DETERMINATION OF UNKNOWN COEFFICENTS OF A SEMI-INFINITE MATERIAL THROUGH A SIMPLE MUSHY ZONE MODEL FOR THE TWO-PHASE STEFAN PROBLEM

ADRIANA MARIA GONZALEZ
Depto. de Matemática, Fac. de Ciencias Exactas, Físico-Químicas y Naturales, Univ. Nac. de Río Cuarto, Ciudad Universitaria, Ruta 36, km 601, (5800) Río Cuarto, Argentina

DOMINGO ALBERTO TARZIA \dagger
Depto. Matemática, FCE, Univ. Austral, Paraguay 1950, (2000) Rosario, Argentina
(Communicated by J. T. ODEN)

Abstract

We use a simple mushy zone model in a two-phase solidification problem (Stefan problem) for the simultaneous determination of unknown coefficients of a semi-infinite material with an overspecified condition on the fixed face. We find the necessary and sufficient conditions for the existence of a solution and the corresponding formulae for the unknown coefficients. Copyright (C) 1996 Elsevier Science Ltd

1. INTRODUCTION

We consider a semi-infinite material with mass densities $\rho>0$ equal in both solid and liquid phases and we can assume, without loss of generality, that the phase-change temperature is $0^{\circ} \mathrm{C}$.

If the material is initially assumed to be liquid at the constant temperature $E>0$ and a constant temperature $-D<0$ is imposed on the fixed face $x=0$, then three distinct regions can be distinguished (for a mathematical and properties description of this simple model see [1]; for the one-phase model see [2]):
$\left(\mathrm{H}_{1}\right)$ The liquid phase, at temperature $\theta_{2}=\theta_{2}(x, t)>0$, occupying the region $x>r(t)$, $t>0$.
$\left(\mathrm{H}_{2}\right)$ The solid phase, at temperature $\theta_{1}=\theta_{1}(x, t)<0$, occupying the region $0<x<s(t)$, $t>0$.
$\left(\mathrm{H}_{3}\right)$ The mushy zone, at temperature 0 , occupying the region $s(t) \leq x \leq r(t), t>0$. We make two assumptions on its structure:
(a) The material in the mushy zone contains a fixed fraction $\epsilon \lambda$ (with $0<\epsilon<1$) of the total latent heat $\lambda>0$, i.e.

$$
\begin{equation*}
k_{1} \theta_{1_{r}}(s(t), t)-k_{2} \theta_{2_{s}}(r(t), t)=\lambda \rho(\epsilon \dot{s}(t)+(1-\epsilon) \dot{r}(t)), \quad t>0 . \tag{1.1}
\end{equation*}
$$

(b) The width of the mushy zone is inversely proportional (with constant $\gamma>0$) to the temperature gradient at the point $(s(t)$, t, i.e.

$$
\begin{equation*}
\theta_{1_{r}}(s(t), t)(r(t)-s(t))=\gamma, \quad t>0 . \tag{1.2}
\end{equation*}
$$

We suppose that the temperature $\theta=\theta(x, t)$ of the material is defined by

$$
\theta(x, t)= \begin{cases}\theta_{1}(x, t)<0 & \text { if } 0<x<s(t), t>0 \tag{1.3}\\ 0 & \text { if } s(t) \leq x \leq r(t), t>0 \\ \theta_{2}(x, t)>0 & \text { if } x>r(t), t>0\end{cases}
$$

The governing differential equations take the following forms for the solid and liquid phases:

$$
\begin{array}{ccc}
\alpha_{1} \theta_{1_{x t}}(x, t)=\theta_{1_{1}}(x, t), & 0<x<s(t), & t>0 \\
\alpha_{2} \theta_{2_{x t}}(x, t)=\theta_{2, t}(x, t), & x>r(t), & t>0 \tag{1.5}
\end{array}
$$

where $c_{i}>0, k_{i}>0$ and $\alpha_{i}=a_{i}^{2}=k_{i} / \rho c_{i}>0$ are the specific heat, the thermal conductivity and the diffusion coefficient for the phase $i(i=1$ denotes solid phase; $i=2$ denotes liquid phase) respectively.

The conditions at the solid-mushy interface $x=s(t)$ and the mushy-liquid interface $x=r(t)$ are given by (1.1), (1.2) and the requirement of the continuity of the temperature, i.e.

$$
\begin{equation*}
\theta_{1}(s(t), t)=\theta_{2}(r(t), t)=0, \quad t>0 \tag{1.6}
\end{equation*}
$$

The initial and boundary conditions are given by

$$
\begin{gather*}
\theta_{1}(0, t)=-D<0, \quad t>0 \tag{1.7}\\
\theta_{2}(x, 0)=\theta_{2}(+\infty, t)=E>0, \quad x>0, \quad t>0 \tag{1.8}\\
s(0)=r(0)=0 \tag{1.9}
\end{gather*}
$$

We consider an overspecified heat flux condition $[3,4]$ on the fixed face $x=0$ which is given by $[1,4-7]$

$$
\begin{equation*}
k_{1} \theta_{1_{x}}(0, t)=\frac{h_{\mathrm{o}}}{\sqrt{t}}, \quad t>0, \quad \text { with } \quad h_{\mathrm{o}}>0 \tag{1.10}
\end{equation*}
$$

If by means of a phase-change experiment we are able to measure certain quantities, then we shall find formulae for the simultaneous determination of the unknown coefficients (ϵ, γ denote parameters of the mushy zone; $\lambda, \rho, c_{1}, c_{2}, k_{1}, k_{2}$ denote thermal coefficients of the material).

We shall also prove that the different problems for determining several unknown coefficients, posed in the next sections, do not always have an explicit solution. Moreover, it does exist iff some complementary conditions for the corresponding data are verified. In this paper, we generalize the results obtained in [5] for the particular case $\epsilon=1$ and $\gamma=0$ (i.e. without mushy region) and those obtained in [7] for the one-phase case. In [4] several references on free-moving boundary problems and determination of physical coefficients are given.

In Section 2 we shall consider the simple mushy zone model for the two-phase Stefan problem for determining one unknown thermal coefficient of a semi-infinite material with an overspecified condition on the fixed face, supposing the free boundaries $x=s(t)$ and $x=r(t)$ are unknown. The results obtained for the eight possible cases are considered in Appendix C (Table 1) which shows both the necessary and sufficient conditions to be verified by the data for the existence and uniqueness of the solution and the expression of the corresponding unknown coefficient. Moreover, we shall also prove the respective properties for the determination of ϵ (case 3) and the determination of k_{2} (case 7).

In Section 3 we shall consider the same model for determining two unknown thermal coefficients of a semi-infinite material with an overspecified condition on the fixed face, supposing known the expression for the moving boundary $x=s(t)$. The results obtained for the 28 possible cases are considered in Appendix D (Table 2) which shows both the necessary and sufficient conditions to be verified by the data for the existence of the solution and the expression of the corresponding unknown coefficients. There are several cases where the moving boundary problem has a unique solution iff some conditions are verified. Moreover, we
shall also prove the respective properties for the determination of k_{1} and k_{2} (case 9), the determination of ϵ and k_{2} (case 17), the determination of c_{2} and k_{2} (case 19) and, the determination of γ and k_{2} (case 23).

The functions and the restrictions used in the text and, Appendices C and D are summarized in Appendix A and Appendix B respectively.

2. DETERMINATION OF ONE UNKNOWN THERMAL COEFFICIENT

Taking into account the hypotheses $\left(\mathrm{H}_{1}\right)-\left(\mathrm{H}_{3}\right)$ we can formulate the following:
Problem (P_{1}). Find the free boundaries $x=s(t)$ and $x=r(t)$, defined for $t>0$ with $0<s(t)<$ $r(t)$ and $s(0)=r(0)=0$, the temperature $\theta=\theta(x, t)$, defined by (1.3) for $x>0$ and $t>0$, and one of the eight unknown thermal coefficients $\epsilon, \gamma, \lambda, \rho, c_{1}, c_{2}, k_{1}, k_{2}$ such that they satisfy the conditions (1.1), (1.2), (1.4)-(1.10) where $D>0, E>0$ and $h_{0}>0$ are data and they must be known or determined by an experience of phase-change [8].

The solution of this problem is given $[1,6,9-11]$ by

$$
\begin{gather*}
\theta_{1}(x, t)=-D+\frac{D}{f\left(\frac{\sigma}{a_{1}}\right)} f\left(\frac{x}{2 a_{1} \sqrt{t}}\right) \tag{2.1}\\
\theta_{2}(x, t)=\frac{-E f\left(\frac{\omega}{a_{2}}\right)}{1-f\left(\frac{\omega}{a_{2}}\right)}+\frac{E}{1-f\left(\frac{\omega}{a_{2}}\right)} f\left(\frac{x}{2 a_{2} \sqrt{t}}\right) \tag{2.2}\\
s(t)=2 \sigma \sqrt{t}, \quad \sigma>0 \tag{2.3}\\
r(t)=2 \omega \sqrt{t}, \quad \omega>\sigma \tag{2.4}
\end{gather*}
$$

where f is the error function, the coefficient ω is given by

$$
\begin{equation*}
\omega=\omega(\sigma)=a_{1} W\left(\frac{\sigma}{a_{1}}\right) \tag{2.5}
\end{equation*}
$$

and the coefficient σ and the unknown thermal coefficient are obtained by solving the following system of equations:

$$
\begin{gather*}
\frac{h_{\mathrm{o}}}{\lambda \rho a_{1}} \exp \left(-\frac{\sigma^{2}}{a_{1}^{2}}\right)-\frac{E k_{2}}{\lambda \rho a_{1} a_{2} \sqrt{\pi}} F_{1}\left(\frac{\omega(\sigma)}{a_{1}}\right)=G\left(\frac{\sigma}{a_{1}}\right) \tag{2.6a}\\
\frac{a_{1}}{k_{1}} f\left(\frac{\sigma}{a_{1}}\right)=\frac{D}{h_{o} \sqrt{\pi}} . \tag{2.6~b}
\end{gather*}
$$

The eight possible cases for Problem (P_{1}) are considered in Appendix C (Table 1) which shows both the necessary and sufficient conditions to be verified by the data for the existence and uniqueness of the solution of the problem and the expression of the coefficient σ together with the corresponding unknown coefficient. We remark here that the coefficient ω is always given by the expression (5) as a function of σ and a_{1}.

Now, we shall prove the following properties only for the determination of ϵ (case 3) and the determination of k_{2} (case 7), which gave us different difficulties in all cases.

Theorem 1 (Case 3). The necessary and sufficient condition for Problem $\left(\mathrm{P}_{1}\right)$, with σ and ϵ unknown, to have a unique solution is that data $D>0, E>0, h_{\mathrm{o}}>0$, mushy zone coefficient $\gamma>0$ and thermal coefficients of the phase-change material $\lambda, \rho, c_{1}, c_{2}, k_{1}, k_{2}>0$ do verify the conditions

$$
\begin{equation*}
h_{\mathrm{o}}>\frac{E k_{2}}{a_{2} \sqrt{\pi}}, \quad f\left(x_{5}\right)<\frac{D k_{1}}{h_{\mathrm{o}} a_{1} \sqrt{\pi}}<f\left(x_{4}\right) \tag{2.7}
\end{equation*}
$$

where x_{4} and x_{5} are unique positive zeros of functions H_{4} and H_{5} respectively. In such a case, the solution is given by (2.1)-(2.4) with

$$
\begin{equation*}
\epsilon=\frac{2 D}{\gamma \sqrt{\pi}} F_{2}\left(\xi_{1}\right) H_{5}\left(\xi_{1}\right), \quad \sigma=a_{1} \xi_{1}, \quad \omega=a_{1} W\left(\xi_{1}\right) \tag{2.8}
\end{equation*}
$$

where ξ_{1} is the unique solution of the equation

$$
\begin{equation*}
f(x)=\frac{D k_{1}}{h_{0} a_{1} \sqrt{\pi}}, \quad x>0 \tag{2.9}
\end{equation*}
$$

Proof. We define

$$
\begin{equation*}
\xi_{1}=\frac{\sigma}{a_{1}}, \quad \text { with } \quad a_{1}=\sqrt{\frac{k_{1}}{\rho c_{1}}} \tag{2.10}
\end{equation*}
$$

The coefficient σ is obtained from (2.10) and the element ξ_{1} is given from (2.6b) as the solution of (2.9) iff the data verify the condition

$$
\begin{equation*}
\frac{D k_{1}}{h_{\mathrm{o}} a_{1} \sqrt{\pi}}<1 \tag{2.11}
\end{equation*}
$$

From (2.6a) it follows that ξ_{1} should verify

$$
\begin{equation*}
\frac{h_{\mathrm{o}}}{\lambda \rho a_{1}} \exp \left(-\xi_{1}^{2}\right)-\frac{E k_{2}}{\lambda \rho a_{1} a_{2} \sqrt{\pi}} F_{1}\left(\frac{a_{1}}{a_{2}} W\left(\xi_{1}\right)\right)=\xi_{1}+\frac{(1-\epsilon) \gamma \sqrt{\pi}}{2 D} f\left(\xi_{1}\right) \exp \left(\xi_{1}^{2}\right) \tag{2.12}
\end{equation*}
$$

then we obtain the expression for ϵ in (2.8).
Therefore we have the following properties:

$$
\begin{align*}
& \epsilon<1 \text { iff } H_{4}\left(\xi_{1}\right)>0 \\
& \tag{2.13}\\
& \\
& \text { iff } \quad H_{4}\left(0^{+}\right)>0\left(\text { i.e. } h_{\mathrm{o}}>\frac{E k_{2}}{a_{2} \sqrt{\pi}}\right) \text { and } \xi_{1}<x_{4}\left(\text { i.e. } f\left(\xi_{1}\right)<f\left(x_{4}\right)\right),
\end{align*}
$$

where x_{4} is the only positive root of H_{4} (because H_{4} is a decreasing function for $x>0$), and

$$
\begin{equation*}
\left.\epsilon>0 \quad \text { iff } \quad H_{5}\left(\xi_{1}\right)>0 \quad \text { iff } \quad \xi_{1}>x_{5} \text { (i.e. } f\left(\xi_{1}\right)>f\left(x_{5}\right)\right) \tag{2.14}
\end{equation*}
$$

where x_{5} is the only positive root of H_{5} (because H_{5} is an increasing function for $x>0$, $H_{5}\left(0^{+}\right)=-\frac{h_{\mathrm{o}}}{\lambda \rho a_{1}} \alpha_{20}<0$ and $\left.H_{5}(+\infty)=+\infty\right)$. We can deduce (2.7) from (2.13) and (2.14) because $x_{5}<x_{4}$.

Theorem 2. (Case 7). The necessary and sufficient condition for Problem $\left(\mathrm{P}_{1}\right)$, with σ and k_{2} unknown, to have a unique solution is that data $D>0, E>0, h_{\mathrm{o}}>0$, mushy zone coefficients $0<\epsilon<1$ and $\gamma>0$, and thermal coefficients of the phase-change material $\lambda, \rho, c_{1}, c_{2}, k_{1}>0$ do verify the condition

$$
\begin{equation*}
\frac{D k_{1}}{h_{\mathrm{o}} a_{1} \sqrt{\pi}}<f\left(x_{17}\right) \tag{2.15}
\end{equation*}
$$

where x_{17} is the unique positive zero of function H_{17}. In such a case, the solution is given by (2.1)-(2.4) with

$$
\begin{equation*}
k_{2}=\frac{k_{1} c_{2}}{c_{1}} \frac{W^{2}\left(\xi_{1}\right)}{B^{2}}, \quad \sigma=a_{1} \xi_{1}, \quad \omega=a_{1} W\left(\xi_{1}\right) \tag{2.16}
\end{equation*}
$$

where ξ_{1} is the unique solution of (2.9) and B is the only solution of the equation

$$
\begin{equation*}
\frac{1}{H_{16}(x)}=\frac{\lambda}{E c_{2}} \frac{H_{2}\left(\xi_{1}\right)}{W\left(\xi_{1}\right)}, \quad x>0 \tag{2.17}
\end{equation*}
$$

Proof. We obtain the coefficient σ as in Theorem 1. From (2.6a) it follows that ξ_{1} should verify

$$
\begin{equation*}
\frac{E k_{2}}{\lambda \rho a_{1} a_{2} \sqrt{\pi}} F_{1}\left(\frac{a_{1}}{a_{2}} W\left(\xi_{1}\right)\right)=H_{2}\left(\xi_{1}\right) \tag{2.18}
\end{equation*}
$$

If we define

$$
\begin{equation*}
B=\frac{a_{1}}{a_{2}} W\left(\xi_{1}\right), \quad \text { with } \quad a_{2}=\frac{\sqrt{k_{2}}}{\sqrt{\rho c_{2}}}, \tag{2.19}
\end{equation*}
$$

then equation (2.18) is equivalent to

$$
\begin{equation*}
\frac{F_{1}(B)}{B}=\frac{\lambda \sqrt{\pi}}{E c_{2}} \frac{H_{2}\left(\xi_{1}\right)}{W\left(\xi_{1}\right)}, \quad B>0 \tag{2.20}
\end{equation*}
$$

that is, B is the solution of (2.17). Taking into account the properties of the function H_{16} we can deduce that there exists a unique solution of (2.17) if and only if

$$
\begin{equation*}
H_{17}\left(\xi_{1}\right)>0 \quad \text { iff } \quad \xi_{1}<x_{17}(\text { i.e. }(2.15)) \tag{2.21}
\end{equation*}
$$

where x_{17} is the only positive root of H_{17} (because H_{17} is a decreasing function for $x>0$, $H_{17}\left(0^{+}\right)>0$ and $\left.H_{17}(+\infty)=-\infty\right)$. From (2.19) we obtain the coefficient k_{2}.

3. DETERMINATION OF TWO UNKNOWN THERMAL COEFFICIENTS

Taking into account the hypotheses $\left(\mathrm{H}_{1}\right)-\left(\mathrm{H}_{3}\right)$ we can formulate the following:
Problem $\left(\mathrm{P}_{2}\right)$. Find the free boundary $x=r(t)$, defined for $t>0$ with $r(0)=0$, the temperature $\theta=\theta(x, t)$, defined by (1.3) for $x>0$ and $t>0$, and two of the eight unknown thermal coefficients $\epsilon, \gamma, \lambda, \rho, c_{1}, c_{2}, k_{1}, k_{2}$ such that they satisfy the conditions (1.1), (1.2), (1.4)-(1.10) where the moving boundary $x=s(t)$, defined for $t>0$ with $s(0)=0$, is given by (2.3) with a known coefficient $\sigma>0$ and $D, E, h_{0}>0$ are data and they must be known or determined by an experience of phase-change [8].

The solution of that problem is given by (2.1), (2.2) and (2.4) where the coefficient ω and the unknown thermal coefficients are obtained by solving the system of equations (2.6).

The 28 cases for Problem (P_{2}) (cases 9 to 36) are considered in Appendix D (Table 2) which shows both the necessary and sufficient conditions to be verified by the data for the existence of the solution of the problem and the expression of the coefficient ω together with the corresponding unknown coefficients. There are several cases where the moving boundary problem has a unique solution iff some conditions are verified.

Now, we shall prove the properties corresponding only for the determination of k_{1} and k_{2} (case 9), the determination of ϵ and k_{2} (case 17), the determination of c_{2} and k_{2} (case 19) and the determination of γ and k_{2} (case 23), which give us different difficulties in all cases.

Theorem 3 (Case 9). The necessary and sufficient condition for Problem $\left(\mathrm{P}_{2}\right)$, with ω, k_{1} and k_{2} unknown, to have a unique solution is that data $\sigma>0, D>0, E>0, h_{\mathrm{o}}>0$, mushy zone coefficients $0<\epsilon<1$ and $\gamma>0$, and thermal coefficients of the phase-change material $\lambda, \rho, c_{1}, c_{2}>0$ do verify the conditions

$$
\begin{equation*}
\frac{h_{\mathrm{o}}}{E \rho \sigma c_{2}}>1+\frac{\gamma}{D}+\frac{\lambda}{E c_{2}}\left(1+\frac{(1-\varepsilon) \gamma}{D}\right), \quad \frac{D \rho \sigma c_{1}}{h_{\mathrm{o}} \sqrt{\pi}}<H_{20}\left(x_{23}\right) \tag{3.1}
\end{equation*}
$$

where x_{23} is the unique positive zero of function H_{23}. In such a case, the solution is given by (2.1), (2.2) and (2.4) with

$$
\begin{equation*}
\omega=\sigma H_{25}\left(\xi_{1}\right), \quad k_{1}=\rho \sigma^{2} c_{1} \frac{1}{\xi_{1}^{2}}, \quad k_{2}=\rho \sigma^{2} c_{2} \frac{H_{25}^{2}\left(\xi_{1}\right)}{B^{2}} \tag{3.2}
\end{equation*}
$$

where ξ_{1} is the unique solution of the equation

$$
\begin{equation*}
H_{20}(x)=\frac{D \rho \sigma c_{1}}{h_{\mathrm{o}} \sqrt{\pi}}, \quad x>0 \tag{3.3}
\end{equation*}
$$

and B is the only solution of the equation

$$
\begin{equation*}
\frac{1}{H_{16}(x)}=\frac{\lambda}{E c_{2}} \frac{H_{21}\left(\xi_{1}\right)}{W\left(\xi_{1}\right)}, \quad x>0 \tag{3.4}
\end{equation*}
$$

Proof. We define

$$
\begin{equation*}
\xi_{1}=\frac{\sigma}{a_{1}}, \quad \text { with } \quad a_{1}=\frac{\sqrt{k_{1}}}{\sqrt{\rho c_{1}}} \tag{3.5}
\end{equation*}
$$

The coefficients ω and k_{1} are obtained using (3.5) and the element ξ_{1} is given from (2.6b), as the solution of (3.3). From (2.6a) it follows that ξ_{1} and k_{2} should verify

$$
\begin{equation*}
\frac{E k_{2}}{\lambda \rho a_{1} a_{2} \sqrt{\pi}} F_{1}\left(\frac{\sigma}{a_{2}} \frac{W\left(\xi_{1}\right)}{\xi_{1}}\right)=H_{21}\left(\xi_{1}\right) . \tag{3.6}
\end{equation*}
$$

If we define

$$
\begin{equation*}
B=\frac{\sigma}{a_{2}} \frac{W\left(\xi_{1}\right)}{\xi_{1}}=\frac{\sigma}{a_{2}} H_{25}\left(\xi_{1}\right), \quad \text { with } \quad a_{2}=\sqrt{\frac{k_{2}}{\rho c_{2}}} \tag{3.7}
\end{equation*}
$$

then (3.6) is equivalent to

$$
\begin{equation*}
\frac{F_{1}(B)}{B}=\frac{\lambda \sqrt{\pi}}{E c_{2}} \frac{H_{21}\left(\xi_{1}\right)}{W\left(\xi_{1}\right)}, \quad B>0 \tag{3.8}
\end{equation*}
$$

that is, B is the solution of (3.4). Taking into account the properties of the function H_{16} we can deduce that there exists a unique solution of (3.4) if and only if

$$
H_{23}\left(\xi_{1}\right)>0 \quad \text { iff } \quad H_{23}\left(0^{+}\right)>0 \quad \text { and } \quad \xi_{1}<x_{23} \text { (i.e. (3.1)), }
$$

where x_{23} is the only positive root of H_{23} (because H_{23} is a decreasing function for $x>0$ and $\left.H_{23}(+\infty)=-\infty\right)$. From (3.7) we obtain the coefficient k_{2}.

Theorem 4 (Case 17). The necessary and sufficient condition for Problem $\left(\mathrm{P}_{2}\right)$, with ω, ϵ and \boldsymbol{k}_{2} unknown, to have at least one solution is that data $\sigma>0, D>0, E>0, h_{0}>0$, mushy zone coefficient $\gamma>0$, and thermal coefficients of the phase-change material $\lambda, \rho, c_{1}, c_{2}, k_{1}>0$ do verify the conditions

$$
\begin{equation*}
h_{\mathrm{o}}=\frac{D k_{1}}{a_{1} f\left(\frac{\sigma}{a_{1}}\right) \sqrt{\pi}}, \quad \xi_{1}=\frac{\sigma}{a_{1}}<x_{36} \tag{3.9}
\end{equation*}
$$

where x_{36} is the unique positive zero of function H_{36}. In such a case, there exist infinite solutions which have the form (2.1), (2.2) and (2.4) where

$$
\begin{gather*}
\omega=a_{1} W\left(\xi_{1}\right), \quad k_{2}=\frac{k_{1} c_{2}}{c_{1}} \frac{W^{2}\left(\xi_{1}\right)}{B^{2}}, \\
\epsilon=\frac{2 D}{\gamma \sqrt{\pi}} F_{2}\left(\xi_{1}\right)\left(W\left(\xi_{1}\right)-\frac{D c_{1}}{\lambda \sqrt{\pi}} F_{2}\left(\xi_{1}\right)+\frac{E c_{2}}{\lambda} \frac{W\left(\xi_{1}\right)}{H_{16}(B)}\right), \tag{3.10}
\end{gather*}
$$

with B an arbitrary parameter which is defined by

$$
\begin{equation*}
B>H_{16}^{-1}\left(\frac{1}{A}\right) \quad \text { if } \quad x_{37} \leq \xi_{1}<x_{36}\left(A=\frac{\lambda}{E c_{2}} \frac{1}{W\left(\xi_{1}\right)}\left(\frac{D c_{1}}{\lambda \sqrt{\pi}} F_{2}\left(\xi_{1}\right)-\xi_{1}\right)\right), \tag{3.11}
\end{equation*}
$$

and

$$
\begin{equation*}
H_{16}^{-1}\left(\frac{1}{A}\right)<B<H_{16}^{-1}\left(\frac{1}{C}\right) \quad \text { if } \quad \xi_{1}<x_{37}\left(C=\frac{\lambda}{E c_{2}} \frac{1}{W\left(\xi_{1}\right)}\left(\frac{D c_{1}}{\lambda \sqrt{\pi}} F_{2}\left(\xi_{1}\right)-W\left(\xi_{1}\right)\right)\right) \tag{3.12}
\end{equation*}
$$

where x_{36} and x_{37} are the unique positive zeros of functions H_{36} and H_{37} respectively.
Proof. From (2.6b) it follows that $h_{\mathrm{o}}=\frac{D k_{1}}{a_{1} f\left(\xi_{1}\right) \sqrt{\pi}}$. From (2.6a), ϵ and k_{2} should verify

$$
\begin{equation*}
\frac{D c_{1}}{\lambda \sqrt{\pi}} F_{2}\left(\xi_{1}\right)-\frac{E}{\lambda a_{1}} \sqrt{\frac{c_{2} k_{2}}{\rho \pi}} F_{1}\left(a_{1} \sqrt{\frac{\rho c_{2}}{k_{2}}} W\left(\xi_{1}\right)\right)=\xi_{1}+\frac{(1-\varepsilon) \gamma \sqrt{\pi}}{2 D} f\left(\xi_{1}\right) \exp \left(\xi_{1}\right) \tag{3.13}
\end{equation*}
$$

i.e. the expression for ϵ in (3.10), when we define $B=a_{1} \sqrt{\frac{\rho c_{2}}{k_{2}}} W\left(\xi_{1}\right)$. Then we have

$$
\begin{equation*}
\epsilon<1 \quad \text { iff } \frac{1}{H_{16}(B)}<A \text { and } \epsilon<0 \text { iff } \frac{1}{H_{16}(B)}>C . \tag{3.14}
\end{equation*}
$$

Taking into account the properties of the function H_{16} we can deduce

$$
\begin{align*}
& A>1 \Leftrightarrow H_{36}\left(\xi_{1}\right)>0 \Leftrightarrow \xi_{1}<x_{36} \tag{3.15}\\
& C>1 \Leftrightarrow H_{37}\left(\xi_{1}\right)>0 \Leftrightarrow \xi_{1}<x_{37} .
\end{align*}
$$

Then we obtain (3.11) and (3.12) from (3.14) and (3.15).

Theorem 5 (Case 19). The necessary and sufficient condition for Problem (P_{2}), with ω, c_{2} and k_{2} unknown, to have at least one solution is that data $\sigma>0, D>0, E>0, h_{0}>0$, mushy zone coefficients $0<\varepsilon<1$ and $\gamma>0$, and thermal coefficients of the phase-change material $\lambda, \rho, c_{1}, k_{1}>0$ do verify the conditions

$$
\begin{equation*}
h_{\mathrm{o}}=\frac{D k_{1}}{a_{1} f\left(\frac{\sigma}{a_{1}}\right) \sqrt{\pi}}, \quad H_{57}\left(\frac{\sigma}{a_{1}}\right)>0 \quad\left(\text { or } \xi_{1}=\frac{\sigma}{a_{1}}<x_{57}\right) \tag{3.16}
\end{equation*}
$$

where x_{57} is the unique positive zero of function H_{57}. In such a case, there exist infinite solutions which have the form (2.1), (2.2) and (2.4) where

$$
\begin{equation*}
\omega=a_{1} W\left(\xi_{1}\right), \quad c_{2}=\frac{\lambda}{E} \frac{H_{16}(B) H_{57}\left(\xi_{1}\right)}{W\left(\xi_{1}\right)}, \quad k_{2}=\frac{\lambda k_{1} \sqrt{\pi}}{E c_{1}} \frac{W\left(\xi_{1}\right) H_{57}\left(\xi_{1}\right)}{H_{1}(B)} \tag{3.17}
\end{equation*}
$$

for any $B>0$.
Proof. From (2.6b) it follows that $h_{\mathrm{o}}=\frac{D k_{1}}{a_{1} f\left(\xi_{1}\right) \sqrt{\pi}}$. We define

$$
\begin{equation*}
B=\sqrt{\frac{k_{1} c_{2}}{c_{1} k_{2}}} W\left(\xi_{1}\right) . \tag{3.18}
\end{equation*}
$$

From (2.6a), B and k_{2} should verify

$$
\begin{equation*}
\frac{E c_{1} k_{2}}{\lambda k_{1} \sqrt{\pi}} \frac{H_{1}(B)}{W\left(\xi_{1}\right)}=H_{57}\left(\xi_{1}\right) \tag{3.19}
\end{equation*}
$$

i.e. we deduce the expression for k_{2} in (3.17). Then we obtain the coefficient c_{2} from (3.18) and (3.19).

Thus we have

$$
\begin{equation*}
k_{2}>0 \Leftrightarrow H_{57}\left(\xi_{1}\right)>0 \Leftrightarrow 0<\xi_{1}<x_{57} \tag{3.20}
\end{equation*}
$$

where x_{57} is the only positive root of H_{57} (because H_{57} is a decreasing function for $x>0$, with $H_{57}\left(0^{+}\right)=+\infty$ and $\left.H_{57}(+\infty)=-\infty\right)$.

Theorem 6 (Case 23). The necessary and sufficient condition for Problem $\left(\mathrm{P}_{2}\right)$, with ω, γ and k_{2} unknown, to have at least one solution is that data $\sigma>0, D>0, E>0, h_{0}>0$, mushy zone coefficient $0<\varepsilon<1$, and thermal coefficients of the phase-change material $\lambda, \rho, c_{1}, c_{2}, k_{1}>0$ do verify the conditions

$$
\begin{equation*}
h_{\mathrm{o}}=\frac{D k_{1}}{a_{1} f\left(\frac{\sigma}{a_{1}}\right) \sqrt{\pi}}, \quad H_{50}\left(\frac{\sigma}{a_{1}}\right)>0 \quad\left(\text { or } \xi_{1}=\frac{\sigma}{a_{1}}<x_{50}\right) \tag{3.21}
\end{equation*}
$$

where x_{50} is the unique positive zero of function H_{50}. In such a case, there exist infinite solutions which have the form (2.1), (2.2) and (2.4) where

$$
\begin{equation*}
\omega=a_{1} W\left(\xi_{1}, \gamma\right), \quad k_{2}=\frac{k_{1} c_{2}}{c_{1}} \frac{W^{2}\left(\xi_{1}, \gamma\right)}{B^{2}} \tag{3.22}
\end{equation*}
$$

for any $0<\gamma<\gamma_{\mathrm{o}}$, with

$$
\begin{equation*}
\gamma_{\mathrm{o}}=\frac{2 D}{\left(1-\epsilon+\frac{E c_{2}}{\lambda}\right) \sqrt{\pi}} F_{2}\left(\xi_{1}\right) H_{50}\left(\xi_{1}\right) \tag{3.23}
\end{equation*}
$$

and $B=B(\gamma)$ is the only solution of the equation

$$
\begin{equation*}
\frac{1}{H_{16}(x)}=\frac{\lambda}{E c_{2}} \frac{H_{57}\left(\xi_{1}, \gamma\right)}{W\left(\xi_{1}, \gamma\right)}, \quad x>0 . \tag{3.24}
\end{equation*}
$$

Proof. From (2.6b) it follows that $h_{\mathrm{o}}=\frac{D k_{1}}{(\sigma)}$. We define

$$
a_{1} f\left(\frac{\sigma}{a_{1}}\right) \sqrt{\pi}
$$

$$
\begin{equation*}
\xi_{2}=\frac{\sigma}{a_{2}}, \quad \text { with } \quad a_{2}=\sqrt{\frac{k_{2}}{\rho c_{2}}} . \tag{3.25}
\end{equation*}
$$

From (2.6a), $\xi_{2}>0$ should verify

$$
\begin{equation*}
F_{1}\left(\frac{W\left(\xi_{1}, \gamma\right)}{\xi_{1}} \xi_{2}\right) \frac{1}{\xi_{2}}=\frac{\lambda \sqrt{\pi}}{E c_{2}} \frac{1}{\xi_{1}}\left(\frac{h_{\mathrm{o}}}{\lambda \rho \sigma} \xi_{1} \exp \left(-\xi_{1}^{2}\right)-G_{1}\left(\xi_{1}, \gamma\right)\right) . \tag{3.26}
\end{equation*}
$$

If we define

$$
\begin{equation*}
B=B(\gamma)=\frac{W\left(\xi_{1}, \gamma\right)}{\xi_{1}} \xi_{2}, \tag{3.27}
\end{equation*}
$$

equation (3.26) for ξ_{2} is equivalent to (3.24) for B. We obtain the coefficients ω and k_{2} from (3.25) and (3.27).

Taking into account the properties of the function H_{16} we can deduce that there exists a unique solution of (3.24) if and only if

$$
\begin{equation*}
H_{50}\left(\xi_{1}\right)>0 \quad \text { (or equivalently } \xi_{1}<x_{50} \text {), } \tag{3.28}
\end{equation*}
$$

for any $0<\gamma<\gamma_{0}$, where x_{50} is the only positive root of H_{50} (because H_{50} is a decreasing function for $x>0$ with $H_{50}\left(0^{+}\right)=+\infty$ and $\left.H_{50}(+\infty)=-\infty\right)$.

Acknowledgement--This paper has been partially sponsored by the project No. 221 "Aplicaciones de Problemas de Frontera Libre" from CONICET-_UA, Rosario (Argentina).

REFERENCES

[1] D. A. TARZIA, Comp. Appl. Math. 9, 201 (1990).
[2] A. D. SOLOMON, D. G. WILSON and V. ALEXIADES, Lett. Heat Mass Transfer 9, 319 (1982).
[3] J. R. CANNON, The One-dimensional Heat Equation. Addison-Wesley, Menlo Park, California (1984).
[4] D. A. TARZIA, Int. J. Heat Mass Transfer 26, 1151 (1983).
[5] M. B. STAMPELLA and D. A. TARZIA, Int. J. Engng Sci. 27, 1407 (1989).
[6] D. A. TARZIA, Quart. Appl. Math. 39, 491 (1981-2).
[7] D. A. TARZIA, Int. Comm. Heat Mass Transfer 14, 219 (1987).
[8] J. C. ARDERIUS, M. A. LARA and D. A. TARZIA, Experimental-numerical determination of thermal coefficients through a phase-change process. To appear in Int. Comm. Heat Mass Transfer.
[9] H. S. CARSLAW and J. C. JAEGER, Conduction of Heat in Solids. Oxford University Press, London (1959).
[10] L. I. RUBINSTEIN, Translations of Mathematical Monographs, Vol. 27, Amer. Math. Soc., Providence (1971).
[11] A. D. SOLOMON, D. G. WILSON and V. ALEXIADES, Quart. Appl. Math. 41, 237 (1983).

APPENDIX A

The following real functions are defined, for $x>0$, by

$$
\begin{aligned}
& f(x)=\operatorname{erf}(x)=\frac{2}{\sqrt{\pi}} \int_{0}^{x} \exp \left(-t^{2}\right) \mathrm{d} t \\
& F_{2}(x)=\frac{\exp \left(-x^{2}\right)}{f(x)} \\
& G(x)=G(x, \gamma)=x+\frac{(1-\epsilon) \gamma \sqrt{\pi}}{2 D} f(x) \exp \left(x^{2}\right) \\
& H_{3}(x)=\exp \left(-x^{2}\right)-\frac{E k_{2}}{h_{\mathrm{o}} a_{2} \sqrt{\pi}} F_{1}\left(\frac{a_{1}}{a_{2}} W(x)\right) \\
& H_{4}(x)=\frac{h_{\mathrm{o}}}{\lambda \rho a_{1}} \exp \left(-x^{2}\right)-x-\frac{E k_{2}}{\lambda \rho a_{1} a_{2} \sqrt{\pi}} F_{1}\left(\frac{a_{1}}{a_{2}} W(x)\right) \\
& H_{5}(x)=\frac{\gamma^{\sqrt{\pi}}}{2 D} f(x) \exp \left(x^{2}\right)-H_{4}(x) \\
& H_{6}(x)=(1-\epsilon) \frac{a_{2}}{a_{1}} x+\frac{E k_{2}}{\lambda \rho a_{1} a_{2} \sqrt{\pi}} F_{1}(x) \\
& H_{\mathrm{s}}(x)=\frac{W(x)}{f(x)} \\
& H_{7}(x)=\frac{h_{0}}{\lambda \rho a_{1}} \exp \left(-x^{2}\right)-x-\frac{E k_{2}}{\lambda \rho a_{1} a_{2} \sqrt{\pi}} F_{1}\left(\frac{a_{1}}{a_{2}} x\right) \\
& H_{9}(x)=\frac{G(x)}{f(x)} \\
& H_{10}(x)=\frac{h_{\mathrm{o}}^{2} \sqrt{\pi}}{D \lambda \rho k_{1}} \exp \left(-x^{2}\right)-\frac{E h_{\mathrm{o}} k_{2}}{D \lambda \rho k_{1} a_{2}} F_{1}\left(\frac{D k_{1}}{h_{\mathrm{o}} a_{2} \sqrt{\pi}} H_{8}(x)\right) \\
& H_{11}(x)=\frac{\beta_{2}}{\beta_{1}} x+F_{1}(x) \\
& H_{12}(x)=\beta_{1} \beta_{3} \frac{1}{x} \\
& \beta_{1}=\frac{D k_{1}}{h_{\mathrm{o}} a_{2} \sqrt{\pi}}\left(\frac{2}{\sqrt{\pi}}+\frac{\gamma \sqrt{\pi}}{2 D}\right) \\
& H_{13}(x)=f(x) W(x) \\
& \beta_{2}=\frac{D \lambda \rho k_{1} a_{2}}{E h_{\mathrm{o}} k_{2}}\left(\frac{2}{\sqrt{\pi}}+\frac{(1-\epsilon) \gamma \sqrt{\pi}}{2 D}\right) \\
& \beta_{3}=\frac{h_{0} a_{2} \sqrt{\pi}}{E k_{2}} \\
& H_{14}(x)=f(x) G(x) \\
& H_{15}(x)=\frac{D c_{1}}{\lambda \sqrt{\pi}} \exp \left(-x^{2}\right)-\frac{D E c_{1} k_{2}}{\lambda \pi h_{\mathrm{o}} a_{2}} F_{1}\left(\frac{h_{0} \sqrt{\pi}}{D \rho c_{1} a_{2}} H_{13}(x)\right) \\
& H_{16}(x)=\sqrt{\pi} x \exp \left(x^{2}\right)(1-f(x)) \\
& H_{17}(x)=\frac{h_{\mathrm{o}}}{E \rho a_{1} c_{2}} \exp \left(-x^{2}\right)-\left(1+\frac{(1-\epsilon) \lambda}{E c_{2}}\right) \\
& \times \frac{y \sqrt{\pi}}{2 D} f(x) \exp \left(x^{2}\right)-\left(1+\frac{\lambda}{E c_{2}}\right) x \\
& H_{19}(x)=f(x) H_{\text {Is }}(x) \\
& H_{20}(x)=x f(x) \\
& H_{2!}(x)=H_{21}(x, \gamma)=\frac{h_{0}}{\lambda \rho \sigma} x \exp \left(-x^{2}\right)-G(x, \gamma) \\
& H_{22}(x)=\frac{h_{\mathrm{o}}}{E \rho \sigma c_{2}} x \exp \left(-x^{2}\right)-\left(1+\frac{(1-\epsilon) \lambda}{E c_{2}}\right) \\
& \times \frac{\gamma \sqrt{\pi}}{2 D} f(x) \exp \left(x^{2}\right)-\left(1+\frac{\lambda}{E c_{2}}\right) x \\
& H_{23}(x)=\frac{H_{22}(x)}{x} \\
& H_{24}(x)=\frac{f(x)}{x} \\
& H_{25}(x)=\frac{W(x)}{x} \\
& H_{27}(x)=\frac{H_{26}(x)}{x} \\
& H_{26}(x)=x \exp \left(-x^{2}\right)-\frac{E k_{2}}{h_{0} a_{2} \sqrt{\pi}} x F_{1}\left(\frac{\sigma}{a_{2}} H_{25}(x)\right) \\
& H_{28}(x)=\frac{H_{21}(x)}{x} \\
& H_{29}(x)=\frac{h_{0}}{\lambda \rho \sigma} \exp \left(-x^{2}\right)-1-\frac{E k_{2}}{\lambda \rho \sigma a_{2} \sqrt{\pi}} F_{1}\left(\frac{\sigma}{a_{2}} H_{25}(x)\right) \\
& H_{31}(x)=\frac{\gamma \sqrt{\pi}}{2 D} \frac{1}{x F_{2}(x)}-H_{29}(x) \\
& H_{31}(x)=(1-\epsilon) \frac{a_{2}}{\sigma} x+\frac{E k_{2}}{\lambda \rho \sigma a_{2} \sqrt{\pi}} F_{1}(x) \\
& H_{33}(x)=\frac{\sigma h_{1} c_{1}}{\lambda k_{1}} \exp \left(-x^{2}\right)-x G(x)-\frac{E c_{2}}{\lambda} x W(x) \\
& H_{32}(x)=\frac{h_{0}}{\lambda \rho \sigma} \exp \left(-x^{2}\right)-1-\frac{E k_{2}}{\lambda \rho \sigma a_{2} \sqrt{\pi}} F_{1}\left(\frac{\sigma}{a_{2}}\right) \\
& H_{34}(x)=\frac{E c_{2} \sqrt{\pi}}{D c_{1}} \frac{W(x)}{F_{2}(x)} \\
& H_{35}(x)=1-H_{34}(x) \\
& H_{36}(x)=\frac{D c_{1}}{\lambda \sqrt{\pi}} F_{2}(x)-x-\frac{E c_{2}}{\lambda} W(x) \\
& H_{37}(x)=H_{36}(x)-\frac{\gamma \sqrt{\pi}}{2 D} \frac{1}{F_{2}(x)} \\
& H_{3 k}(x)=x+\frac{E c_{2}}{\lambda \sqrt{\pi}} F_{1}(x)
\end{aligned}
$$

$$
\begin{array}{rlrl}
H_{39}(x)= & \sqrt{H_{21}(x)}\left(1+\frac{\gamma \sqrt{\pi}}{2 D} \frac{1}{x F_{2}(x)}\right) & H_{40}(x)= & G(x)+\frac{E}{\lambda} \frac{1}{\sqrt{H_{24}(x)}} \sqrt{\frac{D c_{1} c_{2} k_{2}}{\sigma h_{0}} \sqrt{\pi^{3}}} \\
& \times F_{1}\left(\sqrt{\frac{\sigma h_{0} c_{2} \sqrt{\pi}}{D c_{1} k_{2}}} H_{39}(x)\right) \\
H_{41}(x)=\frac{D c_{1}}{\lambda \sqrt{\pi}} F_{2}(x) & H_{42}(x)=\frac{G(x)}{x} \\
H_{43}(x)=\frac{h_{0}}{\lambda \rho \sigma} \exp \left(-x^{2}\right)-\left(1+\frac{E c_{2}}{\lambda}\right) & H_{44}(x)=\frac{E c_{2}}{\lambda \sqrt{\pi}} W\left(\xi_{1}\right) H_{1}(x)+G\left(\xi_{1}\right) x^{2}\left(\xi_{1}>0\right) \\
H_{45}(x)=\frac{\sigma h_{0} c_{1}}{\lambda k_{1}} \exp \left(-x^{2}\right)-x G(x) & H_{46}(x)=\frac{D c_{1}}{\lambda \sqrt{\pi}} F_{2}(x)-W(x) \\
H_{47}(x)= & H_{46}(x)+\frac{\gamma \sqrt{\pi}}{2 \cdot D} \frac{1}{F_{2}(x)} & H_{48}(x)=\frac{h_{0}}{\lambda \rho \sigma} \exp \left(-x^{2}\right)-1 \\
H_{49}(x)=\frac{\exp \left(-x^{2}\right)}{x}-\frac{E}{\sigma h_{0}} \sqrt{\frac{k_{1} c_{2} k_{2}}{\pi c_{1}}} F_{1}\left(\sqrt{\frac{k_{1} c_{2}}{c_{1} k_{2}}} W(x)\right) & H_{50}(x)=\frac{D c_{1}}{\lambda \sqrt{\pi}} F_{2}(x)-\left(1+\frac{E c_{2}}{\lambda}\right) x \\
H_{51}(x)=\frac{\sigma h_{0} c_{1}}{\lambda k_{1}} \exp \left(-x^{2}\right)-x^{2}-\frac{E}{\lambda} \sqrt{\frac{c_{1} c_{2} k_{2}}{\pi k_{1}}} & H_{52}(x)=H_{51}(x)-\frac{\gamma \sqrt{\pi}}{2 D} \frac{x}{F_{2}(x)} \\
& \times x F_{1}\left(\sqrt{\frac{k_{1} c_{2}}{c_{2}}} W(x)\right) & \\
H_{53}(x)=(1-\epsilon) \sqrt{\frac{c_{1}}{k_{1} k_{2}}} x+\frac{E}{\lambda} \sqrt{\frac{c_{1} c_{2} k_{2}}{\pi k_{1}}} F_{1}(x) & H_{54}(x)=\frac{\sigma h_{0} c_{1}}{\lambda k_{1}} \exp \left(-x^{2}\right)-\left(\epsilon+(1-\epsilon) \sqrt{\frac{c_{1} k_{2}}{k_{1} c_{2}}}\right) x^{2} \\
& -\frac{E}{\lambda} \sqrt{\frac{c_{1} c_{2} k_{2}}{\pi k_{1}}} x F_{1}\left(\sqrt{\left.\frac{k_{1} c_{2}}{c_{1} k_{2}} x\right)}\right. \\
H_{55}(x)=x f(x) \exp \left(x^{2}\right)=\frac{x}{F_{2}(x)} & H_{56}(x)=\frac{1}{H_{55}(x)}-\frac{E k_{2}}{D \rho \sigma c_{1} a_{2}} F_{1}\left(\frac{\sigma}{a_{2}} H_{25}(x)\right) \\
H_{57}(x)=H_{57}(x, \gamma)=\frac{D c_{1}}{\lambda \sqrt{\pi}} F_{2}(x)-G(x, \gamma) . & H_{58}(x)=x F_{2}(x)
\end{array}
$$

The principal properties of some of these functions, for $x>0$, are

$f\left(0^{+}\right)=0$	$f(+\infty)=1$	$f^{\prime}(x)>0$
$F_{1}\left(0^{+}\right)==1$	$F_{1}(+\infty)=+\infty$	$F_{1}^{\prime}(x)>0$
$F_{2}\left(0^{+}\right)==+\infty$	$F_{2}(+\infty)=0$	$F_{2}^{\prime}(x)<0$
$W\left(0^{+}\right)=0$	$W(+\infty)=+\infty$	$W^{\prime}(x)>0$
$G\left(0^{+}\right)=0$	$G(+\infty)=+\infty$	$G^{\prime}(x)>0$
$H_{1}\left(0^{+}\right)=0$	$H_{1}(+\infty)=+\infty$	$H_{1}^{\prime}(x)>0$
$H_{2}\left(0^{+}\right)=\frac{h_{0}}{\lambda \rho a_{1}}$	$H_{2}(+\infty)=-\infty$	$H_{2}^{\prime}(x)<0$
$H_{3}\left(0^{+}\right)=\alpha_{20}$	$H_{3}(+\infty)=-\infty$	$H_{3}^{\prime}(x)<0$
$H_{4}\left(0^{+}\right)=\frac{h_{0}}{\lambda \rho a_{1}} \alpha_{20}$	$H_{4}(+\infty)=-\infty$	$H_{4}^{\prime}(x)<0$
$H_{5}\left(0^{+}\right)=-\frac{h_{0}}{\lambda \rho a_{1}} \alpha_{21}$	$H_{5}(+\infty)=+\infty$	$H_{5}^{\prime}(x)>0$
$H_{6}\left(0^{+}\right)=\frac{E k_{2}}{\lambda \rho a_{1} a_{2} \sqrt{\pi}}$	$H_{6}(+\infty)=+\infty$	$H_{6}^{\prime}(x)>0$
$H_{7}\left(0^{+}\right)=\frac{h_{0}}{\lambda \rho a_{1}} \alpha_{20}$	$H_{7}(+\infty)=-\infty$	$H_{7}^{\prime}(x)<0$
$H_{8}\left(0^{+}\right)=\alpha_{3}$	$H_{8}(+\infty)=+\infty$	$H_{8}^{\prime}(x)>0$
$H_{y}\left(0^{+}\right)=\alpha_{4}$	$H_{9}(+\infty)=+\infty$	$H_{9}^{\prime}(x)>0$
$H_{10}\left(0^{+}\right)=\alpha_{5}$	$H_{10}(+\infty)=-\infty$	$H_{10}^{\prime}(x)<0$
$H_{11}\left(0^{+}\right)=1$	$H_{11}(+\infty)=+\infty$	$H_{11}^{\prime}(x)>0$
$H_{12}\left(0^{+}\right)=+\infty$	$H_{12}^{\prime}(x)<0$	
$H_{13}\left(0^{+}\right)=0$	$H_{13}^{\prime}(x)>0$	
$H_{14}\left(0^{+}\right)=0$	$H_{13}(+x)=+\infty$	$H_{14}^{\prime}(x)>0$

$H_{15}\left(0^{+}\right)=\alpha_{6}$	
$H_{16}\left(0^{+}\right)=0$	
	$H_{17}\left(0^{+}\right)=\alpha_{7}$
	H_{18}
	$H_{19}\left(0^{+}\right)=0$
	$H_{20}\left(0^{+}\right)=0$
	$H_{23}\left(0^{+}\right)=\alpha_{9}$
	$H_{24}\left(0^{+}\right)=$
	H_{25}
	$H_{27}\left(0^{+}\right)=\alpha_{10}$
	$\left.0^{+}\right)=\alpha_{11}$
	$H_{29}\left(0^{+}\right)=\alpha_{12}$
	$H_{30}\left(0^{+}\right)=\alpha_{13}$
	$H_{31}\left(0^{+}\right)=\alpha_{14}$
	$H_{32}\left(0^{+}\right)=$
	$H_{33}\left(0^{+}\right)=\frac{\sigma h_{0} c_{1}}{\lambda k_{1}}$
	$H_{34}\left(0^{+}\right)=0$
	$H_{35}\left(0^{+}\right)=1$
	$H_{36}\left(0^{+}\right)=+\infty$
	$H_{37}\left(0^{+}\right)=+\infty$
	$H_{38}\left(0^{+}\right)=\frac{E c_{2}}{\lambda \sqrt{\pi}}$
	$H_{39}\left(0^{+}\right)=0$
	$H_{40}\left(0^{+}\right)=\alpha_{16}$
	$H_{41}\left(0^{+}\right)=+\infty$
	$H_{42}\left(0^{+}\right)=\alpha_{17}$
$H_{43}\left(0^{+}\right)=\alpha_{18}$	
$H_{44}\left(0^{+}\right)=0$	
	$H_{45}\left(0^{+}\right)=\frac{\sigma h_{0} c_{1}}{\lambda k_{1}}$
$H_{46}\left(0^{+}\right)=+\infty$	
$H_{47}\left(0^{+}\right)=+\infty$	
$H_{48}\left(0^{+}\right)=\alpha_{19}$	
$H_{49}\left(0^{+}\right)=+\infty$	
$H_{50}\left(0^{+}\right)=+\infty$	
$H_{51}\left(0^{+}\right)=\frac{\sigma h_{0} c_{1}}{\lambda k_{1}}$	
$H_{52}\left(0^{+}\right)=\frac{\sigma h_{0} c_{1}}{\lambda k_{1}}$	
$H_{53}\left(0^{+}\right)=\alpha_{8}$	
$H_{54}\left(0^{+}\right)=\frac{\sigma h_{0} c_{1}}{\lambda k_{1}}$	
$H_{5 s}\left(0^{+}\right)=0$	
$H_{56}\left(0^{+}\right)=+\infty$	
$H_{57}\left(0^{+}\right)=+\infty$	
	$H_{58}\left(0^{+}\right)=\frac{\sqrt{\pi}}{2}$

with
$\alpha_{3}=\frac{2}{\sqrt{\pi}}+\frac{\gamma \sqrt{\pi}}{2 D}$

$H_{15}(+\infty)=-\infty$	$H_{15}^{\prime}(x)<0$
$H_{16}(+\infty)=1$	$H_{16}^{\prime}(x)>0$
$H_{17}(+\infty)=-\infty$	$H_{17}^{\prime}(x)<0$
$H_{18}(+\infty)=+\infty$	$H_{i 8}^{\prime}(x)>0$
$H_{19}(+\infty)=+\infty$	$H_{19}^{\prime}(x)>0$
$H_{20}(+\infty)=+\infty$	$H_{20}^{\prime}(x)>0$
$H_{23}(+\infty)=-\infty$	$H_{23}^{\prime}(x)<0$
$H_{24}(+\infty)=0$	$H_{24}^{\prime}(x)<0$
$\mathrm{H}_{25}(+\infty)=+\infty$	$H_{25}(x)>0$
$H_{27}(+\infty)=-\infty$	$H_{27}^{\prime}(x)<0$
$H_{28}(+\infty)=-\infty$	$H_{28}^{\prime}(x)<0$
$H_{29}(+\infty)=-\infty$	$H_{29}^{\prime}(x)<0$
$H_{30}(+\infty)=+\infty$	$H_{30}^{\prime}(x)>0$
$H_{31}(+\infty)=+\infty$	$H_{31}^{\prime}(x)>0$
$H_{32}(+\infty)=-1-\alpha_{14}$	$H_{32}^{\prime}(x)<0$
$H_{33}(+\infty)=-\infty$	$H_{33}^{\prime}(x)<0$
$H_{34}(+\infty)=+\infty$	$H_{34}^{\prime}(x)>0$
$H_{3,5}(+\infty)=-\infty$	$H_{35}^{\prime}(x)<0$
$H_{36}(+\infty)=-\infty$	$H_{36}^{\prime}(x)<0$
$H_{37}(+\infty)=-\infty$	$H_{37}^{\prime}(x)<0$
$H_{38}(+\infty)=+\infty$	$H_{38}^{\prime}(x)>0$
$H_{39}(+\infty)=+\infty$	$H_{39}^{\prime}(x)>0$
$H_{40}(+\infty)=+\infty$	$H_{40}^{\prime}(x)>0$
$H_{41}(+\infty)=0$	$H_{41}^{\prime}(x)<0$
$H_{42}(+\infty)=+\infty$	$H_{42}^{\prime}(x)>0$
$H_{43}(+\infty)=-1-\frac{E c_{2}}{\lambda}$	$H_{43}^{\prime}(x)<0$
$H_{44}(+\infty)=+\infty$	$H_{44}^{\prime}(x)>0$
$H_{45}(+\infty)=-\infty$	$H_{45}^{\prime}(x)<0$
$H_{46}(+\infty)=-\infty$	$H_{46}^{\prime}(x)<0$
$H_{47}(+\infty)=-\infty$	$H_{47}^{\prime}(x)<0$
$H_{48}(+\infty)=-1$	$H_{4 x}^{\prime}(x)<0$
$H_{49}(+\infty)=-\infty$	$H_{49}^{\prime}(x)<0$
$H_{50}(+\infty)=-\infty$	$H_{501}^{\prime}(x)<0$
$H_{51}(+\infty)=-\infty$	$H_{51}^{\prime}(x)<0$
$H_{52}(+\infty)=-\infty$	$H_{52}^{\prime}(x)<0$
$H_{53}(+\infty)=+\infty$	$H_{53}^{\prime}(x)>0$
$H_{54}(+\infty)=-\infty$	$H_{54}^{\prime}(x)<0$
$H_{5 s}(+\infty)=+\infty$	$H_{S S}^{\prime}(x)>0$
$H_{56}(+\infty)=-\infty$	$H_{56}^{\prime}(x)<0$
$H_{57}(+\infty)=-\infty$	$H_{57}^{\prime}(x)<0$
$H_{58}(+\infty)=0$	$H_{S K}^{\prime}(x)<0$

$\alpha_{4}=\frac{2}{\sqrt{\pi}}+\frac{(1-\epsilon) \gamma \sqrt{\pi}}{2 D}$

$$
\begin{array}{ll}
\alpha_{6}=\frac{D c_{1}}{\lambda \sqrt{\pi}}\left(1-\frac{E k_{2}}{h_{\mathrm{o}} a_{2} \sqrt{\pi}}\right) & \alpha_{5}=\frac{E h_{\mathrm{o}} k_{2}}{D \lambda \rho k_{1} a_{2}}\left(\frac{h_{\mathrm{o}} a_{2} \sqrt{\pi}}{E k_{2}}-F_{1}\left(\frac{D k_{1}}{h_{\mathrm{o}} a_{2} \sqrt{\pi}} \alpha_{3}\right)\right) \\
\alpha_{7}=\frac{h_{\mathrm{o}}}{E \rho a_{1} c_{2}} & \alpha_{8}=\frac{E}{\lambda} \sqrt{\frac{c_{1} c_{2} k_{2}}{\pi k_{1}}} \\
\alpha_{9}=\frac{h_{\mathrm{o}}}{E \rho \sigma c_{2}}-\left(1+\frac{\gamma}{D}+\frac{\lambda}{E c_{2}}\left(1+\frac{(1-\epsilon) \gamma}{D}\right)\right) & \alpha_{10}=1-\frac{E k_{2}}{h_{\mathrm{o}} a_{2} \sqrt{\pi}} F_{1}\left(\frac{\sigma}{a_{2}}\left(1+\frac{\gamma}{D}\right)\right) \\
\alpha_{11}=\frac{h_{\mathrm{o}}}{\lambda \rho \sigma}-1-\frac{(1-\epsilon) \gamma}{D} & \alpha_{12}=\frac{h_{\mathrm{o}}}{\lambda \rho \sigma}-1-\frac{E k_{2}}{\lambda \rho \sigma a_{2} \sqrt{\pi}} F_{1}\left(\frac{\sigma}{a_{2}}\left(1+\frac{\gamma}{D}\right)\right) \\
\alpha_{14}=\frac{E k_{2}}{\lambda \rho \sigma a_{2} \sqrt{\pi}} & \alpha_{13}=\frac{\gamma}{D}-\frac{h_{0}}{\lambda \rho \sigma}+1+\frac{E k_{2}}{\lambda \rho \sigma a_{2} \sqrt{\pi}} F_{1}\left(\frac{\sigma}{a_{2}}\left(1+\frac{\gamma}{D}\right)\right) \\
\alpha_{16}=\frac{E}{\lambda} \sqrt{\frac{D c_{1} c_{2} k_{2}}{2 \sigma h_{\mathrm{o}} \sqrt{\pi}}} & \alpha_{15}=\frac{h_{\mathrm{o}}}{\lambda \rho \sigma}-1-\frac{E k_{2}}{\lambda \rho \sigma a_{2} \sqrt{\pi}} F_{1}\left(\frac{\sigma}{a_{2}}\right) \\
\alpha_{19}=1+\frac{(1-\epsilon) \gamma}{D} & \alpha_{18}=\frac{h_{\mathrm{o}}}{\lambda \rho \sigma}-1-\frac{E c_{2}}{\lambda} \\
\alpha_{19}=\frac{h_{\mathrm{o}}}{\lambda \rho \sigma}-1 & \alpha_{20}=1-\frac{E k_{2}}{h_{\mathrm{o}} a_{2} \sqrt{\pi}} .
\end{array}
$$

APPENDIX B

The restrictions used in the text are the following:
(R1) $h_{\mathrm{o}}>\frac{E k_{2}}{a_{2} \sqrt{\pi}}$
(R2) $\frac{D k_{1}}{h_{\mathrm{o}} a_{1} \sqrt{\pi}}<f\left(x_{2}\right)$, where x_{2} is the unique positive zero of H_{2}
(R3) $\frac{D k_{1}}{h_{0} a_{1} \sqrt{\pi}}<f\left(x_{3}\right)$, where x_{3} is the unique positive zero of H_{3}
(R4) $\frac{D k_{1}}{h_{0} a_{1} \sqrt{\pi}}<f\left(x_{4}\right)$, where x_{4} is the unique positive zero of H_{4}
(R5) $\frac{D k_{1}}{h_{\mathrm{o}} a_{\mathrm{j}} \sqrt{\pi}}>f\left(x_{5}\right)$, where x_{5} is the unique positive zero of H_{5}
(R6) $\frac{D k_{1}}{h_{\mathrm{o}} a_{1} \sqrt{\pi}}<f\left(x_{7}\right)$, where x_{7} is the unique positive zero of H_{7}
(R7) $h_{0}>\frac{D k_{1}}{a_{2} \sqrt{\pi}}\left(\frac{2}{\sqrt{\pi}}+\frac{\gamma \sqrt{\pi}}{2 D}\right) \frac{1}{\eta}$, where η is the unique positive solution of the equation $H_{11}(x)=H_{12}(x), x>0$
(R8) $\frac{D k_{1}}{h_{\mathrm{o}} a_{1} \sqrt{\pi}}<f\left(x_{17}\right)$, where x_{17} is the unique positive zero of H_{17}
(R9) $\frac{h_{\mathrm{o}}}{E \rho c_{2}}>1+\frac{\gamma}{D}+\frac{\lambda}{E c_{2}}\left(1+\frac{(1-\epsilon) \gamma}{D}\right)$
(R10) $h_{\circ}>\frac{D k_{1}}{2 \sigma}$
(R11) $\frac{D \rho \sigma c_{1}}{h_{0} \sqrt{\pi}}<H_{20}\left(x_{23}\right)$, where x_{23} is the unique positive zero of H_{23}
(R12) $\frac{D k_{1}}{\sigma h_{0} \sqrt{\pi}}>H_{24}\left(x_{23}\right)$, where x_{23} is the unique positive zero of H_{23}
(R13) $h_{0}>\frac{E k_{2}}{a_{2} \sqrt{\pi}} F_{1}\left(\frac{\sigma}{a_{2}}\left(1+\frac{\gamma}{D}\right)\right)$
(R14) $\frac{h_{o}}{\lambda \rho \sigma}>1+\frac{(1-\epsilon) \gamma}{D}$
(R15) $\frac{h_{0}}{\lambda \rho \sigma}>1+\frac{E k_{2}}{\lambda \rho \sigma a_{2} \sqrt{\pi}} F_{1}\left(\frac{\sigma}{a_{2}}\left(1+\frac{\gamma}{D}\right)\right)$
(R16) $\frac{h_{o}}{\lambda \rho \sigma}>1+\frac{\gamma}{D}+\frac{E k_{2}}{\lambda \rho \sigma a_{2} \sqrt{\pi}} F_{1}\left(\frac{\sigma}{a_{2}}\left(1+\frac{\gamma}{D}\right)\right)$
(R17) $\frac{h_{\mathrm{o}}}{\lambda \rho \sigma}>1+\frac{E k_{2}}{\lambda \rho \sigma a_{2} \sqrt{\pi}} F_{1}\left(\frac{\sigma}{a_{2}}\right)$
(R18) $\frac{D \rho \sigma c_{1}}{h_{\mathrm{o}} \sqrt{\pi}}<H_{20}\left(x_{27}\right)$, where x_{27} is the unique positive zero of H_{27}
(R19) $\frac{D \rho \sigma c_{1}}{h_{0} \sqrt{\pi}}<H_{20}\left(x_{28}\right)$, where x_{28} is the unique positive zero of H_{28}
(R20) $H_{20}\left(x_{29}\right)>\frac{D \rho \sigma c_{1}}{h_{0} \sqrt{\pi}}>H_{20}\left(x_{30}\right)$, where x_{29} is the unique positive zero of H_{29}, x_{30} is the unique positive zero of H_{30}
(R21) $\frac{D \rho \sigma c_{1}}{h_{\mathrm{o}} \sqrt{\pi}}<H_{20}\left(x_{32}\right)$, where x_{32} is the unique positive zero of H_{32}
(R22) $\frac{D k_{1}}{\sigma h_{\mathrm{o}} \sqrt{\pi}}>H_{24}\left(x_{33}\right)$, where x_{33} is the unique positive zero of H_{33}
(R23) $h_{\mathrm{o}}=\frac{D k_{1}}{a_{1} f\left(\frac{\sigma}{a_{1}}\right) \sqrt{\pi}}$
(R24) $H_{35}\left(\frac{\sigma}{a_{1}}\right)>0$ or $\frac{\sigma}{a_{1}}<x_{35}$, where x_{35} is the unique positive zero of H_{35}
(R25) $H_{36}\left(\frac{\sigma}{a_{1}}\right)>0$ or $\frac{\sigma}{a_{1}}<x_{36}$, where x_{36} is the unique positive zero of H_{36}
(R26) $\frac{D k_{1}}{E \rho a_{1} a_{2} c_{2}} F_{2}\left(\frac{\sigma}{a_{1}}\right) \leq 1$
(R27) $\frac{\lambda \rho \sigma a_{2} \sqrt{\pi}}{E k_{2}}\left(\frac{D k_{1}}{\lambda \rho \sigma a_{1} \sqrt{\pi}} F_{2}\left(\frac{\sigma}{a_{1}}\right)-1\right)>1$
(R28) $F_{1}\left(\frac{\sigma}{a_{2}}\right)<\frac{\lambda \rho \sigma a_{2} \sqrt{\pi}}{E k_{2}}\left(\frac{D k_{1}}{\lambda \rho \sigma a_{1} \sqrt{\pi}} F_{2}\left(\frac{\sigma}{a_{1}}\right)-1\right)$
(R29) $H_{57}\left(\frac{\sigma}{a_{1}}\right)>0$ or $\frac{\sigma}{a_{1}}<x_{57}$, where x_{57} is the unique positive zero of H_{57}
(R30) $\frac{h_{0}}{\lambda \rho \sigma}>1+\frac{(1-\epsilon) \gamma}{D}+\frac{E k_{2}}{\lambda \rho \sigma a_{2} \sqrt{\pi}} F_{1}\left(\frac{\sigma}{a_{2}}\left(1+\frac{\gamma}{D}\right)\right)$
(R31) $\frac{D k_{1}}{\sigma h_{\mathrm{o}} \sqrt{\pi}}>H_{24}\left(x_{27}\right)$, where x_{27} is the unique positive zero of H_{27}
(R32) $h_{\mathrm{o}}>\rho \sigma\left(\lambda+E c_{2}\right)$
(R33) $H_{43}\left(\frac{\sigma}{a_{1}}\right)>0$ or $\frac{\sigma}{a_{1}}<x_{43}$, where x_{43} is the unique positive zero of H_{43} when (R32) is verified
(R34) $\frac{D k_{1}}{\sigma h_{0} \sqrt{\pi}}>H_{24}\left(x_{28}\right)$, where x_{28} is the unique positive zero of H_{28}
(R35) $\frac{D k_{1}}{\sigma h_{\mathrm{o}} \sqrt{\pi}}>H_{24}\left(x_{29}\right)$, where x_{29} is the unique positive zero of H_{29}
(R36) $\frac{D k_{1}}{\sigma h_{\mathrm{o}} \sqrt{\pi}}<H_{24}\left(x_{30}\right)$, where x_{30} is the unique positive zero of H_{31}
(R37) $\frac{D k_{1}}{\sigma h_{\mathrm{o}} \sqrt{\pi}}>H_{24}\left(x_{32}\right)$, where x_{32} is the unique positive zero of H_{32}
(R38) $\frac{D k_{1}}{\sigma h_{\mathrm{o}} \sqrt{\pi}}>H_{24}\left(x_{45}\right)$, where x_{45} is the unique positive zero of H_{45}
(R39) $H_{47}\left(\frac{\sigma}{a_{1}}\right)>0$ or $\frac{\sigma}{a_{1}}<x_{47}$, where x_{47} is the unique positive zero of H_{47}
(R40) $H_{55}\left(\frac{\sigma}{a_{1}}\right)<\frac{D c_{1}}{\lambda \sqrt{\pi}}$
(R41) $\frac{D k_{1}}{\sigma h_{0} \sqrt{\pi}}>H_{24}\left(x_{54}\right)$, where x_{54} is the unique positive zero of H_{54}
(R42) $\frac{D k_{1}}{\sigma h_{6} \sqrt{\pi}}>H_{24}\left(x_{49}\right)$, where x_{49} is the unique positive zero of H_{49}
(R43) $H_{50}\left(\frac{\sigma}{a_{1}}\right)>0$ or $\frac{\sigma}{a_{1}}<x_{50}$, where x_{50} is the unique positive zero of H_{50}
(R44) $\frac{D k_{1} a_{2}}{E a_{1} k_{2}} F_{2}\left(\frac{\sigma}{a_{1}}\right)>1$
(R45) $F_{1}\left(\frac{\sigma}{a_{2}}\right)<\frac{D k_{1} a_{2}}{E a_{1} k_{2}} F_{2}\left(\frac{\sigma}{a_{1}}\right)$
(R46) $\frac{D k_{1}}{\sigma h_{0} \sqrt{\pi}}>H_{24}\left(x_{51}\right)$, where x_{51} is the unique positive zero of H_{51}
(R47) $\frac{D k_{1}}{\sigma h_{\mathrm{o}} \sqrt{\pi}}<H_{24}\left(x_{52}\right)$, where x_{52} is the unique positive zero of H_{52}
(R48) $H_{56}\left(\frac{\sigma}{a_{1}}\right)>0$ or $\frac{\sigma}{a_{1}}<x_{56}$, where x_{56} is the unique positive zero of H_{56}.

APPENDIX C

Table 1

Case	Unknown coefficients	Restrictions	Solution
1	c_{2}, σ, ω	(R2)	$\sigma=a_{1} \xi_{1}, \quad c_{2}=\frac{c_{1} k_{2}}{k_{1}} \frac{B^{2}}{W^{2}\left(\xi_{1}\right)}, \quad \omega=a_{1} w\left(\xi_{1}\right)$ where ξ_{1} is the unique positive solution of the equation $f(x)=\frac{D k_{1}}{h_{0} a_{1} \sqrt{\pi}}, \quad x>0$ and B is the only positive solution of the equation $H_{1}(x)=\frac{\lambda k_{1} \sqrt{\pi}}{E c_{1} k_{2}} W\left(\xi_{1}\right) H_{2}\left(\xi_{1}\right), \quad x>0 .$
2	λ, σ, ω	(R1) (R3)	$\sigma=a_{1} \xi_{1}, \quad \lambda=\frac{h_{\mathrm{o}}}{\rho a_{1}} \frac{H_{3}\left(\xi_{1}\right)}{G\left(\xi_{1}\right)}, \quad \omega=a_{1} W\left(\xi_{1}\right)$

where ξ_{1} is given as in case 1 .

3	ϵ, σ, ω	$\begin{aligned} & \text { (R1) } \\ & \text { (R4) } \\ & \text { (R5) } \end{aligned}$	$\sigma=a_{1} \xi_{1}, \quad \epsilon=\frac{2 D}{\gamma \sqrt{\pi}} F_{2}\left(\xi_{1}\right) H_{5}\left(\xi_{1}\right), \quad \omega=a_{1} W\left(\xi_{1}\right)$ where ξ_{1} is given as in case 1 .
4	γ, σ, ω	$\begin{aligned} & \text { (R1) } \\ & \text { (R6) } \end{aligned}$	$\sigma=a_{1} \xi_{1}, \quad \gamma=\frac{2 D}{\sqrt{\pi}}\left(\frac{a_{2}}{a_{1}} B-\xi_{1}\right) F_{2}\left(\xi_{1}\right), \quad \omega=a_{1} W\left(\xi_{1}\right)$ where ξ_{1} is given as in case 1 and B is the only positive solution of the equation $H_{6}(x)=\frac{h_{0}}{\lambda \rho a_{1}} \exp \left(-\xi_{1}^{2}\right)-\epsilon \xi_{1}, \quad x>\frac{a_{1}}{a_{2}} \xi_{1} .$
5	c_{1}, σ, ω	(R7)	$\sigma=\frac{D k_{1}}{h_{\mathrm{o}} \sqrt{\pi}} \frac{1}{H_{24}\left(\xi_{1}\right)}, \quad c_{1}=\frac{\pi h_{\mathrm{o}}^{2}}{D^{2} \rho k_{1}} f^{2}\left(\xi_{1}\right), \quad \omega=\frac{D k_{1}}{h_{\mathrm{o}} \sqrt{\pi}} H_{8}\left(\xi_{1}\right)$ where ξ_{1} is the unique positive solution of the equation $H_{9}(x)=H_{10}(x), \quad x>0 .$
6	k_{1}, σ, ω	(R1)	$\sigma=\frac{h_{0} \sqrt{\pi}}{D \rho c_{1}} H_{20}\left(\xi_{1}\right), \quad k_{1}=\frac{\pi h_{o}^{2}}{D^{2} \rho c_{1}} f^{2}\left(\xi_{1}\right), \quad \omega=\frac{h_{\mathrm{o}} \sqrt{\pi}}{D \rho c_{1}} H_{13}\left(\xi_{1}\right)$ where ξ_{1} is the unique positive solution of the equation $H_{14}(x)=H_{15}(x), \quad x>0 .$
7	k_{2}, σ, ω	(R8)	$\sigma=a_{1} \xi_{1}, \quad k_{2}=\frac{k_{1} c_{2}}{c_{1}} \frac{W^{2}\left(\xi_{1}\right)}{B^{2}}, \quad \omega=a_{1} W\left(\xi_{1}\right)$ where ξ_{1} is given as in case 1 and B is the only positive solution of the equation $\frac{1}{H_{16}(x)}=\frac{\lambda}{E c_{2}} \frac{H_{2}\left(\xi_{1}\right)}{W\left(\xi_{1}\right)}, \quad x>0 .$
8	ρ, σ, ω	-	$\sigma=\frac{\lambda k_{1}}{h_{0} c_{1}} \xi_{1} H_{18}\left(\xi_{1}\right), \quad \rho=\frac{h_{0}^{2} c_{1}}{\lambda^{2} k_{1}} \frac{1}{H_{18}^{2}\left(\xi_{1}\right)}, \quad \omega=\frac{\lambda k_{1}}{h_{0} c_{1}} w\left(\xi_{1}\right) H_{18}\left(\xi_{1}\right)$ where ξ_{1} is the unique positive solution of the equation $H_{19}(x)=\frac{D c_{1}}{\lambda \sqrt{\pi}}, \quad x>0 .$

APPENDIX D

Table 2
$\left.\begin{array}{ccccc}\hline \text { Case } & \begin{array}{c}\text { Unknown } \\ \text { coefficients }\end{array} & \text { Restrictions } & \text { Solution } \\ \hline 9 & \omega, k_{1}, k_{2} & (\mathrm{R} 9) & \omega=\sigma H_{25}\left(\xi_{1}\right), & k_{1}=\rho \sigma^{2} c_{1} \frac{1}{\xi_{1}^{2}},\end{array} k_{2}=\rho \sigma^{2} c_{2} \frac{H_{25}^{2}\left(\xi_{1}\right)}{B^{2}}\right)$
where ξ_{1} is the unqiue solution of the equation

$$
H_{20}(x)=\frac{D \rho \sigma c_{1}}{h_{0} \sqrt{\pi}}, \quad x>0
$$

and B is the only solution of the equation

$$
\frac{1}{H_{16}(x)}=\frac{\lambda}{E c_{2}} \frac{H_{21}\left(\xi_{1}\right)}{W\left(\xi_{1}\right)}, \quad x>0
$$

$10 \quad \omega, c_{1}, k_{2}$	$\left(\begin{array}{l}\text { (R9) } \\ \text { (R10) }\end{array}\right.$	$\omega=\sigma H_{25}\left(\xi_{1}\right), \quad c_{1}=\frac{k_{1}}{\rho \sigma^{2}} \xi_{1}^{2}, \quad k_{2}=\rho \sigma^{2} c_{2} \frac{H_{25}^{2}\left(\xi_{1}\right)}{B^{2}}$

where ξ_{1} is the unique solution of the equation

$$
H_{24}(x)=\frac{D k_{1}}{\sigma h_{\mathrm{o}} \sqrt{\pi}}, \quad x>0
$$

and B is given as in case 9 .

11	ω, λ, k_{1}	$\begin{aligned} & \text { (R13) } \\ & \text { (R18) } \end{aligned}$	$\omega=\sigma H_{25}\left(\xi_{1}\right), \quad \lambda=\frac{h_{0}}{\rho \sigma} \frac{H_{20}\left(\xi_{1}\right)}{G\left(\xi_{1}\right)}, \quad k_{1}=\rho \sigma^{2} c_{1} \frac{1}{\xi_{1}^{2}}$ where ξ_{1} is given as in case 9 .
12	ω, k_{1}, c_{2}	$\begin{aligned} & \text { (R14) } \\ & \text { (R19) } \end{aligned}$	$\omega=\sigma H_{25}\left(\xi_{1}\right), \quad k_{1}=\rho \sigma^{2} c_{1} \frac{1}{\xi_{1}^{2}}, \quad c_{2}=\frac{k_{2}}{\rho \sigma^{2}} \frac{B^{2}}{H_{25}^{2}\left(\xi_{1}\right)}$ where ξ_{1} is given as in case 9 and B is the only solution of the equation $H_{1}(x)=\frac{\lambda \rho \sigma^{2} \sqrt{\pi}}{E k_{2}} H_{25}\left(\xi_{1}\right) H_{28}\left(\xi_{1}\right), \quad x>0 .$
13	ω, ϵ, k_{1}	$\begin{aligned} & \text { (R16) } \\ & \text { (R20) } \end{aligned}$	$\omega=\sigma H_{25}\left(\xi_{1}\right), \quad k_{1}=\rho \sigma^{2} c_{1} \frac{1}{\xi_{1}^{2}}, \quad \epsilon=1-\frac{2 D}{\gamma \sqrt{\pi}} H_{29}\left(\xi_{1}\right) H_{58}\left(\xi_{1}\right)$

where ξ_{1} is given as in case 9 .

14	ω, γ, k_{1}	$\begin{aligned} & \text { (R17) } \\ & \text { (R21) } \end{aligned}$	$\omega=B a_{2}, \quad \gamma=\frac{2 D}{\sqrt{\pi}}\left(\frac{a_{2}}{\sigma} B-1\right) H_{58}\left(\xi_{1}\right), \quad k_{1}=\rho \sigma^{2} c_{1} \frac{1}{\xi_{1}^{2}}$ where ξ_{1} is given as in case 9 and B is the only solution of the equation $H_{31}(x)=\frac{h_{\mathrm{o}}}{\lambda \rho \sigma} \exp \left(-\xi_{1}^{2}\right)-\epsilon, \quad x>\frac{\sigma}{a_{2}} .$
15	ω, ρ, k_{2}	$\begin{aligned} & \text { (R10) } \\ & (\mathrm{R} 22) \end{aligned}$	$\omega=\sigma H_{25}\left(\xi_{1}\right), \quad \rho=\frac{k_{1}}{\sigma^{2} c_{1}} \xi_{1}^{2}, \quad k_{2}=\frac{k_{1} c_{2}}{c_{1}} \frac{W^{2}\left(\xi_{1}\right)}{B^{2}}$ where ξ_{1} is given as in case 10 and B is the only solution of the equation $\frac{1}{H_{16}(x)}=\frac{\lambda}{E c_{2}} \frac{H_{45}\left(\xi_{1}\right)}{\xi_{1} W\left(\xi_{1}\right)}, \quad x>0 .$
16	ω, λ, k_{2}	$\begin{aligned} & \text { (R23) } \\ & \text { (R24) } \end{aligned}$	$\begin{aligned} \omega=a_{1} W\left(\frac{\sigma}{a_{1}}\right), \quad k_{2}= & \frac{k_{1} c_{2}}{c_{1}} \frac{W^{2}\left(\frac{\sigma}{a_{1}}\right)}{B^{2}}, \quad \lambda=\frac{1}{G\left(\frac{\sigma}{a_{1}}\right)}\left(\frac{D c_{1}}{\sqrt{\pi}} F_{2}\left(\frac{\sigma}{a_{1}}\right)-E c_{2} \frac{W\left(\frac{\sigma}{a_{1}}\right)}{H_{16}(B)}\right) \\ & \text { for any } B>H_{16}^{-1}\left(\frac{E c_{2} \sqrt{\pi}}{D c_{1}} \frac{W\left(\frac{\sigma}{a_{1}}\right)}{F_{2}\left(\frac{\sigma}{a_{1}}\right)}\right) . \end{aligned}$

Table 2. contd.

Case	Unknown coefficients	Restrictions	Solution
17	ω, ϵ, k_{2}	$\begin{aligned} & \text { (R23) } \\ & \text { (R25) } \end{aligned}$	$\omega=a_{1} W\left(\frac{\sigma}{a_{1}}\right), \quad k_{2}=\frac{k_{1} c_{2}}{c_{1}} \frac{W^{2}\left(\frac{\sigma}{a_{1}}\right)}{B^{2}},$
			$\epsilon=\frac{2 D}{\gamma \sqrt{\pi}} W\left(\frac{\sigma}{a_{1}}\right) F_{2}\left(\frac{\sigma}{a_{1}}\right)-\frac{2 D}{\lambda \gamma^{\sqrt{\pi}}} F_{2}\left(\frac{\sigma}{a_{1}}\right)\left(\frac{D c_{1}}{\sqrt{\pi}} F_{2}\left(\frac{\sigma}{a_{1}}\right)-E c_{2} \frac{W\left(\frac{\sigma}{a_{1}}\right)}{H_{16}(B)}\right)$ for any $H_{16}^{-1}\left(\frac{1}{A}\right)<B<H_{16}^{-1}\left(\frac{1}{C}\right)$ if $\frac{\sigma}{a_{1}}<x_{37}$
			or for any $B>H_{16}^{-1}\left(\frac{1}{A}\right)$ if $x_{37} \leq \frac{\sigma}{a_{1}}<x_{36}$
			where $A=\frac{\lambda}{E c_{2} W\left(\frac{\sigma}{a_{1}}\right)}\left(H_{41}\left(\frac{\sigma}{a_{1}}\right)-\frac{\sigma}{a_{1}}\right)$
			$C=\frac{\lambda}{E c_{2} W\left(\frac{\sigma}{a_{1}}\right)} H_{46}\left(\frac{\sigma}{a_{1}}\right) .$

| $18, ~$(R23)
 (R26)
 (R27)
 (R28) | $\omega=\omega(\gamma)=\sigma\left(1+\frac{\gamma \sqrt{\pi}}{2 D} \frac{1}{H_{58}\left(\frac{\sigma}{a_{1}}\right)}\right)$, |
| :--- | :--- | :--- |
| | $\epsilon=\epsilon(\gamma)=1-\frac{\sigma}{\omega(\gamma)-\sigma}\left(\frac{D k_{1}}{\lambda \rho \sigma \sqrt{\pi}} H_{58}\left(\frac{\sigma}{a_{1}}\right)-1\right)-\frac{1}{\omega(\gamma)-\sigma} \frac{E k_{2}}{\lambda \rho a_{2} \sqrt{\pi}} F_{1}\left(\frac{\omega(\gamma)}{a_{2}}\right)$ |
| | for any $0<\gamma<\frac{2 D a_{2}}{a_{1} \sqrt{\pi}} F_{2}\left(\frac{\sigma}{a_{1}}\right)\left(F_{1}^{-1}(B)-\frac{\sigma}{a_{2}}\right)$ |

where

$$
B=\frac{\lambda \rho \sigma_{2} \sqrt{\pi}}{E k_{2}}\left(\frac{D k_{1}}{\lambda \rho \sigma a_{1} \sqrt{\pi}} F_{2}\left(\frac{\sigma}{a_{1}}\right)-1\right) .
$$

$19 \omega,$| $(\mathrm{R} 23)$ |
| :---: |
| $(\mathrm{R} 29)$ |$\omega, \quad \omega=c_{1}, k_{2} W\left(\frac{\sigma}{a_{1}}\right), \quad c_{2}=\frac{\lambda}{E} \frac{H_{16}(B) H_{57}\left(\frac{\sigma}{\sigma_{1}}\right)}{W\left(\frac{\sigma}{a_{1}}\right)}, \quad k_{2}=\frac{\lambda k_{1} \sqrt{\pi}}{E c_{1}} \frac{W\left(\frac{\sigma}{a_{1}}\right) H_{57}\left(\frac{\sigma}{a_{1}}\right)}{H_{1}(B)}$

for any $B>0$.
$20 \quad \omega, \rho, k_{1} \quad-\quad \omega=\sigma H_{25}\left(\xi_{1}\right), \quad \rho=\frac{h_{0} \sqrt{\pi}}{D \sigma c_{1}} H_{20}\left(\xi_{1}\right), \quad k_{1}=\frac{\sigma h_{0} \sqrt{\pi}}{D} H_{24}\left(\xi_{1}\right)$
where ξ_{1} is the unique solution of the equation

$21 \quad \omega, c_{40}(x)=H_{41}(x), \quad x>0$.

where ξ_{1} is the unique solution of the equation

$$
\frac{h_{0}}{\lambda \rho \sigma} H_{27}(x)=H_{42}(x), \quad x>0
$$

$22 \omega, \lambda, c_{1}$	$(\mathrm{R} 10)$
$(\mathrm{R} 13)$	
$(\mathrm{R} 31)$	$\quad \omega=\sigma H_{25}\left(\xi_{1}\right), \quad \lambda=\frac{h_{0}}{\rho \sigma} \frac{H_{26}\left(\xi_{1}\right)}{G\left(\xi_{1}\right)}, \quad c_{1}=\frac{k_{1}}{\rho \sigma^{2}} \xi_{1}^{2}$

where ξ_{1} is given as in case 10.

Table 2. contd.

Case	Unknown coefficients	Restrictions	Solution
23	ω, γ, k_{2}	(R23)	$\omega=a_{1} W\left(\frac{\sigma}{a_{1}}, \gamma\right), \quad k_{2}=\frac{k_{1} c_{2}}{c_{1}} \frac{W^{2}\left(\frac{\sigma}{a_{1}}, \gamma\right)}{B^{2}}$
	(R43)		
		for any $0<\gamma<\frac{2 D F_{2}\left(\frac{\sigma}{a_{1}}\right)}{\left(1-\epsilon+\frac{E c_{2}}{\lambda}\right) \sqrt{\pi}} H_{50}\left(\frac{\sigma}{a_{1}}\right)$	

where $B=B(\gamma)$ is the unique solution of the equation

| $\frac{1}{H_{16}(x)}=\frac{\lambda}{E c_{2}} \frac{H_{57}\left(\frac{\sigma}{a_{1}}, \gamma\right)}{W\left(\frac{\sigma}{a_{1}}, \gamma\right)}, \quad x>0$. | |
| :---: | :---: | :---: |
| $24 \quad \omega, \epsilon, c_{1} \quad$$(\mathrm{R} 16)$
 $(\mathrm{R} 35)$ | $\omega=\sigma H_{25}\left(\xi_{1}\right), \quad c_{1}=\frac{k_{1}}{\rho \sigma^{2}} \xi_{1}^{2}, \quad \epsilon=1-\frac{2 D}{\gamma \sqrt{\pi}} H_{29}\left(\xi_{1}\right) H_{58}\left(\xi_{1}\right)$ |

where ξ_{1} is given as in case 10 .

| 25 | ω, c_{1}, c_{2} | $(\mathrm{R} 10)$
 $(\mathrm{R} 14)$
 (R34) |
| :--- | :--- | :--- |$\quad \omega=\sigma H_{25}\left(\xi_{1}\right), \quad c_{1}=\frac{k_{1}}{\rho \sigma^{2}} \xi_{1}^{2}, \quad c_{2}=\frac{k_{2}}{\rho \sigma^{2}} \frac{B^{2}}{H_{25}^{2}\left(\xi_{1}\right)}$

where ξ_{t} is given as in case 10 and B is given as in case 12.
$26 \quad \omega, \rho, c_{1} \quad(\mathrm{R} 10) \quad \omega=\sigma H_{25}\left(\xi_{1}\right), \quad \rho=\frac{k_{2}}{\sigma^{2} c_{2}} \frac{B^{2}}{H_{25}^{2}\left(\xi_{1}\right)}, \quad c_{1}=\frac{k_{1} c_{2}}{k_{2}} \frac{W^{2}\left(\xi_{1}\right)}{B^{2}}$
where ξ_{1} is given as in case 10 and B is the only solution of the equation

where ξ_{1} is given as in case 10 and B is given as in case 14.

$28 \omega, \lambda, c_{2}(\mathrm{R} 23)$	$\omega=a_{1} W\left(\frac{\sigma}{a_{1}}\right), \quad c_{2}=\frac{c_{1} k_{2}}{k_{1}} \frac{B^{2}}{W^{2}\left(\frac{\sigma}{a_{1}}\right)}$,	
$\lambda=\frac{1}{G\left(\frac{\sigma}{a_{1}}\right)}\left(\frac{D c_{1}}{\sqrt{\pi}} F_{2}\left(\frac{\sigma}{a_{1}}\right)-\frac{E c_{1} k_{2}}{k_{1} \sqrt{\pi}} \frac{H_{1}(B)}{W\left(\frac{\sigma}{a_{1}}\right)}\right)$		
29	ω, ρ, c_{2}	(R10)
	(R38)	$\omega=\sigma H_{25}\left(\xi_{1}\right), \quad \rho=\frac{k_{1}}{\sigma^{2} c_{1}} \xi_{1}^{2}, \quad c_{2}=\frac{c_{1} k_{2}}{k_{1}} \frac{B^{2}}{W^{2}\left(\xi_{1}\right)}$

where ξ_{1} is given as in case 10 and B is the only solution of the equation

$$
H_{1}(x)=\frac{\lambda k_{1} \sqrt{\pi}}{E c_{1} k_{2}} H_{25}\left(\xi_{1}\right) H_{45}\left(\xi_{1}\right), \quad x>0 .
$$

Table 2. contd.

Case	Unknown coefficients	Restrictions	Solution
30	$\omega, \boldsymbol{\epsilon}, c_{2}$	$\begin{aligned} & \text { (R23) } \\ & \text { (R39) } \end{aligned}$	$\begin{gathered} \omega=a_{1} W\left(\frac{\sigma}{a_{1}}\right), \quad c_{2}=\frac{c_{1} k_{2}}{k_{1}} \frac{B^{2}}{W^{2}\left(\frac{\sigma}{a_{1}}\right)}, \\ \epsilon=\frac{2 D}{\gamma \sqrt{\pi}} W\left(\frac{\sigma}{a_{1}}\right) F_{2}\left(\frac{\sigma}{a_{1}}\right)-\frac{2 D}{\lambda \gamma \sqrt{\pi}} F_{2}\left(\frac{\sigma}{a_{1}}\right)\left(\frac{D c_{1}}{\sqrt{\pi}} F_{2}\left(\frac{\sigma}{a_{1}}\right)-\frac{E c_{1} k_{2}}{k_{1} \sqrt{\pi}} \frac{H_{1}(B)}{W\left(\frac{\sigma}{a_{1}}\right)}\right) \end{gathered}$ for any $H_{1}^{-1}(A)<B<H_{1}^{-1}(C)$ if $\frac{\sigma}{a_{1}}<x_{46}$ or for any $0<B<H_{1}^{-1}(C)$ if $x_{46} \leq \frac{\sigma}{a_{1}}<x_{47}$ where $A=\frac{\lambda k_{1} \sqrt{\pi}}{E c_{1} k_{2}} W\left(\frac{\sigma}{a_{1}}\right) H_{46}\left(\frac{\sigma}{a_{1}}\right)$ $C=\frac{\lambda k_{1} \sqrt{\pi}}{E c_{1} k_{2}} W\left(\frac{\sigma}{a_{1}}\right) H_{47}\left(\frac{\sigma}{a_{1}}\right) .$
31	ω, γ, c_{2}	$\begin{aligned} & \text { (R23) } \\ & \text { (R40) } \end{aligned}$	$\omega=a_{1} W\left(\frac{\sigma}{a_{1}}, \gamma\right), \quad c_{2}=\frac{k_{2}}{\rho a_{1}^{2}} \frac{B^{2}}{W^{2}\left(\frac{\sigma}{a_{1}}, \gamma\right)},$ for any $0<\gamma<\frac{2 D H_{58}\left(\frac{\sigma}{a_{1}}\right)}{(1-\epsilon) \sqrt{\pi}}\left(\frac{D c_{1}}{\lambda \sqrt{\pi}} \frac{1}{H_{55}\left(\frac{\sigma}{a_{1}}\right)}-1\right)$ where $B=B(\gamma)$ is the unique solution of the equation $H_{1}(x)=\frac{\lambda k_{1} \sqrt{\pi}}{E c_{1} k_{2}} W\left(\frac{\sigma}{a_{1}}, \gamma\right) H_{57}\left(\frac{\sigma}{a_{1}}, \gamma\right), \quad x>0 .$
32	ω, λ, ρ	$\begin{aligned} & \text { (R10) } \\ & \text { (R42) } \end{aligned}$	$\omega=\sigma H_{25}\left(\xi_{1}\right), \quad \rho=\frac{k_{1}}{\sigma^{2} c_{1}} \xi_{1}^{2}, \quad \lambda=\frac{\sigma h_{0} c_{1}}{k_{1}} \frac{H_{49}\left(\xi_{1}\right)}{G\left(\xi_{1}\right)}$ where ξ_{1} is given as in case 10 .
33	$\omega, \lambda, \epsilon$	$\begin{aligned} & \text { (R23) } \\ & \text { (R48) } \end{aligned}$	$\begin{aligned} & \qquad \omega=a_{1} W\left(\frac{\sigma}{a_{1}}\right), \quad \epsilon=1-\frac{2 D}{\gamma \sqrt{\pi}} H_{58}\left(\frac{\sigma}{a_{1}}\right)\left(\frac{D c_{1}}{\lambda \sqrt{\pi}} H_{56}\left(\frac{\sigma}{a_{1}}\right)-1\right) \\ & \text { for any } \frac{\frac{D c_{1}}{\sqrt{\pi}} H_{56}\left(\frac{\sigma}{a_{1}}\right)}{1+\frac{\gamma \sqrt{\pi}}{2 D} \frac{1}{H_{56}\left(\frac{\sigma}{a_{1}}\right)}}<\lambda<\frac{D c_{1}}{\sqrt{\pi}} H_{56}\left(\frac{\sigma}{a_{1}}\right) \end{aligned}$
34	ω, λ, γ	(R23) (R44) (R45)	$\begin{gathered} \omega=a_{1} W\left(\frac{\sigma}{a_{1}}, \gamma\right), \\ \lambda=\frac{D c_{1}}{G\left(\frac{\sigma}{a_{1}}, \gamma\right), \sqrt{\pi}}\left(F_{2}\left(\frac{\sigma}{a_{1}}\right)-\frac{E}{D} \sqrt{\frac{c_{2} k_{1}}{c_{1} k_{1}}} F_{1}\left(\frac{\sigma}{a_{1}} H_{25}\left(\frac{\sigma}{a_{1}}\right)\right)\right) \\ \text { for any } 0<\gamma<\frac{2 D H_{5 s}\left(\frac{\sigma}{a_{1}}\right)}{(1-\epsilon)^{\sqrt{\pi}}}\left(\frac{a_{2}}{\sigma} F_{1}^{-1}\left(\frac{D k_{1} a_{2}}{E a_{1} k_{2}} F_{2}\left(\frac{\sigma}{a_{1}}\right)\right)-1\right) . \end{gathered}$
35	$\omega, \boldsymbol{\epsilon}, \boldsymbol{\rho}$	$\begin{aligned} & \text { (R46) } \\ & \text { (R47) } \end{aligned}$	$\omega=\sigma H_{25}\left(\xi_{1}\right), \quad \rho=\frac{k_{1}}{\sigma^{2} c_{1}} \xi_{1}^{2}, \quad \epsilon=1-\frac{2 D}{\gamma \sqrt{\pi}} \frac{H_{51}\left(\xi_{1}\right)}{H_{55}\left(\xi_{1}\right)}$

where ξ_{1} is given as in case 10 .

$36 \omega, \gamma, \rho \quad$| (R10) |
| :--- |
| (R41) |

$$
\begin{aligned}
& \omega=\sigma \sqrt{\frac{c_{1} k_{2}}{k_{1} c_{2}} \frac{B}{\xi_{1}}}, \quad \rho=\frac{k_{1}}{\sigma^{2} c_{1}} \xi_{1}^{2}, \\
& \gamma=\frac{2 D}{\sqrt{\pi}}\left(\sqrt{\frac{c_{1} k_{2}}{k_{1} c_{2}}} B-\xi_{1}\right) F_{2}\left(\xi_{1}\right)
\end{aligned}
$$

where ξ_{1} is given as in case 10 and B is the only solution of the equation

$$
H_{53}(x)=\frac{\sigma h_{0} c_{1}}{\lambda k_{1}} \frac{\exp \left(-\xi_{1}^{2}\right)}{\xi_{1}}-\epsilon \xi_{1}, \quad x>\sqrt{\frac{k_{1} c_{2}}{c_{1} k_{2}}} \xi_{1}
$$

