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Abstract—We use a simple mushy zone model in a two-phase solidification problem (Stefan problem)
for the simultaneous determination of unknown coefficients of a semi-infinite material with an
overspecified condition on the fixed face. We find the necessary and sufficient conditions for the
existence of a solution and the corresponding formulae for the unknown coefficients. Copyright ©
1996 Elsevier Science Ltd

1. INTRODUCTION

We consider a semi-infinite material with mass densities p > 0 equal in both solid and liquid
phases and we can assume, without loss of generality, that the phase-change temperature is
0°C.

If the material is initially assumed to be liquid at the constant temperature E >0 and a
constant temperature —D <0 is imposed on the fixed face x = 0, then three distinct regions can
be distinguished (for a mathematical and properties description of this simple model see [1]; for
the one-phase model see [2]):

(H,) The liquid phase, at temperature 8, = 0,(x,r) >0, occupying the region x > r(t),
t>0.

(H,) The solid phase, at temperature 8, = 8,(x, ¢) <0, occupying the region 0 <x <s(¢),
t>0.

(Hs) The mushy zone, at temperature 0, occupying the region s(t)=<x =r(t), t>0. We
make two assumptions on its structure:

(a) The material in the mushy zone contains a fixed fraction e\ (with 0 <e <1) of the total
latent heat A >0, i.e.

k18, (s(1), £) — k20, (r(t), 1) = Ap(es(t) + (1 — €)F()), >0 (1.1)

(b) The width of the mushy zone is inversely proportional (with constant y>0) to the
temperature gradient at the point (s(¢), ¢), i.e.

6, (s(), Nr() —s@)=vy, >0 (1.2)
We suppose that the temperature 6 = 8(x, t) of the material is defined by

6,(x,1)<0 fo<x <s(),t>0
0(x,t)=40 ifs@y=x=r@),t>0 (1.3)
0,(x,)>0 ifx>r@),t>0.
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The governing differential equations take the following forms for the solid and liquid phases:
a0, (x,1)=06,(x,1), 0<x<s(), t>0 (1.4)
a0, (x,t)=6(x,t), x>r(t), >0 (1.5)

where ¢; >0, k;>0 and @; = a? = k;/pc; >0 are the specific heat, the thermal conductivity and
the diffusion coefficient for the phase i (i =1 denotes solid phase; i =2 denotes liquid phase)
respectively.

The conditions at the solid-mushy interface x = s(¢) and the mushy-liquid interface x = r(¢)
are given by (1.1), (1.2) and the requirement of the continuity of the temperature, i.e.

0,(s(t), 1) = 65(r(), ) =0,  t>0. (1.6)

The initial and boundary conditions are given by

6,(0,1)=-D <0, t>0 (1.7)
0;(x,0)=0)(+x, )=E>0, x>0, t>0, (1.8)
s(0)=r(0)=0. (1.9)

We consider an overspecified heat flux condition [3, 4] on the fixed face x = 0 which is given
by [1,4-7]

h
k,6,.(0, t)=~\/£;, t>0, with h,>0. (1.10)

If by means of a phase-change experiment we are able to measure certain quantities, then we
shall find formulae for the simultaneous determination of the unknown coefficients (¢, y denote
parameters of the mushy zone; A, p, ¢y, ¢, k;, k; denote thermal coefficients of the material).

We shall also prove that the different problems for determining several unknown
coefficients, posed in the next sections, do not always have an explicit solution. Moreover, it
does exist iff some complementary conditions for the corresponding data are verified. In this
paper, we generalize the results obtained in [5] for the particular case e =1 and y =0 (i.e.
without mushy region) and those obtained in [7] for the one-phase case. In [4] several
references on free-moving boundary problems and determination of physical coefficients are
given.

In Section 2 we shall consider the simple mushy zone model for the two-phase Stefan
problem for determining one unknown thermal coefficient of a semi-infinite material with an
overspecified condition on the fixed face, supposing the free boundaries x =s(¢) and x = r(z)
are unknown. The results obtained for the eight possible cases are considered in Appendix C
(Table 1) which shows both the necessary and sufficient conditions to be verified by the data for
the existence and uniqueness of the solution and the expression of the corresponding unknown
coefficient. Moreover, we shall also prove the respective properties for the determination of €
(case 3) and the determination of k, (case 7).

In Section 3 we shall consider the same model for determining two unknown thermal
coefficients of a semi-infinite material with an overspecified condition on the fixed face,
supposing known the expression for the moving boundary x = s(¢). The results obtained for the
28 possible cases are considered in Appendix D (Table 2) which shows both the necessary and
sufficient conditions to be verified by the data for the existence of the solution and the
expression of the corresponding unknown coefficients. There are several cases where the
moving boundary problem has a unique solution iff some conditions are verified. Moreover, we
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shall also prove the respective properties for the determination of k, and k, (case 9), the
determination of € and k, (case 17), the determination of ¢, and k, (case 19) and, the
determination of y and k, (case 23).

The functions and the restrictions used in the text and, Appendices C and D are summarized
in Appendix A and Appendix B respectively.

2. DETERMINATION OF ONE UNKNOWN THERMAL COEFFICIENT

Taking into account the hypotheses (H;)-(H) we can formulate the following:
ProBLEM (P,). Find the free boundaries x = s(t) and x = r(t), defined for t >0 with 0 <s(t) <
r(t) and s(0) = r(0) =0, the temperature 8 = 8(x, t), defined by (1.3) for x>0 and t >0, and
one of the eight unknown thermal coefficients €, vy, A, p, ¢1, C2, k1, k, such that they satisfy the

conditions (1.1), (1.2), (1.4)—(1.10) where D >0, E >0 and h,>0 are data and they must be
known or determined by an experience of phase-change [8].

The solution of this problem is given [1, 6,9-11] by

©
—Ef(a%)+ E ( x )

el(x, t) = _D +

e e

Ox(x, 1) = f 2.2)
) )

a as
s()=20V:, >0 (2.3)
r(t) =20V, w>0o (2.4)

where fis the error function, the coefficient w is given by

o
w=w(o)= a.W(a—> 2.5)

1

and the coefficient o and the unknown thermal coefficient are obtained by solving the following
system of equations:

el G ) o) e
Z_: f((%) _ hf/i—z , (2.6b)

The eight possible cases for Problem (P,) are considered in Appendix C (Table 1) which
shows both the necessary and sufficient conditions to be verified by the data for the existence
and uniqueness of the solution of the problem and the expression of the coefficient o together
with the corresponding unknown coefficient. We remark here that the coefficient w is always
given by the expression (5) as a function of ¢ and a,.
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Now, we shall prove the following properties only for the determination of ¢ (case 3) and the
determination of k, (case 7), which gave us different difficulties in all cases.

THEOREM 1 (Case 3). The necessary and sufficient condition for Problem (P)), with o and €
unknown, to have a unique solution is that data D >0, E >0, h,>0, mushy zone coefficient
v >0 and thermal coefficients of the phase-change material A, p, c|, c,, k1, k, >0 do verify the
conditions
Ek2 Dkl
h,> , x5) < <f(x 2.7
e e E<re) @7

of1

where x4 and x5 are unique positive zeros of functions H, and Hs respectively. In such a case, the
solution is given by (2.1)-(2.4) with

2D
€= \/—Fz(fl)Hs('fl), o=mé, w=a,W() (2.8)
yVr

where &, is the unique solution of the equation

Dk,
x)= s x>0. 2.9
1= (29)
Proor. We define
&,
£=2, with a,=/—. (2.10)
a, pCy

The coefficient o is obtained from (2.10) and the element £, is given from (2.6b) as the
solution of (2.9) iff the data verify the condition

Dk,

—F=<1. 2.11
hoa,Vr (2.11)
From (2.6a) it follows that &, should verify

Ek a, _
exp(—¢§i )-mﬁ(a W(§1)> =§+

then we obtain the expression for € in (2.8).
Therefore we have the following properties:

(——ﬁ——f(el)exp(ﬁ) 2.12)

e<1 iff Hy(£&)>0

Ekz) and £, <x, (ie. (&) <f(xs)), (2.13)
a,vrm

iff H,(0%)> 0<i.e. h,>
where x, is the only positive root of H, (because H, is a decreasing function for x > 0), and
€>0 iff Hs(£)>0 iff & >xs(ie. f(&)>f(xs5)), (2.14)

where x5 is the only positive root of Hs (because Hs is an increasing function for x >0,
ho

Hy(0") = —maz(,<0 and Hs(+%°)=+x). We can deduce (2.7) from (2.13) and (2.14)
1

because x5 < x4.
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THEOREM 2. (Case 7). The necessary and sufficient condition for Problem (P,), with o and k,
unknown, to have a unique solution is that data D >0, E >0, h,>0, mushy zone coefficients
0<e <1 and y>0, and thermal coefficients of the phase-change material A, p, ¢, ¢5, k>0 do
verify the condition

Dk,
__\/—;<f(x|7) (2.15)

hoal

where x,, is the unique positive zero of function H;. In such a case, the solution is given by
2.1)-(2.4) with

=@W2(§1)

k ,
T B

0'=a|§1, 0)=(11W(§1) (216)

where &, is the unique solution of (2.9) and B is the only solution of the equation

1L A Hy(&)
Hi(x) Ec,W(¢£)'

x>0 2.17)

Proor. We obtain the coefficient o as in Theorem 1. From (2.6a) it follows that &, should
verify

Ek2 <a1 )
———F|—W =H. . 2.18
e vafilg W) = (e (2.18)
If we define
a . v kz
B=—W(£), th = , 2.19
a, (&), wi a; \/;)?2 ( )
then equation (2.18) is equivalent to
R(B Vr
i )_/\ wHy(é)) B>0, (2.20)

B Ec, W(&)’

that is, B is the solution of (2.17). Taking into account the properties of the function H,, we can
deduce that there exists a unique solution of (2.17) if and only if

Hi(£)>0 iff £ <x (ie. (2.15)), (2.21)

where x,; is the only positive root of H;; (because H,; is a decreasing function for x >0,
H;(0%)>0 and H\,(+x>) = ~). From (2.19) we obtain the coefficient k,.

3. DETERMINATION OF TWO UNKNOWN THERMAL COEFFICIENTS

Taking into account the hypotheses (H,)-(H;) we can formulate the following:

ProBLEM (P,). Find the free boundary x = r(t), defined for t >0 with r(0) =0, the temperature
0 =0(x, 1), defined by (1.3) for x>0 and t>0, and two of the eight unknown thermal
coefficients €, v, A, p, ¢\, C3, ky, k; such that they satisfy the conditions (1.1), (1.2), (1.4)-(1.10)
where the moving boundary x =s(t), defined for t >0 with s(0)=0, is given by (2.3) with a
known coefficient ¢ >0 and D, E, h,> 0 are data and they must be known or determined by an
experience of phase-change [8].
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The solution of that problem is given by (2.1), (2.2) and (2.4) where the coefficient w and the
unknown thermal coefficients are obtained by solving the system of equations (2.6).

The 28 cases for Problem (P,) (cases 9 to 36) are considered in Appendix D (Table 2) which
shows both the necessary and sufficient conditions to be verified by the data for the existence of
the solution of the problem and the expression of the coefficient w together with the
corresponding unknown coefficients. There are several cases where the moving boundary
problem has a unique solution iff some conditions are verified.

Now, we shall prove the properties corresponding only for the determination of k, and %,
(case 9), the determination of € and k, (case 17), the determination of ¢, and k, (case 19) and
the determination of y and k&, (case 23), which give us different difficulties in all cases.

Tueorem 3 (Case 9). The necessary and sufficient condition for Problem (P,), with w, k, and k,
unknown, to have a unique solution is that data >0, D >0, E>0, h,>0, mushy zone
coefficients 0<e<1 and y>0, and thermal coefficients of the phase-change material
A, p, €1, €, >0 do verify the conditions '

1- 8)‘)’) Dpoac,

U Y A ( (
—2 i+ -+{1+
D ho‘\/fz'

< -
Epoc, D  Ec, Hyo(x23), 3.1

where X, is the unique positive zero of function H,s. In such a case, the solution is given by
(2.1), (2.2) and (2.4) with

1 H3s(¢
w = aHs(&)), k, =P0'201?, k, = pa’c, 2;(2 ) (3.2)
1
where £, is the unique solution of the equation
Dpoc,
H. =, >0 33
20(X) ho\/7_t x (3.3)
and B is the only solution of the equation
1 A H
= 2‘(5‘), x>0. (3.4)
Hyo(x) Ec, W(§)
Proor. We define
o \% k]
=—, with a =—=—. 35
b= v (3.5)

The coefficients w and k, are obtained using (3.5) and the element ¢, is given from (2.6b), as
the solution of (3.3). From (2.6a) it follows that £, and k, should verify

Ek, gW(En) -
SV A2 = (e (3.6)
If we define
_oW)_«a : LY
B = 2, gl 2, H25(§|), with a, = pCs (37)
then (3.6) is equivalent to
F(B)_MWVrHn(¢) oo (3.8)

B Ec, W(&)'
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that is, B is the solution of (3.4). Taking into account the properties of the function H,, we can
deduce that there exists a unique solution of (3.4) if and only if

H23(§1) >0 iff H23(0+) >0 and gl < X33 (i.e. (3-1)),

where x,; is the only positive root of H,; (because H,; is a decreasing function for x >0 and
Hy;(+%) = —), From (3.7) we obtain the coefficient k,.

THEOREM 4 (Case 17). The necessary and sufficient condition for Problem (P,), with w, € and k,
unknown, to have at least one solution is that data >0, D >0, E>0, h,>0, mushy zone
coefficient y >0, and thermal coefficients of the phase-change material A, p,c,,c,, k>0 do
verify the conditions

Dk
ho=—""—,  §="<xy (3.9)

FEEENE

where X+ is the unique positive zero of function Hss. In such a case, there exist infinite solutions
which have the form (2.1), (2.2) and (2.4) where

kyc, W?
w=a1W(§1), k2=.i-—?(2§-]_2’
Eoo W (3.10)
SR RE (W) - TR + ),
with B an arbitrary parameter which is defined by
~ -1 _1_ s < /\ 1 DC1
B'>H16(A> if x37—§1<x36(A Ecz W(E,) ()‘\/— F(&) - §1>) (3.11)

and

Hi(5)<B<ni(3) i §1<x37(C=E’§;W(1§I) (SAmE-we)) 6w

where X35 and x3; are the unique positive zeros of functions Hss and H; respectively.

Dk
Proor. From (2.6b) it follows that h, = —————— From (2.6a), € and k, should verify

alf(gl)\/;t

DC] C2k2 pc‘2 ( 8)‘)’ T
()~ [ R(an TR W) = 6+ T exp(e) (319

i.e. the expression for ¢ in (3.10), when we define B = a, 4 /‘;{Cz W(&;). Then we have
2

e<1 iff <A and e<0 iff

>C. 3.14
H¢(B) H\«(B) (3.14)
Taking into account the properties of the function H s we can deduce

A>1<=>H36(§|)>0®§|<X36 (3 15)
C>10 Hy(£) >0 £ <xi. '

Then we obtain (3.11) and (3.12) from (3.14) and (3.15).
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THEOREM 5 (Case 19). The necessary and sufficient condition for Problem (P,), with w, ¢, and
k, unknown, to have at least one solution is that data o >0, D >0, E >0, h,>0, mushy zone
coefficients 0<e<1 and y>0, and thermal coefficients of the phase-change material
A, p, ¢1, ki >0 do verify the conditions

Dk
hy = ——— Hs7<3)>0 <or§,=3<x57) (3.16)

wrlops Z

where x5, is the unique positive zero of function Hs,. In such a case, there exist infinite solutions
which have the form (2.1), (2.2) and (2.4) where

A Hyo(B)Hs:(£:) N VE W (€ Hsr(€1)
=aq,W(&), Cp=—————24 k,= 3.17
w 1 (fx) 2 E W(§1) 2 Ec, H,(B) ( )
for any B >0.
. Dk,
Proof. From (2.6b) it follows that , = ——————=. We define
a1f(§1)\/7_l'
B=/M% e, (3.18)
C]kz
From (2.6a), B and k, should verify
Ec,k, HI(B)
—=——==H. , 3.19
eVEw )~ ) (3.19)

i.e. we deduce the expression for k, in (3.17). Then we obtain the coefficient ¢, from (3.18) and
(3.19).
Thus we have

k2>0¢>H57(§])>0©0<§1<x57 (3.20)

where x5 is the only positive root of Hs,; (because Hs, is a decreasing function for x >0, with
Hs;(0%) = + and Hs;(+%) = —).

THEOREM 6 (Case 23). The necessary and sufficient condition for Problem (P,), with w, vy and k;
unknown, to have at least one solution is that data 0 >0, D >0, E>0, h,>0, mushy zone
coefficient 0 < g <1, and thermal coefficients of the phase-change material A, p, c,, ¢,, k;, >0 do
verify the conditions

h°=_——, H50(£)>0 (0" fl =£<x50) (3.21)
a, a

1

where xs, is the unique positive zero of function Hs,. In such a case, there exist infinite solutions
which have the form (2.1), (2.2) and (2.4) where

_ke WiE, y)

w=a1W(§1, 7)) k2 ¢ 32
!

(3.22)
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for any 0 <y <'¥,, with
2D

(1—e+§%)\/ﬁ'

Yo = Fz(fl)Hso(fl)

and B = B() is the only solution of the equation

1 _LH57(§1,7)

= , x>0.
Hye(x) Ec; W(&, )
. Dk,
Proor. From (2.6b) it follows that h, = —————_ We define
ag
a1f<—)\/;
a,
&,
&=, with ay= /2.
a pc;

From (2.6a), £, >0 should verify

E(W(gl,v)gz)l AVz 1 ( ho

& & B Ec, & \\po
If we define
W 2’
b= =",

£rexp(— &)~ Gi(&, 7))

807

(3.23)

(3.24)

(3.25)

(3.26)

(3.27)

equation (3.26) for £, is equivalent to (3.24) for B. We obtain the coefficients w and &, from

(3.25) and (3.27).

Taking into account the properties of the function H;s we can deduce that there exists a

unique solution of (3.24) if and only if

Hs(£,)>0 (or equivalently &, < xsg),

(3.28)

for any 0<y <1y, where x5, is the only positive root of Hs, (because Hs, is a decreasing

function for x >0 with Hsy(0") = 4+ and Hsy(+x) = —®).
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APPENDIX A

The following real functions are defined, for x >0, by
f(x)=erf(x) = %f exp(—r*) dr

Fx )_eXP( x?)

fx)
G(x)=G(x, y)=x+w

(2o

f(x)exp(x?)

Hy(x) = exp(-x7) —

_ ho Wy Ek, a,
Hilr) = - expl(—x) = x Apalazfﬁ(azwm)
_1_ % Ek,
A = (1= bt 2 ()
w
) =3
hVr Eh k Dk
Hio) = pi e exp(=x) = pete R (20 Hy)
H)(x)= BB,
__Dk (2 Vi
A oaz\/'(\r,, D)
h(,azv;
Bs Ek,
DEc k h\/_
Higlo) = 27 exp(—x%) = M,f';F(Dpca Hi))

Hq(x) =

=1+ 252

X —b—-f(x)exp(xz) - (1 + ELc)x
Hyo(x) = f(x)H,4(x)

Hay(x) = Hay(x, 1) = 1 fo exp(-x) - G(x, )
i) = H222)
Hiy(x) = 222
Hyq(x) = 2282 zs(x)

e o Ek a
Halo) = enp(—5") =1 = L (7 (o)
H) = (1= 9 G+ =2 )

H“(x)— " Iexp(—xz) xG(x)——-xW(x)

Hys(x) =1~ Hiy(x)

‘y\/_l

Hyp(x) = 2D F(x)

Hap(x) —

.2
Fx) = SR

W(x)=W(x, v} =x +—f(X)eXP(x2)
Hi(x) = xF(x)

-x’) = G(x)

Hix) = e
o
Hy(x) = T5% fx)exp(x?) ~ Hy(x)

e (2
)\pa,az\/l_r

2) x —

Hy(x) =

%
fx)

Hl.(x)=g—fx+ﬁ<x>

Hy(x) =

Hy3(x) = f(x)W(x)

DApkia, ( 2 (1-e€)yVr
B="pn kzz(\/,?+ D )
Hyy(x) = f(x)G(x)

Hyo(x) = Vax exp(x*)(1 ~ f(x))

Hinte) = exp(s”) G(x) + 5 222 £ [y )

Hy(x) = xf(x)

° 1-€)A
Hyy(x) = Epor, x exp(—x2) - (1 + (Zeh e ) )
2

\/_
X uf(x)exp(xz) - (1 + Elcz)x

o) = 12

E
Haso) = x (%) = 2 (7 o)
Hautr) = 20

Wr 1
Hy(x) = 2D xF(x) Hyy(x)

__x2)_1_

ke _p (o)
)\po'az\/;r ! a
Ec2 TW(x)

)= e, R

Hu) = 2L () - x - E2 w

Hag(x) = x +f%ﬁ(x)
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Huoe) = VI (142 1)

2D xFy(x)

H,“(x)— e Fz(x)

h-1e5)

exp(-x%) — xG(x)

Hy3(x) =

ohc
Hys(x) = Ak :
1

‘y/l_rl

2D FE(x)
exp(—x%)

_E 1k cak, ( /klcz )

x oh, nic, d W( )
E [c c,k
exp( -x2) — x? DY ——"d:lz

kic, )

Hap(x)= (1 - €) C"‘Z +£ \/C“’Z"Zm)

Hyp(x) = Hylx) +
Hyy(x) =

Hsy(x) =

Hsx) = ()exp(a) = 2

Hyz(x) = Hyy(x, 'Y)' Fz(x) G{x, v).

The principal properties of some of these functions, for x >0, are

f(0")=0
RO =1
Fi0%) =+
w({0")=0
G(0%)=0
Hy(0") =
hy
M2, pa;

Hi(07) = ay

Hy(0%) =

h(’
Hy(0%) = E‘: Q3o

hl)
Hs(0%)=— Apa @
1.

Ek,

H(0%) = —2—
+(07) rpa,aVr

h,
H,(0%) = XpT 231

Hy(0") = a;
Hy(0") = a,
Hio(0) = as
Hjy(0M)=1
H(07)=+=
H;(07)=0
Hi,(01)=0

1 Dc,cyk,
Hyy(x) = G(x) + )\ p ,__—24()‘) \/—IF
a'h(,cz\/_
XF'(\/——DCI > H39(X)>
Hy(x) = G(X)
Ho) = f—\}jIW(gl)H.(x) + G(E)F (&,>0)
Hyg(x) = = Fz(x) - W(x)
H, (x)=—hL xp(—x%) — 1
48 Apo‘e P
De
Halw) = 2oL R - (14 52 )x
va
yYvr_x
Hsy(x) = Hgy(x) - 2D Fz(x)
Hiu(r) = Gt enp(=) (e + (1 - ) 22
1 2
E ¢,k kc
2V ln:k,zxp'(\/clkz )
_ 1 _ Ek2 g
Halt) = 5~ Do Fi o Hos))
Hsy(x) = xFy(x)
flrw)=1 f(x)>0
Fi(+®)= +o Fl(x)>0
F(+x)=0 Fy(x)<0
W(+»)=+x W'(x)>0
G(+%) =+ G'(x)>0
H\(+%) =+ Hi(x)>0
Hy(+®)=—» Hy(x)<0
Hy(+2)= —= Hi(x)<0
Hy(+»)=-= Hiy(x)<0
Hy(+%) = + Hix)>0
H(+%) = += Hi(x)>0
Hy(+%)=—= Hi(x)<0
Hy(+) = +o Hi(x)>0
Hy(+»)=+= Hiy(x)>0
Hy(+x)=—-= Hiyx) <0
Hy(+%)=+x Hy(x)>0
Hyy(+>)=0 Hi(x)<0
Hjy(+>)=+= Hiy(x)>0
Hi(+=)=+= Hi(x)>0

be)?
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H5007) = g Hys(+%) =~ His(x)<0
H,(0")=0 H(+%) =1 Hig(x)>0
H(0%)=a, Hj(+x) = —o Hi(x)<0
Hiy(0%) = ay " Hpg(te)=+o Hig(x)>0
H(0%)=0 Hy(+0) = +oo Hiy(x)>0
Hy(07)=0 Hop(+%) = +o0 Hy(x)>0
Hy(0%) = ay Ho3(+o0) = —o0 Hiy(x) <0
2
H24(0+)=T Hyy(+2) =0 Hiy(x)<0
T
Hy(0") =1+ Hag(+%0) = +20 His(x) >0
Hy(0%) =, Hoyy(+®) = — Hi(x) <0
Hy(0") =a,, Hoy(+0) = —o0 Hiy(x) <0
Hy(0") = a,, Hyy(+o0) = —o0 Hy(x)<0
Hy(0")=a; Hyy(+%) = +0 Hi(x)>0
Hy(0Y) =a, Hy (o) = +oo Hy(x)>0
Hy(07) = a5 Hy(+®)= —-1-a, Hiy(x) <0
Hi0%) =S Hy(+) = = Hi) <0
1
Hy(0M)=0 Hyy(+o0) = +0 Hiy(x)>0
Hys(07) =1 Hys(+o0) = —o0 His(x) <0
Hy(07) =+ Hag(+) = —oc Hie(x) <0
Hyp(01) = +o Hyp(+o0) = —oo Hy(x) <0
Ec
H18(0+)=)‘_\/i’—t Hyg(+0) = +o0 Hig(x)>0
Hiy(0")=0 Hyg(+2) = +oo0 Hig(x)>0
Hyy(0") = a6 Hy(+o0) = +o0 Hyy(x)>0
Hy(0%) =+ Hy(+2)=0 Hu(x) <0
Hp(0") =a,, Hp(+0) = +o Hip(x)>0
Ec
Hi07) = Hy(+2)= —1-=2 Hialx) <0
H,(0)=0 Hy(+0) =+ Hiy(x)>0
Hi(07) = Z1ss His(+) = = Hig) <0
'
Hy(0") = +o Hyg(+) = —o0 Hie(x) <0
Hyp(07) =+ Hg(+2) =~ Hig(x)<0
Hyp(0%) = a)y Hy(+=) = -1 Hi(x) <0
Hy(0%) = +o Hy(+w)= — Hiy(x)<0
Hs(0") = +o0 Hg(+%) =~ Hiyx) <0
Hy(0) = Zhscs Hy(+) = =0 Hiy(0) <0
I
h,c '
H52(0+)=% Hyy(+%) = - Hy(x) <0
)
H3(07) = ay Hgy(+) = +o Hiy(x)>0
h,C
Hya(07) = 55 Hyy(+2) =~ Hia(x) <0
1
Hys(0)=0 Hg5(+o0) = + His(x)>0
He(07) = += Hse(+0) = — Hig(x)<0
Hs(0%) = + Hg(+x) = — Hy(x) <0
Vr
H58(0+)=T Hey(+%)=0 Hay(x) <0
with
_2  yVx _2 (-eyVr
=V 2D Y Y
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Dc Ek Ehok, (h,8,VE Dk,
Qe = l( '_V'Z as = ——F, as
AV hoa,Vrm * DApk,a,\ Ek, h(,az\/;r )
=t ap = £ [e12ks
%= Epasc, AN
et (1,2 L( Q:ﬂ)) —1-_Ek (2( 1))
ag—Epm:Z (1+D+Ec2 1+ D 0=1 h(,az\/l-l.'Fl a; 1+D
b | _Q-9y whe __Eky (E( 1))
a”-/\po ! D a'Z_Apa Apaaz\/y_;ﬂ a, 1+D
__Ek, Y hy Ek, (0 ( Y
=X fo 494282 _p(Z(14Y
a7 ).pmzz\/7t “37D  xeo Apaa, V' '\a, D
o E [Dc cyky - h, ___Ek, F(g)
67 A\ 20n \/I—I 7 Apo Apoa,Vr '\a,
1-e)y _he . Ec
7=y = Xpo A
h, Ek
aw—m“l 020=1—ha\2/7—r-
o¥2

APPENDIX B

The restrictions used in the text are the following:

Ekz
a;Vr

(R1) ho>

(R2) < f(x;), where x, is the unique positive zero of H,

Dk,
hoa,VrE
Dk,
ol
Dk,
hoa,VE

Dk,
hoa,\ﬁr

(R3) <f(x3), where x; is the unique positive zero of H,

D

(R4) < f(x.), where x, is the unique positive zero of H,

(R5)

> f(xs), where x; is the unique positive zero of H

(R6)

Dk
_ < f(x-), where x, is the unique positive zero of H,
hoa,Vr
Dk, ( 2 yVa

(R7) h, pvAtAn T

(R8) k\]/z_r< f(xi7), where x5 is the unique positive zero of H,,

hoa
(1 —6)7)
Epc2>1+D+E (1 D

(R10) h, >~[2’—"l

(R9)

D
(R11) p\o/'_ci, < Hy(x23), where x; is the unique positive zero of Hyy

(

(R12) f’i}_> Hy4{x33), where x,; is the unique positive zero of Hy,

oAl 2(+3))
(R13) A, > \/EF"\azl D

(R14) 2o g 4 L2

D
ezt (143))
5 >1+——=F[—(1+Z
(R1 ) Apaaz\/I_r "\a, D

) ! » Where 7 is the unique positive solution of the equation Hy (x) = H5(x), x>0

81
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5 rpoai e (143))
=~ +——==F 1+
D Apa’az\/_ a, D
o1y Bk _p(2)
)\po'az\/l_r a;
Dpa Cy

(R18) PR — = < Hx(x2;), where x,, is the unique positive zero of H,,

0

D
(R19) hp\(;—l < Ha(x24), where x5y is the unique positive zero of H,g

h
—>1+
(R16) pye 1

(R20) Hyy(x09) >——F Dpoc, > Hyy(x30), where x,, is the unique positive zero of H,y, x5, is the unique positive zero of Hs,
PR auep

o

D . . .
(R21) p\‘;;rl < Hyy(x3;), where X, is the unique positive zero of Hs,

o

k
(R22) hD\}— > Ha4(x13), where xa; is the unique positive zero of Ha,
Dk
(R23) ho=———
af (—)\/7_1'
a;

o c . . -
(R24) 1-135<a—> >0or a—<x35, where x;; is the unique positive zero of H,s
1

(R25) H,(,( >> 0or— <x,(,, where x; is the unique positive zero of H,,
l

Dk, o
(R26) Epa_FZ(a_,) =1

182C7
)\paaz\/l—r( Dk, (0’) )
R27 El—])-1)>1
( ) Ekz ApUtll\/I_l' 2 a,
g Apu-az\/i;:< Dk, (0) )
R28) F (—) < E -1
( ) \a Ekz Apg‘al\/_ a,

(R29) HW( ) >0 or— 2 <x57, where x5, is the unique positive zero of Hy,
1

(R30) 5 >1+(1_T€)"’+A,,—fak;7,, (Z(1+3))

(R31)

Dk
> H,4(x27), where x,, is the unique positive zero of H,,
oh Vn
(R32) h,> po(A + Ec,)

(R33) H,“( ) >0or a—<x4q, where x4; is the unique positive zero of H,; when (R32) is verified

Dk
(R34) m \}7_r> H,4(x24), where x4 is the unigue positive zero of H,,
ol o

D
(R35 ky > Hyy(x59), where x5 is the unique positive zero of Hy,
oh,Vr

Dk,
(R36) ———=<H,4(x39), where x5, is the unique positive zero of Hx,
oh Vr P

©

(R37) n \}_ > H,4(x3,), where xs, is the unique positive zero of Hi,
ch,Vn

o

(R38) > H,4(x45), where x5 is the unique positive zero of H,,

Dk,
ah Vr
(R39) H47( ) >0or —<x47, where x,; is the unique positive zero of H,,

(R40) H(f) <o

Dk
(R41) oh, \}_> Hy4(xs4), where xs, is the unique positive zero of Hs,

Dk,
(R42) oh. \/—> H,4(x49), Where x4, is the unique positive zero of Hy,

(R43) H;(,( )>0 or L< Xs0. Where x5, is the unique positive zero of Hy,
a



1“2 )
R4 2ok, Eak Fz(a,) >1

()

> H,,(xs,), where xs, is the unique positive zero of Hs,

(R5) E( )

(R46) h \/_

Dk,a
Eak,
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(R47) n ]i};t< H,,(xs,), where x, is the unique positive zero of Hs,
ol

(R48) H;(,< ) >0or —<x;6, where x4 is the unique positive zero of Hs,.

APPENDIX C

Table 1
Unknown
Case coefficients  Restrictions Solution
1 ¢z, O, @ (R2) _aks B?
o=a,§, c ©=aw
I§l 27 k‘ W2(§l) 1 (fl)
where £ is the unique positive solutxon of the equation
x)= , >0
&)= h al\/_ *
and B is the only positive solution of the equation
MV
Hl(x)—E P ), x>0.
2 \ow (R1 ho Hy(§
(R3) R ()
where £, is given as in case 1.
3 €0, 0 (R1 2D
(R43 =6, 7”1:2(51)1‘15@1), o=a,W(§)
(RS) where £, is given as in case 1.
4 Y, 0, @ (R1) 2D
(RS) c=mbn  vo2(RB-6)RE).  0=aWE)
where £, is given as in case 1 and B is the only positive solution of the equation
h, a
Hf'(x)z)\pal —&) - €y, X>a_;§|~
5 6, 0w (R7) _ Dk, 1 mh: Dk,
c, = , = H,
h V_H24(§|) 1 szkl &) @ h‘,\/l_r s(€1)
where ¢, is the unique positive solution of the equation
Hy(x)=H(x), x>0
6 k,ow (R1) azh(,\/E ) _ nh2 fz(g) _h,
Dpc ' o Dpc,
where £, is the unique positive solunon of the equation
Hiy(x)=H5(x), x>0
7 ko R8 kyc, W2
: (R8) o=a,¢, ky==2 (zgl), w=a,W(§)
¢ B
where £, is given as in case 1 and B is the only positive solution of the equation
! A Hi(4)
=——=2 x>0
Ho(x) Ec, W(¢)
8 po,w — _ Ak _huﬁ _r ____
U—h‘, llem(f) p= /\2k Hm(fl) hoc, w(€)H3(§)

where £, is the unique positive solution of the equation

Dc
Hw(X)=;7"r.

x>0.
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APPENDIX D

Table 2
Unknown
Case coefficients Restrictions Solution
9 ok, k R9 1 H3 (¢
b ((Rll)) w = oHy5(£)), k =P02C|g, ky = po’c, 2;(2 )
where ¢, is the unqiue solution of the equation
Dpoc,
Hyy(x) =——F, x>0
2()( ) ho\/;[
and B is the only solution of the equation
1 A Hyu(4)
== , x>0.
Hyo(x) Ec, W(§)
10 w,c,, k (R9) k H3s(&)
v (R10) w = aHys(£1), (91 zﬁfi kzzpa'zcz‘zl;Tl
(R12)
where £, is the unique solution of the equation
Dk,
Hy,(x)= , x>0
24(x) A VE
and B is given as in case 9.
11 w Ak, (R13) hy Hye(€)) L
w = oH. N A=—2—_—=1=2r k,=po‘c, =
(R18) 2s(€1) oo G(E) 1SPOC
where £, is given as in case 9.
12 o, ky,c, (R14) > 1 k, B?
w = oH,4(&,), k,=poc, =, €, =5
(R19) 25(£1) 1=p = 2 po? Hgs(fn)
where £, is given as in case 9 and B is the only solution of the equation
ApoVr
H(x)= pEk Hos(€)Hou(£1), x>0
2
13 w, €k, (R16) > 1 2D
=ots(¢), k= =, =1———=H,y(£))H.
(R20) w = oHy(£) 1= PO 2 € Wz 2o(€1)Hss(€1)
where ¢, is given as in case 9.
14 w, vk R17 2D (a 1
rh %RZI; w = Ba,, 72\7;(;23_1>H58(§I)’ ky =P‘72CnE
where £, is given as in case 9 and B is the only solution of the equation
hg o
H31(X)=Apa_exp(_§?)“f, x>a_2'
15 w, p, ky (R10) _ _ ki . _kies W)
(R22) w =aHy(&), P o2, & ko= ¢, B
where £, is given as in case 10 and B is the only solution of the equation
L _ A He(&) o
Ho(x) Ec;§,W(£)
16 o, A, k; (ES) Wz(ﬁ) W(g)
( ) [ €2 a; 1 Dc, o a;
w=nW(—), ky=——= 7, A= —h|\—) - Ec,
a Cy B G(g) Vr a, H,((B)
a
o
W —
i)
for any B > H EeVr_\ay

A7)
E a
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Table 2. contd.

Unknown
Case coefficients Restrictions Solution
17 w, € ky (R23) wi <
(R25) o k,c a
w=a|W(a—l), k2=-il—2—?"—,
2D o 2D a\\ Dc 4 w(ai)
B v e ) e 2 b\ e P R
¢ 7\/_ ( a/ *\a, AyVr 2 a/\Vn 2 a, csz(B)
1 1 . O
for any Hlﬁl(z><B<H,(,'<E) if a—l<x37
0rforanyB>H"(l) if xp=Z<x
16 A 37"al 36
where A = —A (H4.(E) - l)
Eczw<5> I
a;
co—tenl2)
Eczw<l> !
a,
18 w, & R23 vz 1
4 ERzeg w=o(y)=of 1+I35——),
(R27) Hss(;)
(R28) !
o Dk, ( ) ) 1 Ek, (w(y))
=e(y)=1-—— H. -1)-—————"2-F,
e=< ‘"('Y) U()tptr\/— * w(')’)_o')tpaz\/;t \ a,
() rre-2)
fi o<y< E -
orany 0<y < =2 (- ) Fi'8) -
where
Ve
B=/\po'2 n( Dk, Fz(g>"1>~
Ek, /\pa'a,\/I_t a,
19 , ¢z, ky (R23) (g) (_0'_) (£>
(R29) B W<£) —iHlﬁ(B)Hﬂ o, . _/\k,\/l_rw z Hs, a,
e=ama ) “TE (a) A H,(B)
w —_
a;
for any B >0.
20 w, p k - hVr oh Vn
P 0=OH(&),  p=puHnE) k=T p Haf)
where £, is the unique solution of the equation
Hyy(x) = Hy(x), x>0
21 ek R30 hVr chVr
el k ( ) w = oHys()), O = D - Hy(€), k= D Hy(§))
where £, is the unique solution of the equation
x>0,
22 w, A, C R10) h, Hy (&) k
: §R13) o = oHy(£}), '\=;);_~GZZ§‘I) o= pojz }
(R31)

where £, is given as in case 10.
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Table 2. contd.

Unknown
Case coefficients Restrictions Solution
23 w, v,k (R23) 2(_0'_ )
(R43) B w(g > X _k,czw al’y
w a, a, Y] 2 ¢, BZ
orls)
for any 0 <y <—_ELHS”(—)
(1o Bpve
where B = B(v) is the unique solution of the equation
o
1 A H57<al’y) >0
Hlﬁ(x) EL'Z W<£'.y) ’ .
a,
24 ®, € ¢ R16 k 2D
I ER35§ w = oHys(£), = p—afigzl, e=1- ;\T;qu(fl)st(f])
where £, is given as in case 10.
25 ®, ¢, Cs (R10) ki » k, B?
=oH(&), =58 =—%r—
(R14) ® = 05§, 15 02 St 2T P HE
(R34) P P 25(€1)
where £, is given as in case 10 and B is given as in case 12.
26 w, p, ¢, (R10) k, B? kic, Wi(E)
w=0H s === s =5
25(£1) P o'2c2 H%S(fl) 1 k, B?
where £, is given as in case 10 and B is the only solution of the equation
oh,c, WX£)
Hy(x)=—22—=21_ x>0,
“ =M, £ exple)
21w (R10) - _2(@ _ ) LTI
(R17) w=Ba, vy “Vilw B—1|H(&), ¢ po? &
(R37)
where £, is given as in case 10 and B is given as in case 14.
2
28 @, A, Cy (R23) w=a,W<£), 2=c,k2 B ,
a, ky Wz(f_)
a,
A= 1 %FZ(E)-E“\I/I‘—ZH!B)
A2\ =)k )
a, a,
Dk a o
<a<(Gw()a(Z)
forany0<B < H| Ek, w 2, £ 2
29 w, p, C; (R10) k, . ck, B?
=oH = I L A
(R38) w =0 25(§l): P UZCI b (&) kl Wz(fl)

where £, is given as in case 10 and B is the only solution of the equation

v
Hy(x) = 20Ty (EOHs(E),

>0.
Ec k, x>0
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Table 2. contd.
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Unknown
Case coefficients Restrictions Solution
30 , € Cy (R23) (a’) ck, B
W= = .
(R9) ) ST ()
a,
2D (a) (a’) 2D (a’) Dc, (0) Ec,k, H(B)
=—w(=)B(=)-—"F=B(=)| RR{—)- 2=
€ ‘Y\/I—l' a,/ *\a, Ay\/;l’ z a/\ Vz \a, k,\/r_rw(g
a,
for any H; (A)<B <H7'(C) if a£<x,.6
1
or forany 0< B <H[Y(C) if x%saz<x47
1
Ak, Vr (0') (0')
= W( = )H,| =
where A Ec,k, 111 46 a
Ak, Vr (o’) (0')
=SS wl S H [ ).
¢ Ec,k, a,) “\a,
31 w,Y,Cy (R23) _ (g ) =ﬁ B?
(R40) esaWig ) @ pafwz(i )
» Y
a,
[v3
for any 0< <2DH58(;'_> De, 1 -1
VS Y S =V WV, (g_)
55 a,
where B = B(y) is the unique solution of the equation
WAL (0’ ) (a' )
= — — >0.
H,(x) Ec,kzwa,’y Hs; a]»Y: x>0
32 W, A, p (R10) Ky ., ohocy Hio(£))
= gH. , == g2 A=——ot1 04051
(R42) w = oH,s()) P a_zclfl k, G,
where £, is given as in case 10.
33 w, A, € (R23) (0) 2D (a’)(Dc, (0') )
=a,W{~= =1="=Hg| )| = Hs| =) -1
: (R48) w=a, a) e=1 7\/7—[ g, \avg a,
Dc, 4
__H _
vV 56(01) Dc o
fo =l <——)
rany1 Wz 1 <)\<\/—H5(’a,
2D Hs(3)
34 w, A, R23 o
7 (R w=aW(Z.7)
(R45) '
Dc, o\ E [k, o o
A= B\ )—= /=5 Al = Hasl —
G(Z y) m a, D Nck, "\a a,
a'?)
o
for amy 0. <2D_”<_)<_ (s 2) )
y Y (1-e)Vr \o ' \Ea,k, *\a, ’
35 w, € p (R46) _ _ ky 2 _q1_ 2D Hs\(&)
(R47) o = oHys(£)), P—a,zcl 8 e=1 YV Hes(€)
where £, is given as in case 10.
36 W, Y, p (R10) = cik, B __k 2
(R41) ke, & o%c,”"
ZD( C]kz )
==Z{\[7T2B - ¢ F
Y Vr kic, & )R(€)

where ¢, is given as in case 10 and B is the only solution of the equation

Hs3(x) =

ahyc, exp(—€D)

Ak,

&

- €§),

x>

fiezg,

crky




