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Optimization of Heat Flux in Domains
with Temperature Constraints'

R. L. V. GONzZALEZ?> AND D. A. TARZIA®

Communicated by L. D. Berkovitz

Abstract. In this paper, we deal with a heat flux optimization problem.
We maximize the heat output flow on a portion of a domain’s boundary,
while on the other portion the distribution of the temperature is fixed.
The maximization is carried out under the condition that there are no
phase changes.

The problem is solved using a convex-functional optimization
technique, on Banach spaces, within restricted sets, yielding existence
and uniqueness of the solution. The explicit form of the solution and
the corresponding Lagrange multipliers associated to the problem are
also given.

In addition, other optimization problems related to the maximum
bound of the heat flux with no phase change are solved.

Key Words. Steady-state Stefan problem, mixed elliptic differential
problem, constraint optimization problems, heat flux optimization prob-
lem, Lagrange multipliers theory, explicit solutions.

1. Introduction

We consider a regular bounded domain 2 of R" (n=1, 2, 3 for the
applications), with a boundary I'=T",uT’; [meas(I';) >0, meas(I’;) > 0],
and it is assumed that the phase change temperature is 0°C. On the portion
I', of the boundary, we have a temperature b; on the portion I'; of the
remaining boundary, a heat flow g is imposed.
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Considering in () a stationary heat conduction problem, we have the
following properties.

(i) If the temperature b= b(x) takes on I';, positive and negative
values, independently of the values of ¢ = q(x) on I',, then there is a phase
change in Q.

(ii) If the temperature is a constant b>0 on I', and the output heat
flux is a constant ¢ > 0 on I';, then there is a phase change in (2 only when
q is large enough. A sufficient condition for the existence of a phase change
in {1 was obtained in Refs. 1-2 and is given by the following inequality:

9> q.=(k,b/C) meas(T’,), (1)

where k, is the thermal conductivity coefficient of the liquid phase and
C=C(Q, T,, I')>0is a constant that has the physical dimension [C]=
(cm)”, n being the dimension of the space R".

In this paper, the following optimization problems are studied consider-
ing the phase-invariance restriction, with b>0 on I',. '
(P1) Maximize the output flow F(q),

F(q)= L q(s) ds,

under the restriction u(x)=0, Vxe Q.
(P2) Find the maximum bound of the flow density which does not
allow a phase change. That is, determine A,

A=max{A/q(s)=A,Vsel,=>u(x)=0,VxeN}.

(P3) Given a flux form g¢(-), determine the maximum flow of this
form which does not permit a phase change. That is, find

Qm =max{u/q(s) — uqo(s), Vsel,=>u(x)=0,Vxel}.

In each of these problems, we identify the solution and show the
procedures for their computation.

2. Model of the Problem and Its Properties

If @ represents the temperature on () and the substitution u=
k,0" —k,0” is made, where k, is the thermal conductivity coefficient of the
solid phase, then the variables u, b, q are related in the following way (Refs.
3 and 4):

Au=0, in Q, (2a)
uly, = bo (=kb" —kb™) = kb, (2b)
—qu/an|;,=gq,  (20)
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whose variational formulation is given by

a(u,v-u)=-j q(v—u) dy, Vve K, (3a)
1,
ue K (3b)
where .
V=H'(Q), K={veV/v|,=b}, | (4a)
a(u, v)=J‘ Vu-Voudx, Vo={ve V/vl,-|=0}.v (4b)
n
Consider the sets
Q={q:T:»R/q(-)e L}(I',))}, (5a)
S={ueK/Au=0,in Q}, (5b)
S*={ueS/u=0,in 0}, (5¢)
and the mapping T: Q- S, defined by
T(q)=u,€S, (6)

where u, is the unique solution to (3) or (2) under the hypotheses be
HYX(T)), g € L¥(T,). We will also assume that the domain and the boundary
function b(-) satisfy the following properties:

(i) wu,eC(Q).
(i1) The solution to the problem

Au=0, in Q,
“lr, = b,,
uh'z=0,

satisfies
du/an|, € L*(T,).

(iii)) The solution of the problem

Av= 0, in Q, | »
Ull’l = 0,
U|r2= l,

satisfies
dv/an|,€ LXT,) and av/on|-,>0, a.e.xel,.
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If
Q" '=T'(8")={qeQ/T(q)eS"}={qe Q/u,=0,in Q}, (7)

then, there is no phase change in (Q if the heat flux ge Q".

Remark 2.1. The boundary portions I'; and I'; may be separated by
a boundary portion I'y, disjoint from I';, and I';, that will behave like a
heat-isolating wall, i.e., with a null heat flow over it. This new variant does
not introduce any essential modification in the analysis of the problems to
be formulated.

Some Preliminary Properties. The first property consists in the gen-
eralization of Property 1 in Ref. 1, proved there for the case g = const.> 0.

Lemma 2.1. Let u=u, be the solution to (3) for g€ Q. Then, we have

(i) a(u,u’)=[r, qu dy;
(ii)) u #0,in Qeu #0,in [,.

Proof. (i) It suffices to use v=u"€ K in (3).
(ii) Since u7|r, =0, we have the following equivalences:

u #0,in Qea(u, u')#O@J qu dy>0&u #0,inl,. O

Iy

Remark 2.2, It follows from property (ii) of Lemma 2.1 that, for a
given g€ Q, there will be a phase change in ) (u, takes positive and
negative values in 1) if and only if u, takes negative values over boundary
portion ;.

Now, we will show some simple properties that result from the definition
of the operator T.

Lemma 2.2. The operator T, defined by (6), can be decomposed in
the following form:
T=T,+T,,
where
T,:Q-3S, T,(q) = u, (independent of q), Vge Q, (8a)
T,:Q->V,, T,e L(Q, Vb). (8b)
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Proof. Let u,€ K and u,=u,{q}€ V, be the unique solution of the
following problems (Ref. 5):

a(u,,v—u,)=0, VYve K, ‘ (9a)

ek, - (9b)

a(u,, v)=—J. qudy, VYveV,, (10a)
I

u€ V. (10b)

From (6), the uniqueness of u yields

U=u,tu,.
T, and T, can be defined as follows:

Ti(@)=u,, Tiq)=u,, VqeQ. (11)
The operator T, is continuous and linear, because it verifies the relation

| T2(@) v, = Ul voll/ @)l g1l 2y Vqe L*(T,), (12)

where y,: V= V, is the trace function and «a is the coercive constant of the
bilinear form a over V,. a

-

Lemma 2.3. The set Q" is convex.
Proof. This follows from the fact that T is an affine operator and S™
is a convex set. O
Next, we will show a monotone property that turns out to be valid for
the case b = b(x) and q = q(x) with any sign.
Lemma 24. Let u,, be the solution to (3) for be H*(,) and q¢€
L*(T,). Thus, we have the following monotone property:
b,=b;,onl',, and g,=gq,,onl;.
Then, -
ubm = u,,m, in (). (13)
Proof. To verify (13), the following equivalence will be taken into
account (the notation is ¥, =u,,, i=1, 2):

U <u,,inQe&w=0,inQ, w=(u—u,)". (14)
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Since we V,, if we use v=u,+we K, in the variational equality corre-
sponding to ¥, and v = u, + w € K,, in the vanational equality corresponding
to u,, and then substract both equalities, we have

0= a(w, W)=-J'r (9. —q2) dy=0,

that is, w=0 in (. . O

3. Some Optimation Problems and Their Solutions

Next, some optimization problems with their respective solutions will
be analyzed.

3.1. Total Maximum Heat Flow. Consider the functional F: Q- R,
defined by

F(q)=] qdy, (15)
I
which turns to be linear and therefore convex. We consider the following

optimization problem in Q™:

(P1)  max F(q), (16)

4eQ’

which consists in finding the total maximum heat flow over I'; so that there
will be no phase change in the material 2. We have the following theorem
of existence of solution for Problem (P1).

Theorem 3.1. There exists an element g€ Q" so that we have

F(q)= :1:?;5 F(q). (17)
Moreover, § is defined in I'; in the following way:

g = —dug/on, (18)
where u, satisfies

u€ S, U, = 0. (19)

_Proof. The element u,, defined by (19), verifies that uy>0in Q, uo =0
in (); and, by the maximum principle (Ref. 6), we have that >0 in I',.
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Let u = u, € S be the element that corresponds to g€ Q™. Let v=u—u,
verify the following conditions:

Av=0, in (2, (20a)
vlrl = 0, ) (20b)
vlrz = UIFZ =0. (ZOC)

Taking into account that v has its minimum in I'; and if the differential
equation which v satisfies is integrated in (1, from the maximum principle
we deduce that

(G-9) d7=J" (dv/on)dy=-1 (dv/an) dy=0.

I, ry

F(é)—F(q)=J

I';
Therefore, § yields the maximum of the functional F. a

Next, a new approach to the optimization problem (16) will be stated.
Define a linear (and therefore convex) functional J:S - R, by

J(v)=—‘[ (dv/on) dy. (21)
I;
The following optimization problem in s™ is considered:
max J(v), (22)
- ves”

which turns to be a new formulation of (16).
Let ¥ = C%T,). Define the linear operator B:S - ¥ by

B(v) = -v|;,;
and let
cone P={pe¥|p=0,0onT,}

which has a nonempty interior. Taking into account Lemma 2.1, we may
farmulate the optimization problem (22), in an equivalent way, as follows:

max J(v). (23)

veS . B(v)=0

We have the following existence and uniqueness theorem for the
solution of problem (23). -

Theorem 3.2. The optimization problem (23) has a unique solution.
Moreover, the element that produces the optimum is u,, defined by (19).

Proof. (i) Let u be a solution to (23). From Ref. 7, we deduce that
there exists a Lagrange multiplier u € ¥* (dual of ¥), u =0 [i.e., (u, p) =0,
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Vp € P], so that the following conditions are satisfied:

(a) =J(v)+{(u, B(v))= —-J(u), VveS; (24a)
(b) (.#, B(u)) = J: uB(u) dy=0. (24b)
2
From (24) we deduce that
JI_ {(ou/on—ov/on)—u(u—-v)} dy=<0, VveS.
Calling w=u —uv, with ve S, we have that
Jr (ow/on—uw) dy =<0, Vwe V,, with Aw =0, in ).
Then,

I (ow/on—puw) dy=0, Vwe V,, withAw =0, in (). (25)
I>

Let vo€ V;, be the element that satisfies

Avy,=0, in , (26a)
voli, =0, (26b)
l?(;'lr2 =1]. (26C)

Taking into account Vo and using Green’s formula, we obtain that

I (ow/on) dy = J- vo(dw/on) dy = f w(dvo/dn) dy. (27)

I I I

Therefore, from (25), we deduce that the Lagrange multiplier is given by
p =advy/dn|- € LX(T). (28)

Moreover, using the orthogonality condition given by (24b), we deduce that
I u(ovy/on) dy =0.
I
Taking into account the fact that u|,,=0 and the maximum principle for

vy, we obtain that ul;,=0. We deduce the uniqueness of the solution to
problem (23) because u = u,.
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(ii)) Let ug, vy, 1 be defined by (19), (26), (28), respectively. Let v
be any element that satisfies v € S. Then, we have

=J(v)+(u, B(v))+J(ug) = | {ve(dv/dn —3duy/dn)— v} dy
. I,
r

= ) {(v—up)(dve/dn) — uv} dy

= -J‘ uo(dve/on) dy=0. (29)
Iy

Then, by virtue of the theory of Lagrange multipliers (Refs. 7 and 8), u,
realizes the optimum because it satisfies the sufficient conditions of

optimality. a

Taking into account Theorem 3.2 and the relationship existing between
the optimization problems (17) and (23), we have the following corollary.

Corollary 3.1. The element g, defined by (18), is the unique solution
to the optimization problem (17).

3.2. Maximum Bound of the Heat Flow Density That Does Not Permit
a Phase Change. Consider the original problem (2) or (3) with b= b(x)>0
over I', and g=¢q(x)>0 over I',. Now, we must find g,, >0 so that, if
q = qm, We do not have a phase change in domain (Q, that is: Find

gm>0/u,=0,ind, Vg=gqyu. (30)

For the case g = const >0, we obtain the following property.

Lemma 3.1. The element g,,, defined by
qm = inf [up(x)/ us(x)], (31)

X€ rz

satisfies the condition (30), where u, and u; are respectively defined by (32)
and (33), with

Au, = 0, - in{}, (32a)
uplr-, = by, | - (32b)
duy/an|;, =0, (32¢)
Au; =0, in Q, (33a)
us);-, =0, (33b)

6u3/8n|,-2= 1. (33C)
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Proof. We have

U, =min by(x)>0, in,

x€l’y
u;>0, in ),
with
uJIl'stla M3>0’
such that element g,,, defined by (31), verifies
qu = [min bo(x)]/M,> 0. (34)

xel’.

Taking into account the definition of u,=u,(x), we deduce that u,=
u, — qu;, with which we obtain

u,=0,in Q> u, —quy =0, on I, g < gy,. (3%
a

If we now consider the case ¢=¢(x)>0 on I',, we can deduce the
following property that generalizes Lemma 3.1 to the nonconstant g case.

Theorem 3.3. If q=q(x)>0 over I'; satisfies
max g(x) =< gu, (36)

xel';

where gu is defined by (31), then there is no phase change in (Q, that is,
g =0in Q.

Proof. It suffices to use the monotony property (13) and the fact that
g=qmonl,. O

Next, we will consider some examples in which the constant g,, may
explicitly be calculated.

Example 3.1. The following data are considered:

n=2, 2= (0, x,) x (0, yo), with x>0, y,> 0, (37a)

I, ={0} %[0, yol, I'2={xo} %[0, o}, (37b)

T3=(0, %) {0} U (0, xo) X {yo}, (37¢)
obtaining

up(x,y)=kb,  uy(x,y)=x, (38a)

gm = k2b/ x,. (38b)
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Example 3.2. The following data are considered:

n=2, o<r,<r,, (39a)

Q={(xy)/n<r=(x'+y)"’<n}, | (39b)

Fi={(xy)/r=n}, Ti={(xy)/r=ri}, (39¢)
obtaining

up(x, y) =k, b, uy(x, y)=r,log(r/r,), . (40a)

gm = (kz, b)/[r2l0g(r,/ 1)]. (40Db)

Example 3.3. For the case n =3, the same data as in Example 3.2 are
considered. Taking -

r=(x>+y*+2z%)"?,

we obtain
up(x, , 2) = kb,  us(x,y,2)=ri(1/r,—1/r), (41a)
gm =k br\/[r:(r—r)]. (41b)

Remark 3.1. It can be observed that, in the three previous examples,
the obtained element g\, agrees, for the case ¢ = const.> 0, with the element
that produces the necessary and sufficient condition so that there is a phase
change in (] (Ref. 9).

3.3. Maximum Bound of the Constant Involved in the Form of the Heat
Flow Density That Does Not Permit a Phase Change. We consider the
original problem (2) or (3) with b=b(x)>0 on I',, with a given form for
the heat flow density,

q(x) = Qqo(x), | (42)

where Q>0 and go=q¢(x)>0 on I';. The problem consists in finding
Qx> 0 so that, if Q = Q,, we do not have a phase change in the domain
1, that is: Find

Qm>0/u,=0,in ), VQ=Qum. ’ (43)
We get the following property.

Theorem 3.4. The element Q,,, defined by
Qs = inf [uy(x)/ us(x)], (44)

x€l’y
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satisfies condition (43), where u, and u, are defined respectively by (32)
and (45), being

Au,=0, inQ, : (45a)
Uyl =0, (45b)
ou./an|, = gq. - (45¢)

Proof. In an analogous way to what was done in Lemma 3.1, we have
that ‘ '

-Qus, u>0, inQ),

with
Qm= [mm bo(x)] / m,> 0, (46)
xel’,
and the following equivalence holds:
u,=0in Q&> Q= Qu (47)
so that the element Q,,, defined by (44), satisfies condition (43). O
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