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Abstract--We use a simple mushy zone model in a two-phase solidification problem (Stefan problem) 
for the simultaneous determination of unknown coefficients of a semi-infinite material with an 
overspecified condition on the fixed face. We find the necessary and sufficient conditions for the 
existence of a solution and the corresponding formulae for the unknown coefficients. Copyright © 
1996 Elsevier Science Ltd 

1. I N T R O D U C T I O N  

We consider a ,;emi-infinite material with mass densities p > 0 equal in both solid and liquid 
phases and we can assume, without loss of generality, that the phase-change temperature is 
0°C. 

If the material is initially assumed to be liquid at the constant temperature E > 0 and a 
constant temperature - D  < 0 is imposed on the fixed face x = 0, then three distinct regions can 
be distinguished (for a mathematical and properties description of this simple model see [1]; for 
the one-phase model see [2]): 

(HI) The liquid phase, at temperature 02 = O2(x, t )>0 ,  occupying the region x > r(t), 
t > 0 .  

(H2)  The solid phase, at temperature 01 = O~(x, t )<0 ,  occupying the region O < x  <s(t),  
t > 0 .  

(H3) The mushy zone, at temperature 0, occupying the region s(t)<-x <-r(t), t > 0. We 
make two assumptions on its structure: 

(a) The material in the mushy zone contains a fixed fraction ~A (with 0 < E < 1) of the total 
latent heat A > 0, i.e. 

kl Ol,(s(t), t) - -  k 2 0 2 ~ ( r ( t ) ,  t) = Ap(E~(t) + (1 -- E)f(t)), t > 0. (1.1) 

(b) The width of the mushy zone is inversely proportional (with constant T > 0) to the 
temperature gradient at the point (s(t), t), i.e. 

01x(s(t), t)(r(t) - s(t)) = T, t > 0. (1.2) 

We suppose that the temperature 0 = O(x, t) of the material is defined by 

t O0,(x,t)<O i f O < x < s ( t ) , t > O  
O(x, t) = if s(t) <-x <- r(t), t > 0  (1.3) 

L 02(x, t) > 0 if x > r(t), t > O. 

t To whom all correspondence should be addressed. E-mail tarzia@uaufce.edu.ar. 
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The governing differential equations take the following forms for the solid and liquid phases: 

a.Olx , (x , t )=O, , (x , t ) ,  O < x  <s( t ) ,  t > 0  (1.4) 

azO2,x(x, t) = 02,(x, t), x > r(t), t > 0 (1.5) 

where ci > 0, ki > 0 and a~ = a~ = ki/pci > 0 are the specific heat, the thermal conductivity and 
the diffusion coefficient for the phase i (i = 1 denotes solid phase; i = 2 denotes liquid phase) 
respectively. 

The conditions at the solid-mushy interface x = s(t) and the mushy-liquid interface x = r(t) 
are given by (1.1), (1.2) and the requirement of the continuity of the temperature, i.e. 

Ol(s(t), t) = 02(r(t), t) = O, t > O. (1.6) 

The initial and boundary conditions are given by 

O,(O,t) = - D < 0 ,  t > 0  (1.7) 

0 2 ( x , O ) = O 2 ( + o G t ) = E > O ,  x>O,  t>O,  (1.8) 

s (0 )=r (0 )  =0. (1.9) 

We consider an overspecified heat flux condition [3, 4] on the fixed face x = 0 which is given 
by [1, 4-7] 

k I/91 (0, t) ho x = ~ t t '  t > 0 ,  with h o > 0 .  (1.10) 

If by means of a phase-change experiment we are able to measure certain quantities, then we 
shall find formulae for the simultaneous determination of the unknown coefficients (E, 3' denote 
parameters of the mushy zone; A, p, c~, c2, kj, k2 denote thermal coefficients of the material). 

We shall also prove that the different problems for determining several unknown 
coefficients, posed in the next sections, do not always have an explicit solution. Moreover, it 
does exist iff some complementary conditions for the corresponding data are verified. In this 
paper, we generalize the results obtained in [5] for the particular case E = 1 and y = 0 (i.e. 
without mushy region) and those obtained in [7] for the one-phase case. In [4] several 
references on free-moving boundary problems and determination of physical coefficients are 
given. 

In Section 2 we shall consider the simple mushy zone model for the two-phase Stefan 
problem for determining one unknown thermal coefficient of a semi-infinite material with an 
overspecified condition on the fixed face, supposing the free boundaries x = s(t) and x = r(t) 
are unknown. The results obtained for the eight possible cases are considered in Appendix C 
(Table 1) which shows both the necessary and sufficient conditions to be verified by the data for 
the existence and uniqueness of the solution and the expression of the corresponding unknown 
coefficient. Moreover, we shall also prove the respective properties for the determination of 
(case 3) and the determination of k2 (case 7). 

In Section 3 we shall consider the same model for determining two unknown thermal 
coefficients of a semi-infinite material with an overspecified condition on the fixed face, 
supposing known the expression for the moving boundary x = s(t). The results obtained for the 
28 possible cases are considered in Appendix D (Table 2) which shows both the necessary and 
sufficient conditions to be verified by the data for the existence of the solution and the 
expression of the corresponding unknown coefficients. There are several cases where the 
moving boundary problem has a unique solution iff some conditions are verified. Moreover, we 
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shall also prove the respective properties for the determination of k~ and k2 (case 9), the 
determination of ~ and kz (case 17), the determination of cz and kz (case 19) and, the 
determination of ~/and k2 (case 23). 

The functions and the restrictions used in the text and, Appendices C and D are summarized 
in Appendix A and Appendix B respectively. 

2. DETERMINATION OF ONE UNKNOWN THERMAL COEFFICIENT 

Taking into account the hypotheses (Hn)-(n3) we can formulate the following: 

PROBLEM (P1). Find the free boundaries x = s(t) and x = r(t), defined for t > 0 with 0 < s(t) < 
r(t) and s(O) = r(O) = O, the temperature 0 = O(x, t), defined by (1.3) for x > 0 and t > O, and 
one o f  the eight unknown thermal coefficients ~, y, A, p, cl, c2, kl ,  k2 such that they satisfy the 
conditions (1.1), (1.2), (1.4)-(1.10) where D >0, E > 0  and h o > 0  are data and they must be 
known or determined by an experience o f  phase-change [8]. 

The solution of this problem is given [1, 6, 9-11] by 

O , ( x , t ) = - D +  D . f{  x ~ 
f ( ~ )  \2a'X/-[} 

(2.1) 

Oz(x, t) = -Ef(~22) ~o "f ~_ E ( 2 a ~ t )  (2.2) 

s(t) = 2o'VT, o" > 0 (2.3) 

r(t) = 2o~V~, w > or (2.4) 

where f is the error function, the coefficient w is given by 

(2.5) 

and the coefficient ~r and the unknown thermal coefficient are obtained by solving the following 
system of equations: 

ho 
exp - ~ -  -Apa~a2V,-~r~l--~ ] = G  ~ (2.6a) 

Apa t 

k, ~ \ a , / -  ho---XFx" (2.6b) 

The eight possible cases for Problem (PI) are considered in Appendix C (Table 1) which 
shows both the necessary and sufficient conditions to be verified by the data for the existence 
and uniqueness, of the solution of the problem and the expression of the coefficient o" together 
with the corresponding unknown coefficient. We remark here that the coefficient ~o is always 
given by the expression (5) as a function of or and al. 
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Now, we shall prove the following properties only for the determination of e (case 3) and the 
determination of k2 (case 7), which gave us different difficulties in all cases. 

THEOREM 1 (Case 3). The necessary and sufficient condition for Problem (P1), with tr and e 
unknown, to have a unique solution is that data D > O, E > O, ho > O, mushy zone coefficient 
y > 0 and thermal coefficients of  the phase-change material A, p, cl, c2, kl,  k2 > 0 do verify the 
conditions 

Eke Dkj 
ho > vTra2 --S-F'  f(x5) < hoa,V~<f(x4)'  (2.7) 

w h e r e  x 4 and x5 are unique positive zeros of  functions Ha and 115 respectively. In such a case, the 
solution is given by (2.1)-(2.4) with 

2D F. H , 
, = 2 ( 6 )  

where E1 is the unique solution of  the equation 

o- = alsO,, to = a, W(~:I) (2.8) 

PROOF. We define 

Dkl 
f (x)  hoalX/~, x > 0 .  (2.9) 

o" with a~ . (2.10) ~ a~ 

The coefficient tr is obtained from (2.10) and the element ~ is given from (2.6b) as the 
solution of (2.9) iff the data verify the condition 

Dkl 
hoatX/-~ < 1. (2.11) 

From (2.6a) it follows that ~, should verify 

ho Ek2 _ ( a ~ W ( ~ : ) ) = ~ -  ~ (1 - e)TX/~f(,l)exp(,2) ' (2.12) 
hpa~ exp( -  ~:~) - Apa~ a 2 ~  Pi 2D 

then we obtain the expression for ~ in (2.8). 
Therefore we have the following properties: 

E < I  iff H4(~l)>0 

h > 
EkE 

iff H4(0+) > 0 i . e .  o --a2V~] and ~l<x4(i .e . f (~l)<f(x4)) ,  (2.13) 

where x4 is the only positive root of H4 (because H4 is a decreasing function for x > 0 ) ,  and 

where x5 is the 
ho 

H40 +) = _ 
Apa 

because X s < x4. 

a > O  iff /-/s(~,)>O iff ~,>xs( i .e . f (~ , )>f(xs) ) ,  (2.14) 

only positive root of H s (because Hs is an increasing function for x > 0, 

a2o<0  and Hs(+o~) = +oo). We can deduce (2.7) from (2.13) and (2.14) 
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THEOREM 2. (Case 7). The necessary and sufficient condition for Problem (P,), with ¢r and k2 
unknown, to have a unique solution is that data D > O, E > O, ho > O, mushy zone coefficients 
0 < E < 1 and y > O, and thermal coefficients of  the phase-change material A, p, c,, c2, k~ > 0 do 
verify the condition 

Dkn < 
hoUV~ f(x,7) (2.15) 

where x,7 is the unique positive zero of function H17. In such a case, the solution is given by 
(2.1)-(2.4) with 

klc2 W2(~1) 
k 2 B2 , o" = a ,~1,  09 = a , W ( ~ l )  (2.16) 

c1 

where ~1 is the unique solution of (2.9) and B is the only solution of the equation 

1 h H2(~1) 
H16(x) Ec~ w(~,)' 

x > 0. (2.17) 

PROOF. We obtain the coefficient o- as in Theorem 1. From (2.6a) it follows that £~ should 
verify 

Ek2 {al 
W(~,)] = n2(~,). (2.18)  pa,a2  / 

If we define 

V~z (2.19) B =a~ W(~l), with a 2 - . r - - - ,  
a2 V pc2 

then equation (2.18) is equivalent to 

Fn(B) AV~ H2(¢,) 

B Ec2 W(~l)' 
B > O, (2.20) 

that is, B is the solution of (2.17). Taking into account the properties of the function H16 we can 
deduce that the:re exists a unique solution of (2.17) if and only if 

H,7(£,)>0 iff ~ <x,7 (i.e. (2.15)), (2.21) 

where x~7 is the only positive root of H17 (because //17 is a decreasing function for x > 0, 
/-/17(0 +) > 0 and H~7(+~)= - ~ ) .  From (2.19) we obtain the coefficient k2. 

3. DETERMINATION OF TWO UNKNOWN THERMAL COEFFICIENTS 

Taking into account the hypotheses (HI)-(H3) we can formulate the following: 

PROBLEM (P2). Find the free boundary x = r(t), defined for t > 0 with r(0) = 0, the temperature 
0 = O(x, t), defined by (1.3) for x > 0  and t >0,  and two of the eight unknown thermal 
coefficients ~, y, A, p, cl, c2, kn, k2 such that they satisfy the conditions (1.1), (1.2), (1.4)-(1.10) 
where the moving boundary x = s(t), defined for t > 0  with s(O)= O, is given by (2.3) with a 
known coefficient cr > 0 and D, E, ho > 0 are data and they must be known or determined by an 
experience of p,hase-change [8]. 
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The solution of that problem is given by (2.1), (2.2) and (2.4) where the coefficient to and the 
unknown thermal coefficients are obtained by solving the system of equations (2.6). 

The 28 cases for Problem (P:) (cases 9 to 36) are considered in Appendix D (Table 2) which 
shows both the necessary and sufficient conditions to be verified by the data for the existence of 
the solution of the problem and the expression of the coefficient to together with the 
corresponding unknown coefficients. There are several cases where the moving boundary 
problem has a unique solution iff some conditions are verified. 

Now, we shall prove the properties corresponding only for the determination of k~ and k2 
(case 9), the determination of e and k2 (case 17), the determination of Cz and k2 (case 19) and 
the determination of 3' and k: (case 23), which give us different difficulties in all cases. 

THEOREM 3 (Case 9). The necessary and sufficient condition for Problem (P:), with to, kl and k2 
unknown, to have a unique solution is that data ~r >0,  D > 0, E > 0, ho >0,  mushy zone 
coefficients 0 < ~ < 1 and 7 > O, and thermal coefficients of  the phase-change material 
A, p, ca, c2 > 0 do verify the conditions 

( ( _ _ ~ )  Dpo'c, ho > I + Z  + h 1+  
Epo'c2 D Ec2 ' hoV~ </-]2o(X23), (3.1) 

where x23 is the unique positive zero of  function H23. In such a case, the solution is given by 
(2.1), (2.2) and (2.4) with 

I 2 H~5(~,) 
to = (rH25(~,), k, = p~r2c, ~ ,  k2 = pq  c2 - ~  (3.2) 

where ~l is the unique solution of  the equation 

Dp~c 
H2o(X) = h o G '  x > 0 (3.3) 

and B is the only solution o f  the equation 

1 A H21(~) 

H,~(x) Ec~ w(~,)  ' 
x > 0. (3.4) 

PROOF. We define 

= - - ,  with a l -  (3.5) 

The coefficients to and k~ are obtained using (3.5) and the element ~j is given from (2.6b), as 
the solution of (3.3). From (2.6a) it follows that g~ and k2 should verify 

If we define 

ek2 
A p a , a 2 ~ r l ~  ~1 /=H2'(~l)" (3.6) 

(r W(~,) ~ kkf~-2 
B = --H25(~1), with a2 = (3.7) 

a2 ~1 a2 

then (3.6) is equivalent to 

f i (B)  = X ~ H 2 , ( ~ , )  
B Ec2 W(~l) '  

B >0,  (3.8) 
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that is, B is the solution of (3.4). Taking into account the properties of the function Ht6 we can 
deduce that there exists a unique solution of (3.4) if and only if 

H23(~t)>0 iff H23(0+)>0 and ¢l<X23(i.e.  (3.1)), 

where x23 is the only positive root of H23 (because/-/23 is a decreasing function for x > 0 and 
H23(+oo) = -o0). From (3.7) we obtain the coefficient k2. 

THEOREM 4 (Case 17). The necessary and sufficient condition for Problem (P2), with to, e and k2 
unknown, to have at least one solution is that data tr > O, D > O, E > O, ho > O, mushy zone 
coefficient y > 0, and thermal coefficients o f  the phase-change material A, p, Cl, c2, kl > 0 do 
verify the conditions 

Dk, o- 
h o  - , ~1 -~" - -  < X36 (3.9) 

a t f ( ~ ) ~  ol 

where x36/S the unique positive zero o f  function H36. In such a case, there exist infinite solutions 
which have the ]brm (2.1), (2.2) and (2.4) where 

k,c~W2(6) 
w = a lW(f l ) ,  k 2 - - -  B2 

C1 

,=~---~F2(~,) W(s~,)-~'~F2(~,)+ A H,6(B)/' 
(3.1o) 

with B an arbitrary parameter which is defined by 

and 

B>H?6 ~ if x37-----fl<X36 A Ec2W( f  0 (-~--~F2(fl)-~t , (3.11) 

H _ l ( l ~  t 1 t 6 k A ] < B < H ~ 6 ( - ~ )  if ~,<x37(C - h 1 Dcl 

where x36 and x37 are the unique positive zeros o f  functions H36 and H37 respectively. 

Dkl 
PROOF. From (7',.6b) it follows that ho atf(ft)X/-~. From (2.6a), e and k2 should verify 

~"(~')  - ,~a-~ F, a ,  w ( ¢ , )  = ¢, + (1 - e )TV~f ( f t ) exp ( f , )  (3.13) 
2D 

i.e. the expression for E in (3.10), when we define B = at ~ 2 2  W(~t). Then we have 

1 1 
~ < 1  iff - - < A  and E < 0  i f f - - > C .  (3.14) 

H I 6 ( B  ) H , 6 ( B )  

Taking into account the properties of the function Ht6 we can deduce 

A > 1 ¢* H3~(~0 > 0¢* gl <x~6 

C > 1 ¢:>/-/37(~1) > 0¢:> ft  <x37. 
(3.15) 

Then we obtain (3.11) and (3.12) from (3.14) and (3.15). 



806 A.M. GONZALEZ and D. A. TARZIA 

THEOREM 5 (Case 19). The necessary and sufficient condition for Problem (P2), with to, c2 and 
k 2 unknown, to have at least one solution is that data tr > 0, D > 0, E > 0, ho > 0, mushy zone 
coefficients 0 < e < 1 and y > O, and thermal coefficients o f  the phase-change material 
A, p, cl, kl > 0 do verify the conditions 

ho - Dkl  
a l f ( ~ ) X / _ ,  /-/.s7(~) > 0 (or~l=~ll<X57) (3.16) 

where x57 is the unique positive zero o f  function 1-157. In such a case, there exist infinite solutions 
which have the form (2.1), (2.2) and (2.4) where 

A H,6(B)H57(¢~,) Ak,XTz W(s~,)H57(se,) 
to = a, W(s¢,), c2 = , k2 - (3.17) 

E W(¢I) Ec~ H~(B) 

for any B > 0. 

Dk~ 
PROOF. From (2.6b) it follows that ho alf(~l)XFx. We define 

B = ,, k ~  W(~:,). (3.18) 
~¢ clk: 

From (2.6a), B and k2 should verify 

Eclk2 H1(B) 
Ak~XF~ W(~I) - H57(~), (3.19) 

i.e. we deduce the expression for k 2 in (3.17). Then we obtain the coefficient cz from (3.18) and 
(3.19). 

Thus we have 

k2 > 0 ¢:kH57(~1) > 0 ¢::) 0 < ~1 <x57 (3.20) 

where x57 is the only positive root of H.s7 (because/-/57 is a decreasing function for x > 0, with 
//57(0 +) = + ~  and/-/57(+0 o) = - ~ ) .  

THEOREM 6 (Case 23). The necessary and sufficient condition for Problem (P2), with to, 3' and k2 
unknown, to have at least one solution is that data cr > O, D > O, E > O, ho > O, mushy zone 
coefficient 0 < e < 1, and thermal coefficients o f  the phase-change material A, p, cl, c2, kl > 0 do 
verify the conditions 

(or 

where Xso is the unique positive zero o f  function Hso. In such a case, there exist infinite solutions 
which have the form (2.1), (2.2) and (2.4) where 

k~c2 W2(~j, ~,) 
w = al W(~1, y), k2 = - -  B2 (3.22) 

cl 
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for any 0 < y < To, with 

T o -  
2D P2(~,)H4~:,) (3.23) 

and B = B(y)  is the only solution of the equation 

1 A H57(~1, 'y) 

H16(x) Ec 2 W ( ~ , ,  T) 
x > 0 .  (3.24) 

Dk, 
PROOF. From (2.6b) it follows that ho - . We define 

~2 = -  , w i t h  a 2  = 
a2 C2 " 

(3.25) 

From (2.6a), ~.72 > 0 should verify 

A ~  1 / ho 2 Y)). 
Ec2 ~, [ ~ l  exp(-sCl) - GI(~:,, (3.26) 

If we define 

w ( ~ , ,  y )  
B = B ( y )  - ~:2, (3.27) 

equation (3.26) for ~2 is equivalent to (3.24) for B. We obtain the coefficients ~o and k2 from 
(3.25) and (3.27). 

Taking into account the properties of the function Ht6 w e  can deduce that there exists a 
unique solution of (3.24) if and only if 

Hso(~l) > 0 (or equivalently sol < Xso), (3.28) 

for any 0 < Y < To, where Xso is the only positive root of //5o (because //50 is a decreasing 
function for x > 0  with//50(0 +) = + ~  and Hso(+O0)= - ~ ) .  
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A P P E N D I X  A 

The following real functions are defined, for x > 0, by 

f ( x )  = eft(x) = ~xx exp( - t  2) dt 

Fz(x) exp(-x2) 
f ( x )  

G(x) = G(x, y) = x -~ (1 -~DyV-~ f(x)exp(x2) 

H3(x) = exp( -x  2) - Ekz~Ft(aJ W(x)~ 
hoa2Vtt \a2 / 

Ha(x) = ~ exp( - x  2) - x Ek~ ~at ~pa,T~ F,[~ W(x) ) 

H6(x ) = (1 - ~) a2 x + Ek2 a, ,tpa,-~-~ e'(x) 

H.(x) = W(x)  
f (x )  

h2o V~ 2 Ehok2 1 Dkl \ exp(-x ) 

1 
nl2(x ) = fll~3X 

Dk  t ( 2 + rV'-~x] 
f l ' :  5-0-: 

hoa z V"~x 
[~3 = - -  Ek2 

DCi 2 DEctk2 I hoX/x \ 
",s(x) = ~ exp( -x  ) - ~ F, tD------'~--~l a 2 ni,(x)) 

Hi7(x )=  ~ exp(-x")- (1+ (l i "  )A 

× Y ~ f ( x ) e x p ( x 2 ,  - ( l + -~% )x 

H,q(x ) = f(x)Hts(x ) 

= hox exp(-x 2) - G(x, 7) H~i(x) = H~,(x, 3') Aptr 

n~.~(x) = H=(x)  
x 

H~.4x) = W(x) 
x 

H27(x ) = H26(x) 
x 

H2q(x) =-~-~exp(_x2) _ l Ek2 F,( O" H25(x)) 

H.a,(x) = (1 - ~) ? x  + Ek2 ~ F,(x) 
Apo'azV~r 

n.~(x) = ~ exp( -x  2) - x G ( x )  - -E-~xW(x) 

/"/35(X) = 1 - -  H34(X ) 

H.~7(X) = H.~t,(x) 
2D F2(x ) 

Fl (X) = exp(-xZ) 
1 - f ( x )  

W(x)  = W(x, y) = x + Y ~ f ( x ) e x p ( x  2) 

H~(x) = xE (x) 

H2(x) = X~al exp(--x2) -- G(x)  

yX:~ 2 H~(x) = - ~ - f ( x ) e x p ( x  ) - Ha(x ) 

HT(x)= ho exp(_x2)_x  Ek2 ~ F l ( a l x ]  
hpa~ Apa~a2Vtr \a  2 / 

Hg"" a(x )  
tx) = f(x)  

HII(x ) = ~ x + Fl(x ) 

H,3(x) = 

HI4(x) 

Ht6(x) 

HIs(x) 

f (x)W(x)  

DApkla 2 [ 2 (1 - ~)rV'-~] 
Ehok2 t'~xx -~ 2D / 

= f(x)C(x)  

= V~x exp(xZ)(1 - f ( x ) )  

~/ xk~ \ ~l clr2 

n2o(x) = xf(x) 

= ho x e x p ( - x  2 ) -  (1 + ( 1 -  ¢)A] H=(x) Ep,~c~ ~ ; 

x 7  V~x 2 / "~ \ --fyS(x)exp(x ) - U + 

H24(x) = f ( x )  
x 

"z6(x) = x e x p ( - x 2 ) -  , E~k.2~xF,( ~--" "2s(x)] 
noa 2 v/t" \a  2 " / 

H2x( x ) = H 2 ,(x) 
x 

H3°(X) = 2D xF2(x) H2~(x) 

H.~2(x) = ~ exp( -x  2) - 1 Ek2 _ [ o" "~ 

H~a(x) = Ec2V-~x W(x) 
Dcl F2(x) 

Dcl , , E, c2 
H~(x)  = T - ~  &~x ) - x - --X- W (x) 

H3~(x) = x + - -~xF,(x)  
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! y V ~  1 
Hsg(x) = H~zo (x )  {1 + \ 

H41(x) = ~-~J2 (x )  

Ha3(X) = - ~  exp(-  x") - (1 ' .---ff- ] 

°'hoc t 2 
H4.s(x) = - - ~ l  exp(--x ) - xG(x) 

~ , ~  1 
H47(x ) = H46(x ) "t 

2D Fz(x) 

. 

x trh o ~ ltc 1 \ ~ Clk 2 

• 2x 2 E ~/¢1¢2k2 ahoc l 
H s t ( x ) = - ~ l  e x p ( - - x ) - x  - ~  V xk, 

n , . , ( x )  = 

Hss(x) = xf(x)exp(x z) = x 
G(x) 

H~,(x) = G(x) + E 1 ., 

n42(x) = G(x) 
x 

/-/44(X) = ~ ' ~ W ( ~ t ) H I ( x )  + G(~I)  x2 (~1 > 0 )  

H46(x) = ~ F2(x) - W(x) 

H4s(x) = A~-~exp(-x2) - 1 

Hso(X) = ~ Fz(x) - ( I + -E-~ )x 

~ ' ~  x 
l-l,~(x) = Hs.(x) 

2D Fz(x) 

n57(x ) = H57(x , ~) =: ~ - ' ~  F2(X ) -- G(x, y). 

H54(x ) = -~--~-i e x p ( - x  ) - + (1 - e) ~]ktc2] 

E c~lc~k 2 [ ]ktc 2 \ x), 

/-/s6(X) Hss(x) Opo.c,a2Fi H2s(x) 

Hs.(x) = xG(x) 

The principal properties of some of these functions, for x > 0, are 

f ( 0  +) =: 0 f(+~¢) = 1 f ' (x)  > 0 

F,(0 +)  = 1 F , ( + ~ )  = + ~  F; (x )  > 0 

F2(0 +) =: +~¢ F2(+~ ) = 0 F~(x) < 0 

w ( o  +)  = o w ( + : ~ )  = + =  W'(x) > o 

G(0 +) = o G ( + = )  = + =  C' (x )  > o 

HI(0 +) == 0 H i ( + =  ) = +c¢ H[(x) > 0 

H2(0+)  = ho kpal H2(+~  ) = - ~  H~(x) < 0 

H3(0 +) == a2,, /4.,(+=) = - =  n~(x) < 0 

/4.(0 +) = ~ a~,, H . (+  =)  = - =  H:~(x) < 0 

Hs(0+)  = _ h,, Apat a2o H.s(+ ~)  = + ~  H'.s(x) > 0 

/46(0 + ) Ek2 Xpaw~V-~x Hd  +~)  = += H~(x) > 0 

H7(0+) := h '--.-.L-~ APal 0~20 H7(+=  ) = -oo H~(X) < 0 

/4.(0 +) = a3 / 4 . (+= )  = +~¢ Hg~(x) > o 

H~(0 +)  = a4  H ~ ( + = )  = + =  H~(x) > 0 

H.~(0 +) = as  H.~(+=)  = - =  H~o(x) < 0 

Hi,(0+) = 1 H i t ( + : ¢  ) = + :c  H;, (x)  > 0  

Hi2(0 +) = + =  H , 2 ( + = )  = 0 H'I2(X ) < 0 

His (0  +) = 0 H i 3 ( +  = )  = + =  H~s(x)  > 0 

HI4(0 +) = 0 Hl4(+~¢) = +z¢ H]4(X ) > 0 

809 
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with 

H , 5 ( 0  +)  = a 6  

HI6(0 +) = 0 

HI7(0+) = ~7 

Hts(0 +) = ots 

HI9(0 +) = 0 

//2o(0 +) = 0 

/-/23(0 +) = 0( 9 

2 
H24(0+) = ~xx 

Hz~(0 +) = 1 + ~ 
D 

//27(0 +) = al0 

H28(0+) = o, ii 

H29(0 +) = 0~12 

H3o(0 +) = Oil3 

/4~,(0 +) = a,~ 

H32(0 +) = 0~15 

H33(0 +) = °rhocI 
Ak~ 

H3~(0 +) = o 

H35(0 +) = 1 

H~d0  +) = + ~  

/43~(o +)  = + ~  

Ec2 
H3.(0 +) = 

H3~(0 +) = 0 

H4o(0 +) = Oil6 

H4,(0 +) = + ~  

//42(0 +) = Oil7 

/443(0 +) = a,s 

//44(0 +) = 0 

H45(0 +) = °hoci  
Akt 

H ~ ( 0  +) = + ~  

//47(0 +) = +oo 

H48(0 +) = 0tl9 

H49(0 +) = + ~  

/Ao(0 +) = + ~  

H.s~(0 +) = °hoct  
Ak~ 

H52(0 +) = o'hoci 
Ak t 

H53(0 +) = a 8 

+ O'hoc I 
H~4(O ) =  

Ak, 

Hs. , (0  + )  = o 

H.s6(0 +) = +~e 

H s @  +)  = + ~  

v~x 
Hss(0 +) = T 

A. M. G O N Z A L E Z  and D. A. T A R Z I A  

Hts(+c¢) = - ~  

Hla(+z¢ ) = 1 

H,7(+~c ) = - ~  

• H~s(+~¢)= + ~  

H w ( + ~  ) = +0o 

142o(+Oo) = +oo 

/ 4~3 (+o~)  = _ ~  

H ~ ( + ~ )  = 0 

n ~ ( + ~ )  = + ~  

/ 4 ~ ( + ~ )  = - ~  

/Y~o(+~) = + ~  

H3,(+c¢ ) = + ~  

/ 4~2 (+  o~) = - 1  - a ,4  

H3_,(+~) = - ~  

H 3 , ( + ~ )  = +~o 

/4,.~(+ ~ )  = - ~  

H36(+~c) = -oc 

n3;(+~)  = - o ~  

H3~(+oo) = + ~  

H39(+oo) = + ~  

Hao(+oo) = + ~  

H , , ( + ~ )  = 0 

n 4 ~ ( + ~ )  = + ~  

H43(+ ~ )  = - 1  Ec2 
A 

H44(+c¢ ) = + ~  

H4.~(+ ~ )  = - ~  

H46(+*¢) = - ~  

H47(+oo) = - ~  

H , ~ ( + ~ )  = - 1  

H , , ( + ~ )  = - ~  

Hs, , (+~  ) = - ~  

Hs,(+oo ) = - o o  

/ Y ~ ( + ~ )  = + ~  

H~J+~)  = - *  

H.ss(+~o) = +~o 

/y,~(+ ~) = - ~  

H ~ ( + = )  = - =  

H s s ( + = )  = 0 

nk~(x)  < o 

HIe,(x ) > 0 

H'tv(x) < 0 

H ; d x )  > 0 

H;,(x)  > 0 

H'2o(x) > 0 

H~3(x) < 0 

H h ( x )  < 0 

H~5(x ) > 0 

H.~7(x ) < 0 

H~s(x) < 0 

14~(x) < 0 

H~o(X) > 0 

H~ I(X) > 0 

H~z(x ) < 0 

H~3(x) < 0 

H h ( x )  > 0 

H~5(x ) < 0 

H:~6(x) < 0 

H ~ ( x )  < 0 

H~s(X ) > 0 

H~9(x) > 0 

H~o(x) > 0 

H'4,(x) < 0 

H'42(x) > 0 

n h ( x )  < o 

H~4(x) > 0 

H'45(x) < 0 

H~6(x ) < 0 

H~7(x ) < 0 

m'4dx) < 0 

H'4,~(x) < 0 

H'5o(x ) < 0 

H~(x) < 0 

H'sz(x) < 0 

H.%(x)  > 0 

H~4(x ) < 0 

H ; s ( x )  > 0 

H~6(x) < 0 

H~7(X ) < 0 

H~.(x) < 0 

2 yx/xx 2 (1 - ~)yX/-~ff 
a 3 = ~  -F 2D a 4 = ~ x +  2D 
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= Dcl ( 1 -  Ek2 

ho 
Ot 7 = 

Epatc2 

= ho__(l+--_~+ A...~._(I+(1-'))'~ 
a9 Epo'c 2 \ D Ec 2 \ D / /  

a l t = h ; t r _  1 (1-e)yD 

Ek 2 
at4 Ap~ra2XF ~ 

E /Dctc2k:, 
a'6 = ~ ~ 2~--~o~ ~ 

(1 - e)~, 
oq7 = 1 -~ D 

ho 
Ot19 = A---~ --  1 

Ehokz (hoa2V'~ F (  Dkt ~\ 
ot.s = DApkta 2 ~-----~- - t [ ~ o t 3 ]  ] 

X/ 

a . )= 1 - "-- '--"~Ft/--/1 + 
hoa2Vlr \az \ 

ho Ek 2 / tr (1 

- Y  h° +1 

ho _1 Ek2 F, o" 

cqs = A ~  - I Ec2A 

Ek2 
orE0= 1 h°a2 ~ .  

811 

A P P E N D I X  B 

The restrictions used in the text are the following: 

Ek2 
(R1) ho>a2XF ~ 

Dkt 
(R2) ~ < f ( x 2 ) ,  where x2 is the unique positive zero of/-/2 

Dkl < x~ (R3) ~ f (_) ,  where x3 is the unique positive zero of H3 

(R4) D--~k~<f(x~), where x4 is the unique positive zero of//4 
n o n  I v / r  

Dkl > "'x ", (R5) ~ f ( : ; )  where x.~ is the unique positive zero of Hs 

Dkl < x ,  
(R6) hoatV~ ~ f (  . ), where x7 is the unique positive zero of//7 

• Dk t [ 2 y ~ ' ~  1 
(R7) a()> a---2X~Tr7 r [ ~ / ~ + - ~ )  ~, where "0 is the unique positive solution of the equation Htt(x) = Ht2(x), x >0 

(R8) ~ < f ( x l 7 ) ,  where xt7 is the unique positive zero of/-/17 
/ ' /oat  v / r  

ho > ÷__y+ A_A._(l+tl-e)y ~ 
(R9) Epc2 1 D Ec2 \ D / 

• Dk t (R10) ~o > 

D po'c t 
(Rll) ,-7"7~< H:o(x2~), where x23 is the unique positive zero of/-/23 

noVTg 

Dkl > H . (RI2) ~ 24'(X23), where x2~ is the unique positive zero of H2~ 

(RI4) 'h'° > 1 4  ( 1 - e ) y  
Aptr D 

(R15) h,, > l + 
Apo" Aptra2V~ )~,a 2 



812 

(R16) 

(R17) 

(R18) 

(R19) 

(R20) 

(R21) 

(R22) 

(R23) 

A. M. GONZALEZ and D. A. TARZIA 

Apo" D Apo-az~ l~,a 2 

ho > + Ek2 F,[O'] 
d ~ 

Dpo'c l 
h ~ <  H20(x27), where xz7 is the unique positive zero of//27 

D po-c i 
h~-o-~< H~o(Xzs), where x~s is the unique positive zero of H~s 

H20(x29) > ~ >  H~o(x30), where x~9 is the unique positive zero of/429, x30 is the unique positive zero of H~o 
/ l o V  R" 

(R29) 

(R30) 

(R31) 

(R32) 

(R33) 

(R34) 

(R35) 

(R36) 

(R37) 

(R38) 

(R39) 

(R40) 

(R41) 

(R42) 

(R43) 

D ptrc z 
h - - ~ <  H20(x32), where x32 is the unique positive zero of t/32 

Dkl > 
~hoXF~ H24(x33), where x33 is the unique positive zero of H33 

h o = Dkt 

o4;)  
:4;,) > 0 or - -  < x35 , where x35 is the unique positive zero of H3. s 

al 

(R25) H36 ¢r > 0  or --<x36, where x36 is the unique positive zero of H~6 
a I 

ok, F, {--~ 
(R26) Epalazc2 2~al ] <-- 1 

. . . .  Apo'azV'-~{ Dkl ~ / o ' ] _ 1 )  

(R28) Ft(~.)<Apo'a2XF~/__~_ ~ _ . _ 2  ~ F 2 ~ ) _ D k ,  / o ' \  1) 

(:,) Hs7 > 0 or - -  < x57, where Xs7 is the unique positive zero of ns7 
a I 

ho > 1 + ~ +  Ek2 [ ~ [ 

Dk~ > 
H24(x27), where x27 is the unique positive zero of/427 

h o > po'(A + Ec2) 

.4,(;,) > 0 or - - <  x43, where x,3 is the unique positive zero of H43 when (R32) is verified 
a l  

~ >  x2s unique positive zero of 1428 H2,(x2~), where is the 

Dk, 
~ - ~  ) o r h  o /2" n24(x29) '  where xz~ is the unique positive zero of H29 

Dkj 
---------~< Hz4(x~o), where x~o Js the unique positive zero of H~o 
trhoVZ r - . 

D.~k~ > H24(x~2) where x32 is the unique positive zero of H~2 
o ' n  o v / l "  " " 

Dk, 
~h---~> H24(x4.s), where x4~ is the unique positive zero of Ha.s 

(:) /447 > 0 or - -  < x47 , where x47 is the unique positive zero of/-]47 
a l  

h s [ ~  Dcl 

Dkj > 
trh,,XF~ H24(x~4 ), where Xsa is the unique positive zero of Hsa 

Dkl > 
o.ho ~ H24(x49 ), where x49 is the unique positive zero of H49 

(:) Hso > 0 or ~ < x so, where x.so is the unique positive zero of H.~ o 
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Dk~a 2 / ~r\ 1 (R44) ~ F2~'~) > 

(R45) F , ( ~ )  -Dk(a::~[IT''--E--~k'r2~] 

Dkl  > 
(R46) ITho~ H24(x:~), where x5~ is the unique positive zero of H.~ 

(R47) ~ <  H~4(xs2), where x52 is the unique positive zero of HsE 

(R48) Hs6 > 0 or - - <  xs6 where x~6 is the unique positive zero of H56. 

A P P E N D I X  C 

Table 1 

Unknown 
Case coefficients Restrictions Solution 

1 c2, IT, ~o (R2) _ Clk 2 B 2 
IT=a ,~ ,  - -  (o = a , w f f , )  , c 2 -  k~ W 2 ( ~ 0  ' 

where ~ is the unique positive solution of the equation 

Dk~ x > 0  
f (x )  hoa,X~ ~, 

and B is the only positive solution of the equation 

H " " A k ~ w  ,tx~ = ~--ff~,k ~ (~,)H~(~,) ,  x > O .  

2 A, IT, to (R1) ho H3(~:,) 
(R3) IT=al~:l, A pa~ G(~¢~) , ~o=a~W(~t) 

where ~¢~ is given as in case 1. 

3 (~ IT~ tO ( R I )  = 2D 
(R4) IT =a,~,, ( yX/~ F2(~:,)Hs(~:,), 

(R5) where ~¢1 is given as in case 1. 

o~ = a , W ( ~ 0  

4 % IT, to (R1) 
(R6) IT=a,/~,, ' y = ~  B-,~, Fz(~¢,), (o=a,W(,~,) 

where ~ is given as in case 1 and B is the only positive solution of the equation 

h . .  Ol 
H6(x) = ~ exp(-tj]) - ,~,, x > - -  ,~,. 

Apal a2 

5 cl, IT, ~o (R7) Dk 1 1 2 _ rrho ¢2t, ~ ~ Dkl 
, = -z~H~(~,) 

IT h o V - ~ H 2 4 ( ~ l )  c t - D 2 p k l :  ' , s l , ' ,  tO ho  

where ~t is the unique positive solution of the equation 

ng(x) = H,~(x), x > O. 

6 kl, o', oJ (R1) h o H  tth 2 hoV'~ 
H2o(~ 0, k, . . = ~ Ht3(tj ,) 

where ~t is the unique positive solution of the equation 

nl4(X) = His(x), x > O. 

7 k2, IT, ¢o (R8) cr = a, ~,, k 2 = ktc2 W2(~:') 
c, B2 , o~=alW(~, )  

where ~:~ is given as in case 1 and B is the only positive solution of the equation 

1 A Hz(L) x>O.  
HI6(x) Ec2 W(~l) 

8 p, IT, (O Akl h~cl 1 Akl 
o- --- h,---:~ ~:,H,~(~,), P = A~k, H~(~',) ' " = h,---:~ w(~,)n,~(~',) 

where ~ is the unique positive solution of the equation 

Dcl 
Hl~(x) = )t~F~' x > O. 
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A P P E N D I X  D 

Table 2 

Unknown 
Case coefficients Restrictions Solution 

9 to, kl, k2 (R9) I 
( n l l )  w = o.Hzs(~:,), k, = po.2c, tg~' 

where ~ is the unqiue solution of the equation 

H2o(X) Dpo.c, 
hoX/~ '  

and B is the only solution of the equation 

1 A H21 (~:i) 
H16(x ) Ec2 W(~ , ) '  

2 
k 2 =  2 Hz4~,) po. c 2 B~ 

x > 0  

X > 0 .  

10 to, c I , k 2 (R9) 
(R10) 
(R12) 

k .  
O) = O.H25(¢1) , C l = ~ ,  

where ~ is the unique solution of the equation 

Dk~ 
H24(x) o.ho.J-- x , 

and B is given as in case 9. 

2 
_ 2 H z s ( ~ , )  

k 2 - po. c2 ~-~ 

x > 0  

11 to, A, k~ (R13) 
(R18) 

to = o'H2s(~¢l), A h°  H26(~1) kl = po'2cl 1 
po. ( ; (¢ , )  ' ~,  

where ~:t is given as in case 9. 

12 co, k t , c2 (R14) 
(R19) 

1 k 2 B 2 
o~ = o.H2d~,), k ,  = po.~c, ~ ,  c2 = ~ 2 

po. Hzs(~:,) 

where ¢~ is given as in case 9 and B is the only solution of the equation 

A po.2V'-/2 - 
H,(x )  = ek2  H25(~,)H2d¢,), x > 0 .  

13 to~ ff~ k I (R16) 
(R20) 

2 1 
to = o.H:.4~,), k, = mr  c, ~ ,  

where stl is given as in case 9. 

_ 2D 
• = 1 y ~  H29(st,)H58(s¢,) 

14 to, y, kl (R17) 
(R21) 

20(  ) , 
to = Ba2, ')/= ~ B - 1 Hsa(s¢,), k, : po.2c, ~7 

where set is given as in case 9 and B is the only solution of the equation 

H3,(x) = ~-~¢ e x p ( - s  ¢2) - E, x > az o." 

15 to, p,  k2 ( R I 0 )  

(R22) 
kl 2 klC2 W 2 ( ~ l )  

to = o.H2s(stl), P = ~ i ,  k 2 = - -  
B ~ o-cl Ci 

where st~ is given as in case l0 and B is the only solution of the equation 

1 _ A H45(~¢1) x > 0 .  
HI6(X)  EC2~lW(~l) '  

16 to, M k2 (R23) 
(R24) o:a, k,..C2c, w2( ,)B2 W ~ (:,II 

G ~ 
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Table 2. contd. 

Unknown 
Case coefficients Restrictions Solution 

17 to, e, k 2 (R23) 
(R25) 

W tr 

e-TV~ \a,/ 2\a,/-A--~F2[at)\~-~F2[~)-t~C2H~6(B) l 

for any H < B < HI6 if - - (X37  a~ 

or for any B > H~-61 if x37 ~ al < x36 

A tr 
where m Ec2W(~l)("41(~ll)-~l ) 

A O" 

18 to, e, (R23) 
(R26) 
(R27) 
(R28) 

(r / Ok, / o ' \  _ 1) _ 1 Ek2_Fl(to(7)] 
" = e ( 7 ) = l  to(3")-'--"~ATo'X/-~Hs8['~l) to(7)-O'Apa2Vn" \ a2 / 

for a n y 0 <  7 < 2D_a2 F2 ( o')(F:,(B)_O" ~ 
alvt~ ka~/k a2/ 

where 

ApO-EV~ [ Dkj / ~r\ 1). 

19 to, C2, k2 (R23) 
(R29) A H16(B)H57(~ I ) I~klV~ W(~I  )H57(~  l ) 

W o" Ec t HI(B ) 

for any B > 0. 

20 to, p, kl hoV-~g = _ ~ _ _ ~  H24( ~, ) to = o-H2.~(g,), p = ~ H2°(~:')' kl 

where tj~ is the unique solution of the equation 

H4o(x) = H41(x), x > 0. 

21 to, C1, k I (R30) hoX/- ~ to = ~'H2.~(g,), c ,  = ~ - p / - / 2 , , ( ¢ , ) ,  

where ~:t is the unique solution of the equation 

~--~ H27(X ) = H42(X), 

ChoXF~ kt = - - - ~  H24(fl) 

x>O.  

22 to, A, C I (R10) 
(R13) 
(R31) 

to = trH2.~(~l), A ho H26(~:~) 
p~r G ( ~ )  ' 

where ~ is given as in case 10. 

= k , ~ 2  
C I po.2 I 
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Table 2. contd. 

Unknown 
Case coefficients Restrictions Solution 

23 w , y , k  2 (R23) ( ~ )  
(R43) ( ~ )  k i t 2  W2 ' y  

t o = a i W  , y , k2 B 2 
c~ 

\ a l l  _ I 0"~ 
f°r  any 0 < Y <(1 _ ~ + _ .~ )~F  Hs°[,~- I ) 

where B = B(y) is the unique solution of the equation 

1 A Hs7 'Y 
x>O. 

24 to, E, C I (R16) 
(R35) 

k l  2 

where ~:l is given as in case 10. 

2D 
,~ = 1 - - - =  H ~ , , M . ) H . ~ . ( ¢ , )  

y v ~ -  

25 to, Ci, C2 (R10) 
(R14) 
(R34) 

kl  2 k2 B2 
po" Hzs(~O 

where ~:t is given as in case l0 and B is given as in case 12. 

26 to, p, C I (R10) k 2 B 2 klC2W2(~l) 
to = ,m2s(~O, p - ,72c2H~5(~,), c, = k2 B2 

where s~j is given as in case 10 and B is the only solution of the equation 

CrhoC2 W2(¢l) 
H44(x) Ak2 ~, exp(~)' x >0. 

27 to, y,  Cl (R10) 
(R17) 
(R37) 

2D k l ~  2 
t o =  Ba2, ~, =~-~ ( ~ B - 0 U , . ( 6 ) ,  c. =po.~ , 

where ¢:~ is given as in case 10 and B is given as in case 14. 

28 to, A, C 2 (R23) W tr B 2 

I {Pc, 
, , a t /  ' , , a t / /  

for any 0<  B < H('(E~21 W ( ~ ) F 2 ( ~ ) ) .  

29 to, P, ¢2 (R10) 
(R38) 

kl  ~2, _ c lk2  82  
to  = o'n2.~(~,), p = o.2c-~, c2 - k ,  W 2 ( ~ , )  

where ¢~ is given as in ease 10 and B is the only solution of the equation 

H . .  .~ k , X / ~  , i x )  = ~ H2s(¢,)H4s(~,), x > 0 .  
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Table 2. contd. 

Unknown 
Case coefficients Restrictions Solution 

30 to, ~, c2 (R23) 
(R39) 

W /  or'~ c~k2 B 2 
to=at  ~ ) '  c2= k ,  2 Or ' 

\ a l l /  
or 

for any H { t ( A ) < B  <H?n(C) if - -<x46 
al 

o r f o r a n y O < B < H ? t ( C )  if x46"<al <x47 

, . Ak'XFXW(°"~ H ( Z ]  
w h e r e  A = E - - - ~ k z  \ a l l  46~kal / 

,~ k t XFX W [ or \ /or;  

31 to, y, cz (R23) 
(R40) 

Or B 2 ,,), 

for any 0 <  3,< 2OHsS(~) { Oct 1 ) 
(1 -~ )V-~  / A V ~ .  [or~ 1 

where B = B(7) is the unique solution of the equation 

AktX/-~t [ or ~r 
. . ( X ) :  E~21k2 W ~ l  . "y)n57(~-l . ~/). x>O. 

32 to, A, p (R10) 
(R42) 

~ ~, ~ Orhoctnn.(¢O 
to=°'H25(~0, P=or2q k t G(~,) 

where ~t is given as in case lO. 

33 to, A, ~ (R23) 
(R48) 

for any 

Or 2D /or \ /Dcn /or\  1) to =o,w(;,), 

~ Hs6 ~ Dc, /or\ 

34 to, A, y (R23) 
(R44) 
(R45) 

_ E c2k 1 o r or 

2DH.s8 ~ (azF_,{Okla2F.(or]  ~ 1~ 
f o r a n y 0 < ~ <  0 - ~ ) v ~  k S  ' ~E---~,~ ~,~,11- ]" 

35 to, ~, p (R46) 
(R47) 

k ,  
to = ~H~.~(~,), p = 

where ~1 is given as in case 10. 

e = l  2D /-/sl (~:0 

36 a~, y, p (R10) 
(R41) 

c l f ~ B  kl 2 
t o  = P 

v 

where ~ is given as in case 10 and B is the only solution of the equation 

Orhoct exp(- ,~)  ]k,c2 
l-I,~(x) = *k ~ ~ E~l, X > ~ C - ~  ~" 


