) + <p, D(v)> > —J(u), Vv ES ,

(3.14)
(W) <pu, D(u)> = I s D(u)dy =0.
I’y
From (3.14 i,ii) and after elementary manipulations we obtain that
(3.15) I (%‘;’—pw)dy:ﬂ, Vw € So.
2
Let vo € So be the element which satisfics the problein
(3.16) Avo =0inQ, — %’n—ﬂrl: avo \ Volpy =1,
whosc variational formulation is given by
(3.17) 2q(Vo,v)=0 ,VvEVy , vo €1+ Vy.
Taking into account the equality
avl 0V2 R .
(3.18) I In V2 dy = l o Vi dy, with Av, = Avy =0in Q2,

r I
we obtain that

I%“':dT '—'] Vo%‘;"h =I Vo%:."d‘Y—I Vo%v—':d‘Y =J '%’;“,d‘Y-i-
Iy I’y r 'y 9

0V° 8W — aVo
+lw—b-'—.-d7——fvomd1_lwm—d1,
'y Iy Iy
and thercefore, from (3.15), we deduce that the Lagrange multiplicr p is given by
_ v
(3-19) " — 3;‘ ' l‘z G Q .

Element vy € S, verifies 0 < vo < 1in 1,0 < vy < 1 in 2 and >0 on ['y. From (3.14ii) we
deduce that u | r, = 0 , that is u=u-,

d) Let u*€ S, vy € Sy and 1 € Q be defined by (3.8), (3.17) and (3.19) respectively. Let v be any
clement that verifies vE€ S, then we have
(3.20) =)+ < D> + 36 = [ G -G~ pvdy =
I’y
Ovq . vy . i) .
= [3;("—" ) — nv]jdy + _5_11—("—“ )dy - Vo E‘(v—-u )dy =0

2 r I

then, by virtue of the theory of Lagrange multiplicra [Be,EkTe), the clement u* realizes the optimum of
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the problem ( NPbis ) because it satisfics the sufficient conditions of optimality.

Taking into account (a), (b), (¢) and (d) the thesis is achieved.

1V. EXAMPLES
We shall give three examples in which the solution of the diffcrent problems presented is

explicitely known for a, q, B=const.>0 (We note B=k,; b > 0)

1) Example 1. The following data are considcred:
n=2 .n=(o,Xo)X(0.yo) .x°>o.yo>0 ’
r, = {0} x [0,y,] v Fa = {xo} x [0,yo] ,
[y = (0,x0) x {0} U (0,xq) x {yo)

obtaining

“an(‘OY) =B - g —qXx, Ua('-’) = 411 + x [} uan(xOY) =B ’

9'= qop(xy) = T,!E—g—,; ((xy) € T3), 1 = pa(xy) =135 ((xy)€T),

F@) =30") = s M@ =Yelo +§),  C=xev0 ,

a(@,B) = qm(a,B) = T%EK . ax(e,B) = qpy(a,B) = Ba .

2) Example 2. The following data arc considered:
n=2,0<r,<r,, I'hy=0,
2={xy/n<r=(x w1yl <n},
n={en/r=n}, h={em/r=n},

obtaining

uaqn(r) =B —.%‘;:— —qrn Iog(,'il) v Uqg(r) =1y ( T'l'fl_ + l"g(ﬁ) ) :

Bar,
] rz
1+ ar Iog(,—l-)

uan(r) =B , u= U;B(r) = |°8(El?) ’
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l1+ar Iog(,'—’i)
—y
L + ar, log(g})

Bar,
ra [}' +ar, log(:—%)]

*

y 4'= qpp(xy) =

Vo = "oa(') = ((x,y) € IT'y) ':..

arl

4
ty (I + ar, log(¢)

2xBar,
1+ arlog?)

p= polxy) = ) (xy) € ), F(q')=I(n") =

M) =277} (gl +108(@) . C=2xrilog(r) ,

a,B) = a,B) = B R a,B) = a,B) = Bar .
q(a,B) = qin(a,B) r (54!— +|og(;;?)) 9;(a,B) ‘IM( ) — Tt

3) Example 3, We take into account the sainc information of Example 2 but now for the case n=3; by

2)!/’):

doing this, we reach the following results (r=(x*+y?+s

uan(r)=B——:—té-—qr§(rl;-’) ’ Un(')=';(—a‘lr?‘+l!]_l) '

u,p(=B , u’=u; (r) = B - ,
B B alrl +II‘|"'I’I; (l }5)

Q" = q;“(r) = l’;( 1 l:_ - 'L’) ((xa.Yox) €r, ) '
ar

n = pafr) = 3 (

1 .
((xy2)ely) ,
Sir+k-4) ’

) - u®) = 41D , a) = ‘l’l’; 1 l.._ ,
F(q*) = J(u°) I ﬂ—rl; A(a) = 4 A(—;_r?—-'-ﬁ }.,)

ar 1

a,B) = a,BB) = B R a,B) = all) = Barf .
9(a,B) = qm(e,B) '3(—J-r+|!;~§;) az(e,B) = qpy(a,B) ——;—’-
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