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content materials

Roberto Giannia*† and Domingo A. Tarziab

Communicated by P. Colli

A recent model for the coupled problem of heat and mass transfer during the solidification of high-water content mate-
rials like soils, foods, tissues and phase-change materials was developed. This model takes into account the role played
by material properties and process variables on the advance of freezing and sublimation fronts, temperature and water
vapour profiles and weight loss. The goal of this paper is to determine the existence of a unique local classical solution
for the corresponding two-phase coupled free boundary problem in an adequate functional space. Copyright © 2011 John
Wiley & Sons, Ltd.
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1. Introduction

Ice sublimation takes place from the surface of high water-content systems like moist soils, aqueous solutions, vegetable or animal
tissues and foods that freeze. The rate of both phenomena (solidification and sublimation) is determined by material characteristics
and cooling conditions, and the sublimation process determines fundamental features of the final quality for foods and influences the
structure and usability of frozen tissues. Modelling of these simultaneous processes is very difficult because of the coupling of the heat
and mass transfer balances and the existence of two moving phase-change fronts that advance at very different rates [1].

The process with only-solidification (and no sublimation) has been extensively studied [2–4]. The system has been studied both by
analytical procedures [3, 5], and with numerical methods [2, 3, 6]. The process with only-sublimation of the already-frozen system has
been extensively studied for freeze-drying of food and pharmaceutical materials [7, 8].

In the case of freezing with simultaneous ice sublimation, published developments are scarce and no analytical solution to the cou-
pled problem has been developed except in [1]. Ice sublimation has been surveyed by several authors in different systems [7, 9–11]. A
large bibliography on free and moving boundary problems for the heat diffusion equation is given in [12].

When high water-content materials (like foods, tissues, gels, soils, water solutions of inorganic or organic substances, held in open,
permeable or loosely sealed containers) are refrigerated to below their initial solidification temperature, two simultaneous physical
phenomena take place: liquid water solidifies (freeze) and surface ice sublimates. The rate and extent of these transfers is determined
by different factors [1]. For the description of the freezing process, the material can be divided into three zones: unfrozen, frozen and
dehydrated.

Freezing begins from the refrigerated surface. Simultaneously, ice sublimation begins at the frozen surface and a dehydration front
penetrates the material, whose rate of advance is again determined by the characteristics of the material and environmental condi-
tions. Normally, this rate is much lower than that of the freezing front [13]. A complete mathematical model has to solve both, the heat
transfer (freezing) and the mass transfer (weight loss) simultaneously. Normally, uniform initial temperature Tif and composition are
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supposed, and convective boundary conditions at the surface for both heat and mass transfer are the usual modelling assumptions.
Phase change is accounted for in the following way:

� Solidification (freezing) as a freezing front (x D sf .t// located at the point where material temperature reaches the initial freezing
temperature (Tif /, determined by material composition. For temperatures lower than Tif (the zone nearer to the refrigerated sur-
face) the amount of ice formed is determined by an equilibrium line (ice content versus temperature and water content) specific
to the material.

� On the dehydration front (x D sd.t//we impose Stefan-like conditions for temperature distribution and vapour concentration.

Therefore, we consider a semi-infinite material with characteristics similar to a very diluted gel (whose properties can be supposed
equal to those of pure water). The system has an initial uniform temperature equal to Tif and an uncovered flat surface, which at time
t=0 is exposed to the surrounding medium (with constant temperature Ts (lower than Tif / and heat and mass transfer coefficients h and
Km/. We assume that Ts < T0.t/ < Tif, t > 0 where T0.t/ is the unknown sublimation temperature. In this paper the temperatures are
measured in Kelvin. To calculate the evolution of temperature and water content in time, in [1] the following nonstandard, coupled two-
phase free boundary problem is taken into account: Find the temperatures Td D Td .x, t/ (of the dehydrated region) and Tf D Tf .x, t/ (of
the frozen region), the vapour concentration Cv D Cv .x, t/ (of the dehydrated region), the two free boundaries x D sd .t/ (sublimation
front) and x D sf .t/ (frozen front), and the temperature T0 D T0 .t/ at x D sd .t/, which satisfy the following differential equations and
conditions:

�dcd
@Td

@t
D kd

@2Td

@x2
in Q1T � f.x, t/ : 0< x < sd .t/ , 0< t < Tg , (1)

"
@Cv

@t
D D

@2Cv

@x2
in Q1T , (2)

�fcf
@Tf

@t
D kf

@2Tf

@x2
in Q2T � f.x, t/ : sd .t/ < x < sf .t/ , 0< t < Tg , (3)

kd
@Td

@x
.0, t/D h0 ŒTd .0, t/� Ts� on x D 0, 0< t < T , (4)

D
@Cv

@x
.0, t/D km ŒCv .0, t/� Ca� on x D 0, 0< t < T , (5)

Td .sd .t/ , t/D Tf .sd .t/ , t/D T0 .t/ on x D sd .t/ , 0< t < T , (6)

kf
@Tf

@x
.sd .t/ , t/� kd

@Td

@x
.sd .t/ , t/D Lsms

dsd

dt
.t/ on x D sd .t/ , 0< t < T , (7)

D
@Cv

@x
.sd .t/ , t/Dms

dsd

dt
.t/ on x D sd .t/ , 0< t < T , (8)

Cv .sd .t/ , t/D F .T0.t// on x D sd .t/ , 0< t < T , (9)

Tf .sf .t/ , t/D Tif on x D sf .t/ , 0< t < T , (10)

kf
@Tf

@x
.sf .t/ , t/DmfLf

dsf

dt
.t/ on x D sf .t/ , 0< t < T , (11)

sd .0/D s0d, sf .0/D s0f , (12)

where all constants are defined in the nomenclature of [1] and we assume

H1

(
�d, cd, kd, ", D, �f, cf, kf, h0, km, Ls, Ms, Tif, Ca, Ts are positive constants

Ts < Tif, s0f > s0d > 0.

System (1)–(12) must be completed with suitable initial data for Td, Tf and Cv. Hence, we add the following three extra conditions:

Td .x, 0/D T0d .x/ , 0� x � s0d, (13)

Cv .x, 0/D C0v .x/ , 0� x � s0d, (14)

Tf .x, 0/D T0f .x/ , s0d � x � s0f. (15)
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On the function F .�/we stipulate the following assumption:

H2 : F .�/ 2 C3 .R/ .

In fact, condition (9) is a generalization condition of the one given in [1] because in the physical case we have

Cv .sd .t/ , t/D
M Psat.T/

Rg T0.t/
DM a

exp
�

b� c
T0.t/

�
Rg T0.t/

where Cv .sd .t/ , t/ is the equilibrium vapour concentration at T0 .t/, and the saturation pressure Psat.T/ is evaluated according to [14],
that is

F .�/ :D
M a eb� c

�

R�
,

where b, M, a, R, c are constant and c is positive.
In [1], the quasi-steady heat conduction in the frozen region is assumed and system (1)–(15) is thus reduced to a set of coupled ordi-

nary differential equations for the free boundaries x D sd .t/ and x D sf .t/ and the temperature T0 D T0.t/. These three values are then
used to predict the temperatures Td.x, t/ and Tf.x, t/, and the concentration Cv.

The goal of this paper is to determine in Section 2 the existence and the uniqueness of a local classical solution of the two-phase
coupled free boundary problem (1)–(15) in an adequate functional space. We use the cornerstone work in [15]; other references on the
subject are in [16–19].

2. Local existence and uniqueness of a classical solution

System (1)–(15) is equivalent to a new one in which the free boundary condition (8) is replaced by

kf
@Tf

@x
.sd .t/ , t/� kd

@Td

@x
.sd .t/ , t/D ˇ

@Cv

@x
.sd .t/ , t/ on x D sd .t/ , 0< t < T (8bis)

where ˇ D LsD; and the free boundary condition (9) is replaced by

Cv .sd .t/ , t/D F .Td .sd .t/ , t// on x D sd .t/ , 0< t < T . (9bis)

We now want to rewrite system (1)–(7), (8bis), (9bis), (10)–(15) in a more convenient form. That is we want to write down a free boundary
problem for a system of parabolic equations all satisfied in the same cylindrical domain. To this purpose we introduce the following
change of coordinates: 8<:

tD t

y D
x

AxC B

(16a)

and 8̂̂̂̂
ˆ̂̂<̂
ˆ̂̂̂̂̂:

�d.y, t/D Td.x, t/D Td

�
B.t/y

1� A.t/y
, t

�
,

�f.y, t/D Tf.x, t/D Tf

�
B.t/y

1� A.t/y
, t

�
,

W.y, t/D Cv.x, t/D Cv

�
B.t/y

1� A.t/y
, t

�
,

(16b)

where

AD A.t/D
2sd .t/� sf .t/

2 .sd .t/� sf .t//
, BD B.t/D

sd .t/ sf .t/

2 .sf .t/� sd .t//
. (16c)

It reduces our problem to the following ‘rectified’ form (where the A
0
.t/D .dA=dt/.t/ and B

0
.t/D .dB=dt/.t//:
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B2

#
in �1T D Œ0, 1�� Œ0, T� , (17)2
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�fcf
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#
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kd
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.0, t/

1

B
D h0 Œ�d .0, t/� Ts� , 0< t < T , (20)

D
@W

@y
.0, t/

1

B
D km ŒW .0, t/� Ca� , 0< t < T , (21)

�d .1, t/D �f .1, t/D T0 .t/ , 0< t < T , (22)

kf
@�f

@y
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.1, t/D ˇ
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@y
.1, t/ , 0< t < T , (23)

W .1, t/D F .�d .1, t// , 0< t < T , (24)

�f .2, t/D Tif, 0< t < T , (25)

Lsms
dsd

dt
.t/D

.1� A/2
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kf
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.1, t/� kd
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.1, t/

	
, 0< t < T , (26)

Lfmf
dsf

dt
.t/D

.1� 2A/2

B
kf
@�f

@y
.2, t/ , 0< t < T , (27)

sd .0/D s0d, sf .0/D s0f, (28)

�d .y, 0/D �0d .y/ , 0� y � 1, (29)

�f .y, 0/D �0f .y/ , 1� y � 2, (30)

W .y, 0/DW0 .y/ , 0� y � 1, (31)

where

�0d .y/D T0d

�
s0ds0fy

.2s0d � s0f/ yC 2 .s0f � s0d/

�
�0f .y/D T0f

�
s0ds0fy

.2s0d � s0f/ yC 2 .s0f � s0d/

�
W0 .y/D C0v

�
s0ds0fy

.2s0d � s0f/ yC 2 .s0f � s0d/

�
.

Note that �0d, �0f and W0 have the same regularity of T0d, T0f and C0v.
Finally, to have partial differential equations that are all defined in the same domain�1T , we introduce new unknowns

u1 .z, t/D �d .z, t/ ,

u2 .z, t/D �f .2� z, t/ ,

u3 .z, t/DW .z, t/ ,

(32)
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thus obtaining the following system of equation, which is equivalent to (1)–(15)
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sd .0/D s0d, sf .0/D s0f, (44)

u1 .z, 0/D �0d .z/ , 0� z � 1, (45)

u2 .z, 0/D �0f .2� z/ , 0� z � 1, (46)

u3 .z, 0/DW0 .z/ , 0� z � 1. (47)

with obvious meaning of the symbols Aj , Bj .jD 1, 2, 3/, C, and D
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Remark 1
Note that the original unknown T0 .t/ can be computed by u1 .1, t/ or u2 .1, t/.

We stipulate the following assumptions:

H3

(
T0d, C0v 2 H2C˛ .Œ0, s0d�/ , ˛ 2 .0, 1/ ,

T0f 2 H2C˛ .Œs0d, s0f�/ , ˛ 2 .0, 1/ ,

and
H4 : First-order compatibility conditions are satisfied when Robin type boundary conditions are imposed while second-order

compatibility conditions are satisfied if we have Dirichlet boundary conditions.
Problems (33)–(47) are equivalent to problems (1)–(15) in the sense that any ‘classical’ solution of (33)–(47) is a classical solution of

(1)–(15) and the converse is also true. For the system of equations (33)–(47) we will prove the existence of a unique classical solution
provided T is chosen sufficiently small. This will be the main result of this paper. Namely we will prove

Theorem 1
Under assumptions H1–H4 there exists a time bT > 0 such that problems (33)–(47) admit a unique classical solution in �

1bT ; that

is, there exists a quintuple of functions .u1 .z, t/ , u2 .z, t/ , u3 .z, t/ , sd .t/ , sf .t// such that ui 2 H2Cˇ
�
�

1bT� .i D 1, 2, 3 /, sd,

sf 2 H1Cˇ=2
�h

0,bTi�, 8ˇ < ˛
2 , which satisfy problems (33)–(47).

Proof
We start by proving the existence. To this purpose we need to introduce an auxiliary problem whose solution

�
uh

1, uh
2, uh

3, sh
d, sh

f

�
will

be proved to converge as h (the delay parameter) tends to zero, and for small time t, to a solution of problems (33)–(47).
The advantage of the auxiliary problem lays in the fact that it is easily proved to admit a global solution in time (thanks to an iterated

step-by-step procedure and some fundamental results on parabolic systems proved by Solonnikov). This is due to the fact that the
delay factor h introduced in (41)–(43) transforms the original problem in a new one, which is ‘essentially’ linear. Hence, for any positive
constant h (the delay), we introduce the following problem for new unknowns uh

1, uh
2, uh

3, sh
d, sh

f :

�dcd
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D kd G
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B

�
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�
� 2D

.1� Az/3

B2
A

!#
in�1T . (50)

Conditions (36)–(40) are satisfied by uh
i , i=1,2,3,8t 2 Œ0, T�. We will label these conditions (51)–(55). Conditions (45)–(47) are assumed

to be satisfied 8 .z, t/ 2 Œ0, 1� � Œ�h, 0�. We will label these conditions (56)–(58). In addition, we assume the following four boundary
conditions:

uh
3 .1, t/D F .�0d .1//C F0 .�0d .1//

�
uh

1 .1, t� h/� �0d .1/
�

�

uh
1.1,t�h/Z
�0d.1/

�
s� uh

1 .1, t � h/
�

F00.s/ds, t 2 Œ0, T� , (59)

Lfmf
dsh

f
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.t/D�

"
.1� 2A/2

B
kf
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2

@z

#
.0, t� h/ , t 2 Œ0, T� , (60)
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Lsms
dsh

d

dt
.t/D�

"
.1� A/2
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kf
@uh

2

@z
C kd

@uh
1

@z

!#
.1, t� h/ , t 2 Œ0, T� , (61)

sh
d .t/D s0d, sh

f .t/D s0f, 8t 2 Œ�h, 0� . (62)

Note that, if h� 0, (59) is equivalent to (41) because the right-hand side of (59) is the Taylor expansion of the right-hand side of (41)
centred at �0d .1/. Also note that the terms in square brackets in (60) and (61) are evaluated at .z, t� h/, that is they are subjected to a
delay in time. The function G .�/, appearing in the left-hand side of (48)–(50), is defined as follows:

G .�/D

8̂̂̂̂
<̂
ˆ̂̂:

1

k
if ��

1

k

� if
1

k
� �� k

k if �� k

(63)

with 0< k <1 defined as follows:

kD 2 max
Œ0,1�

 
.1� A.0/z/4

B.0/2
,
.1� A.0/.2� z//4

B.0/2
,

B.0/2

.1� A.0/z/4
,

B.0/2

.1� A.0/.2� z//4

!
> 0.

We note that the function G .�/ is introduced to guarantee the boundedness of the coefficients of the principal parts of the parabolic
equations (48)–(50) and their uniform parabolicity.

Problems (48)–(62) can be solved step by step, where any time step has a width h. In fact, if sh
d .t/, sh

f .t/ and uh
i .x, t/

are known in Œ.n� 1/h, nh�, then sh
d .t/, sh

f .t/ can be determined in Œnh, .nC 1/h,� thanks to (60)–(61) and belong to the class

H1C˛=2C1=2 .Œnh, .nC 1/h,�/. Finally, uh
i .z, t/ can also be found in Œnh, .nC 1/h,� solving the linear system of equations (48)–(59).

The solvability of the system of equations (48)–(59) in H2C˛,1C˛=2
�
�

1bT�, in turn, is proved using Sobolev’s technique as found in

[15, Section 10, Chapter VII, Theorem 10.1, p. 616]. Note that determining ui in Œ.n� 1/h, nh� provides the initial data for problems (48)–
(55), (59) in the new time interval Œnh, .nC 1/h,�. The applicability of Theorem 10.1 follows from the fact that the system is parabolic. In
fact, following the notation of [15], we see that Definition 4 [15, p. 601] is satisfied with b D 1, r D 3, sk D 2, tk D 0, rj D 1 while the
complementary condition for the initial data, as found in [15, p. 614], is straightforwardly satisfied with �˛ � 0. The previous two con-
ditions are easily proved to be satisfied thanks to the fact that the parabolic equations are uncoupled. The coupling, in fact, is realized
only through the boundary conditions at x D 1. For this reason the complementary condition of [15, p. 611] is much more difficult to be
verified; nevertheless, it holds true, taking .G1, G2, G3/ � .0, 0, 1/, (G3 is associated to boundary condition (55) and G1, G2 to boundary
conditions (54), (59)). Using [15, Theorem 10.1, p. 616] and iterating the previous procedure step by step we prove (in a finite number
of steps) the solvability of the system (48)–(62) in the afore quoted function spaces.

We now set

M.T/�

 
1C

3X
iD1

ˇ̌̌
uh

i .z, t/
ˇ̌̌.2Cˇ/
�T

C
ˇ̌̌
sh

d

ˇ̌̌.1Cˇ=2/

Œ0,T�
C
ˇ̌̌
sh

f

ˇ̌̌.1Cˇ=2/

Œ0,T�

!
, (64)

with ˇ < ˛
2 and T < 1. We remark that, thanks to the results of the Appendix, M.T/ is a continuous function of T .

Because problems (48)–(62) are solvable in the whole Œ0, T�we can apply [15, Theorem 10.1, p. 616] to problems (48)–(59), regarding
the function G in the Equations (48)–(50) and the term in square brackets (as well as the integral term in (59)) as known terms. Setting
Uh D

�
uh

1, uh
2, uh

3

�
, Sh D

�
sh

d, sh
f

�
we get

ˇ̌̌
Uh
ˇ̌̌.2Cˇ/
�T

� F1

0@ˇ̌̌Sh
ˇ̌̌�1C =̌2

�
Œ0,T�

1A"1C T
ˇ̌̌
Uh
ˇ̌̌.2Cˇ/
�T

C

�
T

1=2
ˇ̌̌
Uh
ˇ̌̌.2Cˇ/
�T

�2
#

(65)

where F1 and all the functions Fi used below are positive, increasing functions of their entries, which do not depend on h. To get (65)
we have also made use of the fact that the integral on the right-hand side of (59) has the H1C.ˇ=2/-norm controlled in terms of known

quantities and T
�
j@u1=@tj

.1C.ˇ=2//
�2

. On the other hand, using (60) and (61) we get that

ˇ̌̌
Sh
ˇ̌̌�1C1=2C =̌2

�
Œ0,T�

� F2

�
jSj.1/
Œ0,T�

� �ˇ̌̌
Uh
ˇ̌̌.2Cˇ/
�T

C 1

	
(66)

and hence, using (65)

ˇ̌̌
Sh
ˇ̌̌�1C1=2C =̌2

�
Œ0,T�

� F3

0@ˇ̌̌Sh
ˇ̌̌�1C =̌2

�
Œ0,T�

1A"1C T
ˇ̌̌
Uh
ˇ̌̌.2Cˇ/
�T

C

�
T

1=2
ˇ̌̌
Uh
ˇ̌̌.2Cˇ/
�T

�2
#

(67)2
1

4
2

Copyright © 2011 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2011, 34 2136–2147



R. GIANNI AND D. A. TARZIA

where F2 and F3 are two functions with the same properties of function F1. Moreover, inserting (66) in (65) we getˇ̌̌
Uh
ˇ̌̌.2Cˇ/
�T

� F4

�
F2

�ˇ̌̌
Sh
ˇ̌̌.1/
Œ0,T�

��ˇ̌̌
Uh
ˇ̌̌.2Cˇ/
�T

C 1

	
T

1=2
� 

1C T
ˇ̌̌
Uh
ˇ̌̌.2Cˇ/
�T

C

�
T

1=2
ˇ̌̌
Uh
ˇ̌̌.2Cˇ/
�T

�2
!

� F4

�
F5 .M/ T

1=2
� 

1C

�
T

1=2
ˇ̌̌
Uh
ˇ̌̌.2Cˇ/
�T

�2

C T
ˇ̌̌
Uh
ˇ̌̌.2Cˇ/
�T

!

� F4

�
F5 .M/ T

1=2
� 

1C

�
T

1=2M

�2

C TM

!
� F6

�
F5 .M/ T

1=2
��

1C TM2
�

(68)

and (66) implies

ˇ̌̌
Sh
ˇ̌̌�1C =̌2

�
Œ0,T�

�
ˇ̌̌
Sh .0/

ˇ̌̌
C

ˇ̌̌̌
ˇdSh

dt
.0/

ˇ̌̌̌
ˇC 3T1=2F2 .M/ .1CM/ , (69)

where
ˇ̌
Sh .0/

ˇ̌
C
ˇ̌
(dSh=dt/ .0/

ˇ̌
does not depend on h because it can be computed using the initial data for the free boundaries (62) and

the Equations (60) and (61). We will denote this quantity with the symbol L.
Adding (68) and (69) we get

M.T/� F6

�
F5 .M/ T

1=2
��

1C TM2
�
C LC 3T1=2F2 .M/ .1CM/ . (70)

We now define

K D 2F6.1/C LC 4bT Dmin
�
.F5.K//

�2 , M
�2

, .F2.K/.1C K//�2
�

.

In this regard it is important to remember that all the functions Fi .iD 1, : : :, 6/ are positive, increasing functions that do not depend
on h. Hence, the quantities K andbT are also independent of h.

We claim that

M.T/� K in �bT . (71)

This last assertion can be easily proved taking into account that M.0/ < K and using that M.T/ is continuous (this continuity
can be obtained using the results of the Appendix, keeping in mind that u1 .z, t/, u2 .z, t/, u3 .z, t/ 2 H2C˛,1C˛=2.�T / and sd .t/,
sf .t/ 2 H1C˛=2.Œ0, T�/with ˛ > 2ˇ/.

Inequality (71) implies the existence of a fixed domain �bT in which a classical a priori estimate (independent of h) holds. In turn,
this allows us to pass the limit as h tends to zero (at least passing to subsequences; however, the uniqueness result proved below
guarantees the convergence as h tends to zero) thus obtaining a solution of problems (48)–(62) with h � 0. On the other hand,
choosing, if necessary, a smallerbT we can be sure that the argument of the function G, in (48)–(50), is in between 1/k and k; hence,
G .�/ � �. Consequently, problems (48)–(62) are equivalent to (33)–(47). Because problems (33)–(47) are equivalent to (1)–(15) the
previous considerations conclude the existence of the proof .

We will prove uniqueness for problems (33)–(47) with (41) replaced by (72) below; as previously explained this problem is equivalent
to (1)–(15) (the original one),

u3 .1, t/D F .�0d .1//C F0 .�0d .1// .u1 .1, t/� �0d .1//

�

u1.1,t/Z
�0d.1/

.s� u1 .1, t// F00.s/ds, t 2 Œ0, T� , (72)

To this purpose we assume that two different solutions of problems (33)–(40), (72) and (42)–(47) exist and do not coincide in any
initial time interval. We write down the system of equations satisfied by their difference,

.U1 .z, t/ , U2 .z, t/ , U3 .z, t/ , Sd .t/ , Sf .t//

D
�

u2
1 .z, t/� u1

1 .z, t/ , u2
2 .z, t/� u1

2 .z, t/ , u2
3 .z, t/� u1

3 .z, t/ , s2
d .t/� s1

d .t/ , s2
f .t/� s1

f .t/
�
.t/

Denoting Ai , Bi , Ai
j , Bi

j C i , Di the functions A, B, Aj , Bj , C, D evaluated at si
d .t/ and si

f .t/, we get

�dcd
@U1

@t
D kd

.1� A1z/4

.B1/
2

@2U1

@z2

C

"
@U1

@z

 
z�dcd

B2
1

�
B
0

1C z
�

B1A
0

1 � A1B
0

1

��
� 2kd

.1� A1z/3

B2
1

A1

!#
C R1.z, t/ in�1T , (73)
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�fcf
@U2

@t
D kf

.1� A1 .2� z//4

B2
1

@2U2

@z2

�

"
@U2

@z

 
�fcg .2� z/

B1

�
B
0

1C .2� z/
�

B1A
0

1 � A1B
0

1

��
� 2kf

.1� A1 .2� z//3

B2
1

A1

!#
C R2.z, t/ in�1T ,

(74)

"
@U3

@t
DD

.1� A1z/4

B2
1

@2U3

@z2

C

"
@U3

@z

 
"z

B1

�
B
0

1C z
�

B1A
0

1 � A1B
0

1

��
� 2D

.1� A1z/3

B2
1

A1

!#
C R3.z, t/ in�1T , (75)

kd
@U1

@z
.0, t/D B1 .t/ h0U1 .0, t/C H1.t/, 0< t < T , (76)

D
@U3

@z
.0, t/D B1 .t/ kmU3 .0, t/C H3.t/, 0< t < T , (77)

U2 .0, t/D 0, 0< t < T , (78)

U1 .1, t/D U2 .1, t/ , 0< t < T , (79)

kf
@U2

@z
.1, t/C kd

@U1

@z
.1, t/D�ˇ

@U3

@z
.1, t/ , 0< t < T , (80)

U3 .1, t/� F0
�

u1
1 .1, t/

�
U1 .1, t/D�

u2
1.1,t/Z

u1
1.1,t/

�
s� u2

1 .1, t/
�

F0
0
.s/ds� I.t/, t 2 Œ0, T� , (81)

Lfmf
dSf

dt
.t/D�

"
.1� 2A1/

2

B1
kf
@U2

@z

#
C Jf.t/, t 2 Œ0, T� , (82)

Lsms
dSd

dt
.t/D�

"
.1� A1/

2

B1

�
kf
@U2

@z
C kd

@U1

@z

�#
C Jd.t/, t 2 Œ0, T� , (83)

Sd .0/D 0, Sf .0/D 0, (84)

U1 .z, 0/D 0, 0� z � 1, (85)

U2 .z, 0/D 0, 0� z � 1, (86)

U3 .z, 0/D 0, 0� z � 1, (87)

where

Rj D u2
jzz

�
A2

j �A1
j

�
C u2

jz

�
B2

j �B1
j

�
Jf D�u2

2z

�
C2 � C1

�
Jd D�

�
kfu2

2z C kdu2
1z

� �
D2 �D1

�
H1 D h0Œu

2
1.0, t/� Ts� .B2 �B1/

H3 D kmŒu
2
3.0, t/� Ca� .B2 �B1/ .

2
1

4
4
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Using (84)–(87) it is easy to prove that (and this is the key point of the uniqueness proof )

ˇ̌
Rj j
.ˇ/
�T

, jH1j

�
1Cˇ

2

�
Œ0,T� , jH3j

�
1Cˇ

2

�
Œ0,T� , jJfj

.ˇ=2/
Œ0,T� , jJdj

.ˇ=2/
Œ0,T� , jIj.1Cˇ=2/

Œ0,T�

� C0T r

0@ 2X
iD1

0@ 3X
jD1

ˇ̌̌
ui

j .z, t/
ˇ̌̌.2Cˇ/
�T

C
ˇ̌̌
si

d

ˇ̌̌.1Cˇ=2/

Œ0,T�
C
ˇ̌̌
si

f

ˇ̌̌.1Cˇ=2/

Œ0,T�

1A1A jU1j
.2Cˇ/
�T

C jSdj

�
1Cˇ2

�
Œ0,T� C jSfj

�
1Cˇ2

�
Œ0,T�

!

� 2KC0T r

 
jU1j

.2Cˇ/
�T

C jSdj

�
1Cˇ2

�
Œ0,T� C jSfj

�
1Cˇ2

�
Œ0,T�

! (88)

for a suitable positive r and K as in (71).
Applying [15, Section 10, Chapter VII, Theorem 10.1, p. 616], using (88) we get0@ 3X

jD1

ˇ̌
Uj
ˇ̌.2Cˇ/
�T

C jSdj
.1Cˇ=2/
Œ0,T� C jSfj

.1Cˇ=2/
Œ0,T�

1A� C1T r
�
jU1j

.2Cˇ/
�T

C jSdj
.1Cˇ=2/
Œ0,T� C

ˇ̌
Sf
ˇ̌.1Cˇ=2/
Œ0,T�

�
. (89)

Inequality (89) implies that, taking a sufficiently small T0@ 3X
jD1

ˇ̌
Uj
ˇ̌.2Cˇ/
�T

C jSdj
.1Cˇ=2/
Œ0,T� C jSfj

.1Cˇ=2/
Œ0,T�

1A� 0, (90)

which implies uniqueness in any time interval Œ0, T�. �

Appendix

We now prove some fundamental inequalities that have been used in Section 2 (throughout this Appendix we use the notations in
[15]). Namely, we prove

Lemma 1
If u 2 H˛,˛=2.�T / and ˇ < ˛

2 then

juj.ˇ/
�T
� ju.x, 0/j.ˇ/

�
C 8 juj.˛/

�T
T ˛=2�ˇ . (A1)

Proof
As a first step we assume that u.x, 0/� 0, and, for the sake of simplicity, T � 1.
Clearly we have

juj.0/
�T
� juj.˛/

�T
T ˛=2, (A2)

hui.ˇ=2/
t,�T

� juj.˛/
�T

T
˛�ˇ

2 , (A3)

(and (A3) holds true even if u.x, 0/¤ 0).
Remember that [15]

juj.0/
�T
D sup
.x,t/2�T

ju.x, t/j

juj.˛/
�T
D juj.0/

�T
C hui.˛/x,�T

C hui.˛=2/
t,�T

hui.˛/x,�T
D sup
.x1,t/2�T
.x2,t/2�T

ju.x1, t/� u.x2, t/j

jx1 � x2j
˛

hui.˛=2/
t,�T

D sup
.x,t1/2˝T
.x,t2/2˝T

ju.x, t1/� u.x, t2/j

jt1 � t2j
.˛=2/

.

On the other hand,

hui.ˇ/x,�T
� sup

x,x02�
t2Œ0,T�

ˇ̌
u.x, t/� u.x0, t/

ˇ̌
jx � x0jˇ

D sup
x,x02�
t2Œ0,T�

I.x, x0, t/. (A4)
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However,

I.x, x0, t/�
ju.x, t/j C

ˇ̌
u.x0, t/

ˇ̌
jx � x0jˇ

,

at this point using the Holder continuity in time of order ˛=2 of the function u we get

I.x, x0, t/�
2 juj.˛/

�T
t ˛=2

jx � x0jˇ
.

If
ˇ̌
x � x0

ˇ̌
� t we get

I.x, x0, t/� 2 juj.˛/
�T

t
˛�2ˇ

2 � 2 juj.˛/
�T

T ˛=2�ˇ . (A5)

Also, using the Holder continuity in space of order ˛ of the function u, we get

I.x, x0, t/� juj.˛/
�T

ˇ̌
x � x0

ˇ̌˛�ˇ
.

And, if
ˇ̌
x � x0

ˇ̌
< t,

I.x, x0, t/� juj.˛/
�T

t ˛�ˇ � juj.˛/
�T

T ˛�ˇ . (A6)

Putting together (A5) with (A6) we, finally, obtain

hui.ˇ/x,�T
� sup

x,x02�
t2Œ0,T�

ˇ̌
u.x, t/� u.x0, t/

ˇ̌
jx � x0jˇ

� 2 juj.˛/
�T

T ˛=2�ˇ . (A7)

Using (A2), (A3) and (A7) we get

juj.ˇ/
�T
� 4 juj.˛/

�T
T ˛=2�ˇ . (A8)

If u.x, 0/¤ 0 we proceed as follows:

ju� u.x, 0/j.ˇ/
�T
� 4 ju� u.x, 0/j.˛/

�T
T ˛=2�ˇ � 4

�
juj.˛/
�T
C ju.x, 0/j.˛/

�T

�
T ˛=2�ˇ

� 8 juj.˛/
�T

T ˛=2�ˇ ,

which implies (A1). �

Remark 2
Note that, using (A1), it is not difficult to prove that, if u 2 H˛,˛=2.�T / and ˇ < .˛=2/, then the Holder norm juj.ˇ/

�T
is continuous with

respect to the variable T .
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