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Córdoba, Argentina
jreginato@exa.unrc.edu.ar

D. A. TARZIA

Departamento de Matemática and CONICET
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The goal of this article is to find a correct approximated solution using a polynomial of
sixth degree for the free boundary problem corresponding to the diffusion of oxygen in
a spherical medium with simultaneous absorption at a constant rate, and to show some
mistakes in previously published solutions.
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1. Introduction

The free boundary problems are generally associated with the processes of melting
and freezing which have a latent heat-type condition at the interface connecting
the velocity of the free boundary and the heat flux (see Refs. 1 and 2 for more
details). However, there is another important class of free boundary problems that
arises from the diffusion of a gas into an absorbing medium in which no such
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explicit condition is available at the free boundary; for example, oxygen diffusion in
saturated soils spherical aggregates with constant, linear and nonlinear absorption
(see Ref. 3 for more details). These free boundary problems become nonlinear due
to the presence of a free boundary and for this reason their analytical solutions are
difficult to obtain (see Ref. 4 for more details). A classical problem on diffusion
of oxygen in a one-dimensional medium was studied in Ref. 5 in which oxygen
was allowed to diffuse in a body tissue in the shape of a sheet that absorbs it
at a constant rate. First the oxygen is allowed to diffuse into a medium, some of
the oxygen is absorbed by the medium, thereby being removed from the diffusion
process, and the concentration of oxygen at the surface of the medium is maintained
constant. This phase of the problem continues until a steady state is reached in
which the oxygen does not penetrate into the medium. The supply of oxygen is
then cut off and the surface is sealed so that no oxygen passes in or out, the
medium continues to absorb the available oxygen already in it and, as consequence,
the boundary marking the furthest depth of penetration in the steady state starts
to recede towards the sealed surface.

A problem on diffusion of oxygen in a spherical medium with simultaneous
absorption at a constant rate is formulated in Refs. 6 and 7.

In Ref. 7, the author traced the moving boundary using the constrained integral
method assuming third and fourth order polynomials. In each case he obtained a
system of two ordinary differential equations for the moving boundary position and
the concentration at the fixed boundary, their solution leads to the unknowns at
each time step.

In Ref. 6 the author proposes a numerical method to trace the moving boundary
and the concentration at the fixed surface. In this method, a double linear system of
equations is considered. The first system is formed through applying first, second,
third and fourth moments and using assumed profile for the concentration contain-
ing four unknowns functions of time. Numerical solution through a proposed scheme
leads to the unknown functions. The second system is formed through applying the
boundary conditions given in addition to another assumed condition, that is the
concentration at x = 0 is unknown function of time. The results of the first system
becomes an entry data for the second one leading to the concentration at the fixed
surface x = 0.

The goals of these articles (Refs. 6 and 7) were to find an approximate solution
applying a modification of one of the most important semi-analytical methods,
the constrained integral method, proposed in Ref. 8 in order to solve implicit free
boundary problems.

Taking into account the transformation from spherical to linear coordinates (see
Ref. 9), the absorption process, in a dimensionless form, becomes the following free
boundary problem (see Eqs. (1)–(5), pp. 671 in Ref. 6, and Eqs. (1)–(4), pp. 363–364
in Ref. 7 for more details):

ut(x, t) = uxx(x, t) − 1, 0 < x < s(t), t > 0 (1.1)

u(s(t), t) = ux(s(t), t) = 0, t > 0 (1.2)
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ux(0, t) = 0, t > 0 (1.3)

u(x, 0) =
(1 − x)2

2
, 0 ≤ x ≤ 1 (1.4)

s(0) = 1. (1.5)

The goal of the present article is twofold: first to find a correct approximated
solution using a polynomial of six degree of the problem (1.1)–(1.5) (see Sec. 2) and
second to show some mistakes in the solutions given in both papers Refs. 6 and 7
(see Secs. 2 and 3).

2. About Ahmed’s Paper

Instead of the solution considered in Ref. 6 we propose an approximated solution of
the system (1.1)–(1.5) assuming a polynomial of six degree in the spatial variable
x for the concentration u in the region 0 < x < s(t), t > 0, that is

u(x, t) = a(t) + b(t)
(

x

s(t)

)2

+ c(t)
(

x

s(t)

)4

+ d(t)
(

x

s(t)

)6

(2.1)

where a = a(t), b = b(t), c = c(t) and d = d(t) are unknown parameters, to be
determined, depending of the time t. Taking into account the conditions (1.2),
(1.3) and an extra condition at the free boundary given by uxx(s(t), t) = 1, t > 0,
deduced from (1.1) and (1.2), the concentration profile (2.1) becomes

u(x, t) = a(t) +
(
−3a(t) +

s2(t)
8

)(
x

s(t)

)2

+
(

3a(t) − s2(t)
4

)(
x

s(t)

)4

+
(
−a(t) +

s2(t)
8

)(
x

s(t)

)6

(2.2)

where a = a(t) and s = s(t) must be determined.
In order to obtain a = a(t) (concentration at the fixed face x = 0) and s = s(t)

(the free boundary) as a function of time t we take the zeroth and first moments of
the differential equation (1.1) which are given respectively by∫ s(t)

0

ut(x, t)dx =
∫ s(t)

0

(uxx(x, t) − 1)dx (2.3)

and ∫ s(t)

0

xut(x, t)dx =
∫ s(t)

0

x(uxx(x, t) − 1)dx. (2.4)

Applying the Leibniz rule to the left-hand side and integrating the right-hand side
we can write (2.3) as

d

dt

(∫ s(t)

0

u(x, t)dx

)
− u(s(t), t)

ds(t)
dt

= (ux(x, t) − x)|s(t)0 (2.5)
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and taking into account the boundary conditions (1.2) and (1.3), the concentration
profile (2.2), and some elementary computations, we obtain the first differential
equation

16
(

da(t)
dt

s(t) + a(t)
ds(t)
dt

)
+ s2(t)

ds(t)
dt

= −35s(t). (2.6)

Again from (2.4) we get

d

dt

(∫ s(t)

0

xu(x, t)dx

)
− s(t)u(s(t), t)

ds(t)
dt

=
(

xux(x, t) − u(x, t) − x2

2

)∣∣∣∣
s(t)

0

.

(2.7)

Therefore, by substitution in (2.7) of boundary conditions (1.2) and (1.3), the con-
centration profile (2.2), and some elementary computations, we obtain the second
differential equation

6
(

da(t)
dt

s2(t) + 2a(t)s(t)
ds(t)
dt

)
+ s3(t)

ds(t)
dt

= 48
(

a(t) − s2(t)
2

)
. (2.8)

Finally, solving (2.6) and (2.8) we get the following system of two ordinary differ-
ential equations

ds(t)
dt

=
3

s(t)
128a(t)− 29s2(t)
48a(t) + 5s2(t)

, (2.9)

da(t)
dt

=
−84a(t)s2(t) − 11s4(t) − 768a2(t)

2s2(t)(48a(t) + 5s2(t))
. (2.10)

As s(0) = 1 by the initial condition (1.5), we can obtain the numerical solution of
the system (2.9)–(2.10) by standard methods if a(0) is given. We know from the
physics of the problem that s′(t) is no positive, and therefore, from (2.9), we obtain

128a(t) − 29s2(t) ≤ 0, for 0 ≤ s(t) ≤ 1. (2.11)

According to condition (2.11), we have assumed a(0) = 0.2265625. Graphs of
the free boundary s = s(t) vs. t, the unknown parameter a = a(t) vs. t, and the
corresponding concentration profile u = u(x, t) vs. x, at different times t, are shown
in Figs. 1, 2 and 3.

We show now in Tables 1 and 2 a comparison between our results and the one
given in Ref. 10 for the concentration on the sealed surface x = 0 and the free
boundary s = s(t) respectively.

From our study, given before, we remark that the equations (9) and (11) in
Ref. 6 are wrong. Moreover, in that paper there exist some other differences, for
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Fig. 1. The free boundary s = s(t) as a function of time t.
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Fig. 2. The parameter a = a(t) as a function of time t.

example:

• from condition u(s(t), t) = 0 we easily obtain that a(t) + b(t) + c(t) + d(t) = 0
and then L.H.S. =0 in Eq. (9) (see pp. 672 in Ref. 6),

• similar differences can be found in the use of the other moments.
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Fig. 3. The concentration profile u = u(x, t) versus x as a function of time t.

Table 1. Comparative figures for the concentration at the sealed surface x = 0.

Time t Ref. 10 Present

0.051 0.2451 0.227
0.060 0.2237 0.205
0.100 0.1423 0.132

Table 2. Comparison of position of the free boundary s = s(t).

Time t Ref. 10 Present

0.051 1.0000 1.000
0.060 0.9969 0.997
0.080 0.9756 0.977
0.100 0.9350 0.936
0.120 0.8743 0.873
0.140 0.7896 0.783
0.150 0.7356 0.725
0.160 0.6710 0.653
0.180 0.4879 0.440

With respect to the initial condition (5), given by s(0) = 0, in Ref. 6 we can have
two cases:

Case 1: If condition (5) is correct (as it appears in the published paper) then
the initial profile, given by (4), is redundant in Ref. 6. Moreover, in the numerical
solution presented by the authors it is s(0) = 1 (see Fig. 2, pp. 10 in Ref. 6). Then,
the results are not consistent.
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Case 2: If condition (5) is s(0) = 1, instead of s(0) = 0, then the used approximated
concentration profile (6) as a polynomial in power of ((1 − x)/(1 − s(t)) is not
convenient. In order to solve this inconvenient we have taken, in the present paper,
a polynomial in power of (x/s(t)).

3. About Çatal’s Paper

A better approximated solution of the system (1.1)–(1.5), with respect to the solu-
tion proposed in Ref. 7, can be found assuming a polynomial of third degree in the
spatial variable x for the concentration u in the region 0 < x < s(t), t > 0, that is

u(x, t) = a(t) + b(t)
(

x

s(t)

)2

+ c(t)
(

x

s(t)

)3

(3.1)

where a = a(t), b = b(t) and c = c(t) are unknown parameters, to be determined,
depending of the time t. Taking into account the conditions (1.2) and (1.3), the
concentration profile (3.1) becomes

u(x, t) = a(t) − 3a(t)
(

x

s(t)

)2

+ 2a(t)
(

x

s(t)

)3

(3.2)

where a = a(t) and s = s(t) must be determined.
In order to obtain a = a(t) and s = s(t) as a function of time t we take the zeroth

and first moments of the differential equation (1.1) which are given respectively
by (2.3) and (2.4).

Applying the Leibniz rule to the left-hand side and integrating the right-hand
side we can write (2.3) as (2.5). Then by substitution in (2.5) of the boundary
conditions (1.2) and (1.3), the concentration profile (3.2), and some elementary
computations, we obtain

da(t)
dt

s(t) + a(t)
ds(t)
dt

= −2s(t). (3.3)

Again from (2.4) we get (2.7). Then by substitution in (2.7) of the boundary con-
ditions (1.2) and (1.3), the concentration profile (3.2), and some elementary com-
putations, we obtain

3
(

da(t)
dt

s2(t) + 2a(t)s(t)
ds(t)
dt

)
= 20

(
a(t) − s2(t)

2

)
. (3.4)

Finally, solving (3.3) and (3.4) we get the following system of two ordinary
differential equations

ds(t)
dt

=
4
3

5a(t) − s2(t)
a(t)s(t)

, (3.5)

da(t)
dt

= −2
3
− 20a(t)

3s2(t)
. (3.6)

As s(0) = 1 by the initial condition (1.5), we can obtain the numerical solution
of the system (3.5)–(3.6) by standard methods if a(0) is given. We know from the
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physics of the problem that s′(t) is no positive, and therefore, from (3.5), we obtain

5a(t) − s2(t) ≤ 0, for 0 ≤ s(t) ≤ 1. (3.7)

According to condition (3.7), we have assumed a(0) = 0.2265625. Graphs of
the free boundary s = s(t) vs. t, the unknown parameter a = a(t) vs. t, and the
corresponding concentration profile u = u(x, t) vs. x, at different times t, are shown
in Figs. 4, 5 and 6.

We remark that the proposed approximated polynomial of third degree in Ref. 7
is incorrect because it doesn’t verify the boundary condition (1.3) and then their
conclusions are not coherent.

In dimensionless form, the associated steady-state system of the evolutionary
free boundary problem (1.1)–(1.5) becomes the following stationary free boundary
problem (see Ref. 7, pp. 363 for more details):

DC′′(X) − m = 0, 0 < X < X0 (3.8)

C(X0) = C′(X0) = 0 (3.9)

C(0) = C0. (3.10)

In Ref. 7, the last boundary condition (3.9) has not been proposed.
Moreover, for a correct resolution of the problem assuming a polynomial of

fourth degree in the spatial variable x for the concentration u in the region 0 < x <

s(t), t > 0 we can see Ref. 10.
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Fig. 4. The free boundary s = s(t) as a function of time t.
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Fig. 5. The parameter a = a(t) as a function of time t.
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Fig. 6. The concentration profile u = u(x, t) versus x as a function of time t.

4. Conclusions

We have found a correct approximated solution to the free boundary problem (1.1)–
(1.5) corresponding to the diffusion of oxygen in a spherical medium with simulta-
neous absorption at a constant rate by using a polynomial of sixth degree, and we
show some mistakes in the solutions given by Ahmed6 and Çatal7.
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