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DECAY OF GLOBAL SOLUTIONS, STABILITY AND
BLOWUP FOR A REACTION-DIFFUSION PROBLEM

WITH FREE BOUNDARY

HAMID GHIDOUCHE, PHILIPPE SOUPLET, AND DOMINGO TARZIA

(Communicated by David S. Tartakoff)

Abstract. We consider a one-phase Stefan problem for the heat equation with
a nonlinear reaction term. We first exhibit an energy condition, involving the
initial data, under which the solution blows up in finite time in L∞ norm. We
next prove that all global solutions are bounded and decay uniformly to 0, and
that either: (i) the free boundary converges to a finite limit and the solution
decays at an exponential rate, or (ii) the free boundary grows up to infinity
and the decay rate is at most polynomial. Finally, we show that small data
solutions behave like (i).

1. Introduction

Consider a substance which is heat-diffusive and chemically reactive in its liquid
phase, and neutral in its solid phase. Assume that the (one-dimensional) liquid is
surrounded by the solid at melting temperature 0 at one end, and is isolated at the
other end. Assuming a power-type reaction term, one is then led to the following
one-phase Stefan problem:

ut − uxx = up, 0 < t < T, 0 < x < s(t),
u(0, x) = u0(x) ≥ 0, 0 < x < s0, s(0) = s0 > 0,
u(t, s(t)) = ux(t, 0) = 0, 0 < t < T,

s′(t) = −ux(t, s(t)), 0 < t < T,

(SP)

where we suppose p > 1. In the present paper, we will address the following
questions.

A. What conditions on the initial data imply that thermal runaway, that is, finite
time blowup of u, will occur?

B. Is the 0 solution stable, in the sense that the solution of (SP) is global and
bounded for suitably small initial data?

C. Can one classify all possible asymptotic behaviors of the global solutions of
(SP)? In particular, can one rule out the existence of unbounded global
solutions?
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All these questions have been the object of extensive investigation for the corre-
sponding problem on a fixed domain, that is,{

ut − uxx = up, 0 < t < T, 0 < x < L,

u(t, L) = ux(t, 0) = 0, 0 < t < T
(1.1)

(also in higher dimensions). For the further question of asymptotic behavior of
blowing up solutions of (1.1) and its higher-dimensional analogue, many recent
references can be found for instance in [M]. In contrast, the questions of blowup
and global existence for free-boundary problems with superlinear source terms like
(SP) seem to have been almost unexplored so far. We are only aware of the work
[A] on the problem (SP), where interesting results on blowup profiles were obtained
for special classes of initial data, and of the numerical study in [IK].

Concerning question A, taking into account the known blowup results for equa-
tion (1.1), it is expected that finite time blowup of u should occur if u0 is suitably
large. A typical condition for blowup in problem (1.1) involves the natural energy,
defined as:

E(u0) =
|u0,x|22

2
−
|u0|p+1

p+1

p+ 1
=
∫ L

0

(
(u0,x)2

2
− up+1

0

p+ 1

)
(x) dx.

In the case of a fixed boundary, it is well-known [Le, B] that negative energy
E(u0) < 0 leads to finite time blowup in L∞-norm. On the other hand, a simple
maximum principle argument shows that the solution of the Stefan problem (SP)
dominates the solution of (1.1) with L = s0 and same initial data u0 ≥ 0. As a
consequence, negative initial energy also implies finite time blowup for the Stefan
problem. Going further, we will establish a weaker energy condition for blowup,
which demonstrates that the Stefan problem is in some sense less stable than the
problem with fixed boundary. Namely, we will prove blowup under the condition:

E(u0) <
C|u0|31

(s0 + |u0|1)4
,

where C > 0 is some (explicitly determined) constant.
We next consider the question B of stability. Extending the above remark, it

follows from the maximum principle that the solution of the Stefan problem (SP)
is dominated by the solution of the Cauchy problem:{

ut − uxx = up, 0 < t < T, −∞ < x < −∞,
u(0, x) = u0(|x|), −s0 < x < s0, u(0, x) = 0, x ∈ R\(−s0, s0).

(1.2)

We know that the solution of (1.1) exists globally if the initial data is sufficiently
small in L∞ norm, while for the Cauchy problem (1.2), the existence of nontrivial
nonnegative global solutions may depend on the value of p: none exists if p ≤ 3, and
both nonglobal and small global solutions exist if p > 3. (See [Fu, H, W]. See also
[S2] for related stability/instability results in general unbounded domains of RN .)
Since the moving boundary problem can be thought of as a sort of intermediate
between the cases of bounded and unbounded intervals, it is not clear whether the
solution of the Stefan problem should exist globally for small initial data whatever
the value of p. However, we will show that this is indeed the case.

As for question C, the first natural question is whether all global solutions are
bounded or not. This question has been studied in detail in the case of problems
in fixed domains (see, e.g., [NST, CL, G, Fi, Q] for bounded domains, and [K, S1]
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for the Cauchy problem). In these works, it is proved that in many cases, the
answer is positive (at least for nonnegative solutions and subcritical p; hence, in
particular in one-dimensional problems). We will show that for the Stefan problem
(SP) also, all global solutions are uniformly bounded. Actually, we will prove some
more precise facts concerning the global solutions of (SP). Indeed, it will be shown
that all of them decay uniformly to 0 as t goes to infinity. Furthermore, we will
prove that there are only two possible behaviors for global solutions. In the first
one, the free boundary converges to a finite limit and the solution decays with
an exponential rate. In the second one, the free boundary grows up to infinity
and the decay rate is at most polynomial. Moreover, the solution of (SP) is always
global and exponentially decaying if the initial data is sufficiently small in L∞ norm
(depending on s0).

The outline of the article is as follows. Blowup is treated in Section 2, and
Section 3 is devoted to the study of global solutions.

2. Finite time blowup

In what follows, we assume p > 1, s0 > 0, u0 ∈ C1([0, s0]), u0 ≥ 0, with u(s0) =
(u0)x(0) = 0. Under these assumptions, there exists a unique, maximal in time,
classical solution (u, s) of (SP), which satisfies u ≥ 0 and s′ ≥ 0 (see [FP, Theorem
1 and Remark 1], or [A, Proposition 1.1]). We denote by T ∗ = T ∗(u0) ∈ (0,∞] its
maximal existence time. Moreover, if T ∗ <∞, we then have

lim sup
t→T∗

|u(t)|∞ =∞,(2.1)

and we say that u blows up in finite time (see [A, Proposition 3.1]).
To state our blowup result, we introduce the energy

E(u0) =
∫ s0

0

(
(u0,x)2

2
− up+1

0

p+ 1

)
(x) dx.

Also, we set |u0|1 =
∫ s0

0 u0(x) dx.

Theorem 2.1. Let u be the solution of the problem (SP) and set C = π2

256 . Then
we have T ∗ <∞ whenever

E(u0) < H(u0) ≡ C |u0|31
(s0 + |u0|1)4

.(2.2)

One of the main ingredients of the proof of Theorem 2.1 is the classical concavity
argument of Levine [Le]. However, some extra work is needed to exhibit the special
destabilizing effect of the free boundary condition. We begin with two lemmas.

Lemma 2.2 (Energy identities). Let u be the solution of the problem (SP), and
define the energy of the solution at time t by

Ẽ(t) =
∫ s(t)

0

(
(ux)2

2
− up+1

p+ 1

)
(t, x) dx,

and its L1-norm by |u(t)|1 =
∫ s(t)

0
u(t, x) dx. Then we have the relations

dẼ

dt
= −

∫ s(t)

0

u2
t (t, x) dx − s′3

2
(2.3)
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and

|u(t)|1 − |u0|1 = s0 − s(t) +
∫ t

0

∫ s(t)

0

up(τ, x) dx dτ.(2.4)

Proof. We compute

dẼ

dt
=
∫ s(t)

0

(uxuxt − uput)(t, x) dx + s′(t)
(

(ux)2

2
(t, s(t))− up+1

p+ 1
(t, s(t))

)
.

Integrating by parts and using ux(t, 0) = 0, we get
∫ s(t)

0
uxuxtdx = −

∫ s(t)
0

uxxutdx+
uxut(t, s(t)). Noticing that 0 = d

dt (u(t, s(t))) = ut(t, s(t))+s′(t)ux(t, s(t)), it follows
that uxut(t, s(t)) = −s′(t)u2

x(t, s(t)) = −s′3(t). By substitution, we then obtain

dẼ

dt
=−

∫ s(t)

0

(uput + uxxut)(t, x)dx − s′3(t) +
s′3(t)

2
=−

∫ s(t)

0

u2
t (t, x) dx − s′3(t)

2
,

that is, (2.3). Finally, from (SP), we see that

d

dt

∫ s(t)

0

u(t, x) dx =
∫ s(t)

0

ut(t, x) dx+ s′(t)u(t, s(t))

=
∫ s(t)

0

uxx(t, x) dx+
∫ s(t)

0

up(t, x) dx=−s′(t)+
∫ s(t)

0

up(t, x) dx,

and (2.4) follows by integrating between 0 and t.

Lemma 2.3. Assume T ∗ = ∞, and let A =
∫∞

0
s′3(t) dt. Then we have A ≥

π2

128H(u0).

Proof. Let v be the solution of the following auxiliary free-boundary problem:
vt − vxx = 0, 0 < t <∞, 0 < x < σ(t),
v(0, x) = u0(x), 0 < x < s0, σ(0) = s0,

v(t, σ(t)) = vx(t, 0) = 0, 0 < t <∞,
σ′(t) = −vx(t, σ(t)), 0 < t <∞.

It is well-known that v exists for all t > 0 (see, e.g., [Fr, Chapter 8]) and one can
deduce from the maximum principle that u ≥ v ≥ 0 and s(t) ≥ σ(t) ≥ s0 on (0, T ∗).
By the same arguments as in Lemma 2.2, denoting |v(t)|1 =

∫ σ(t)

0 v(t, x) dx, one
easily obtains

σ(t) − s0 = |u0|1 − |v(t)|1.(2.5)

Using Hölder’s inequality and s(t) ≥ σ(t) ≥ s0, it follows that for all t ≥ 0,

A ≥ t−2

(∫ t

0

s′
)3

= t−2(s(t)− s0)3 ≥ t−2(|u0|1 − |v(t)|1)3.(2.6)

On the other hand, by the maximum principle, we have v ≤ w, where w is the
solution of the Cauchy problem

wt − wxx = 0, t > 0, −∞ < x <∞,

w(0, x) = u0(x) =

{
u0(|x|), −s0 ≤ x ≤ s0,

0, x ∈ R/[−s0, s0].
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By the L1 − L∞ estimate for the heat equation, we have

|v(t)|∞ ≤ |w(t)|∞ ≤ (4πt)−1/2|w(0)|1 = (πt)−1/2|u0|1,
hence, by (2.5),

|v(t)|1 ≤ σ(t)(πt)−1/2|u0|1 ≤ (s0 + |u0|1)(πt)−1/2|u0|1.
Therefore, we have |v(t0)|1 ≤ |u0|1/2 for t0 = 4π−1(s0 + |u0|1)2. The desired
estimate is then obtained by plugging the value t = t0 into inequality (2.6).

Proof of Theorem 2.1. Define the function

F (t) =
∫ t

0

∫ s(τ)

0

u2(τ, x) dx dτ.

We compute F ′(t) =
∫ s(t)

0 u2(t, x) dx and

F ′′(t) =
∫ s(t)

0

2uut(t, x) dx+ s′(t)u2(t, s(t)) =
∫ s(t)

0

2uut(t, x) dx

= 2
∫ s(t)

0

(up+1+uuxx)(t, x)dx=2
∫ s(t)

0

(up+1−u2
x)(t, x) dx+2[uux(t, x)]s(t)0

= −2(p+ 1)Ẽ(t) + (p− 1)
∫ s(t)

0

u2
x(t, x) dx.

Using identity (2.3), we get

F ′′(t) = 2(p+ 1)
∫ t

0

∫ s(τ)

0

u2
t (τ, x) dx dτ

+ 2(p+ 1)
[∫ t

0

s′3(τ)
2

dτ − Ẽ(0)
]

+ (p− 1)
∫ s(t)

0

u2
x(t, x) dx.

(2.7)

Now assume T ∗ = ∞, for contradiction. The assumption (2.2), together with
Lemma 2.3, implies that Ẽ(0) < 1

2

∫ t
0
s′3(τ) dτ for all t ≥ t0 sufficiently large, so

that

F ′′(t) > 2(p+ 1)
∫ t

0

∫ s(τ)

0

u2
t (τ, x) dx dτ, t ≥ t0.(2.8)

The end of the proof then consists in the classical concavity argument of Levine [Le],
which we recall for the convenience of the reader. By applying the Cauchy-Schwarz
inequality, we get:

FF ′′(t) ≥ 2(p+ 1)
∫ t

0

∫ s(τ)

0

u2
t dx dτ

∫ t

0

∫ s(τ)

0

u2 dx dτ

≥ 2(p+ 1)

(∫ t

0

∫ s(τ)

0

uut dx dτ

)2

=
p+ 1

2
(F ′(t)− F ′(0))2.

On the other hand, (2.8) implies that

F ′(t) ≥ F ′(t0 + 1) =
∫ s(t0+1)

0

u2(t0 + 1, x) dx > 0, t ≥ t0 + 1,

so that limt→∞ F (t) =∞. We then obtain

FF ′′(t) ≥ p+ 3
4

F ′2, t ≥ t1,
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for some large t1 ≥ t0 + 1 (since p > 1). Defining G(t) = F−α(t) for t ≥ t1, with
α = (p− 1)/4, it follows that

G′(t) = −αF ′(t)F−(α+1)(t) < 0, t ≥ t1,
and that

G′′(t) = −αF−(α+2)(t)
(
FF ′′ − p+ 3

4
F ′2
)

(t) ≤ 0, t ≥ t1.

This implies that G is concave, decreasing, positive, for t ≥ t1, which is impossible.
This contradiction shows that T ∗ <∞, which completes the proof of Theorem 2.1.

3. Long time behavior of global solutions

We keep the assumptions stated at the beginning of Section 2. The following
result shows that all global solutions are bounded and decay uniformly to 0. More-
over, all the possible asymptotic behaviors are described.

Theorem 3.1. Let u be the solution of the problem (SP), and assume T ∗ = ∞.
Let s∞ = limt→∞ s(t) ≤ ∞ (recall that s(t) is nondecreasing). Then one of the
following two possibilities occurs:

(i) s∞ <∞ and there exist some real numbers C, α > 0 (depending on u) such
that

|u(t)|∞ ≤ Ce−αt, t ≥ 0;(3.1)

(ii) s∞ = ∞ and limt→∞ |u(t)|∞ = 0. Moreover, in this case, one has the
estimates

s(t) = O(t2/3), t→∞,(3.2)

and

lim inf
t→∞

s2/(p−1)(t)|u(t)|∞ > 0,(3.3)

hence, in particular,

lim inf
t→∞

t4/(3(p−1))|u(t)|∞ > 0.(3.4)

The next result shows that possibility (i), i.e. exponential decay, occurs for suit-
ably small data.

Theorem 3.2. There exists K > 0 depending only on p, such that, if

|u0|∞ ≤ K min(1, s−2/(p−1)
0 ),

then T ∗ =∞ and (i) in Theorem 3.1 occurs. More precisely one may take α = 1
32s20

and C = 2|u0|∞ in (3.1), and one then has s∞ ≤ 4s0.

It is an open problem whether possibility (ii) actually occurs.1 However, if
instead of (SP), we consider the problem (SP)′, where the free-boundary condition
(SP)4 is replaced with

λs′k(t) = −ux(t, s(t)), k = (p+ 1)/(p− 1), λ > 0,

1Note added in proof: This has been proved recently (see M. Fila and Ph. Souplet, article in
preparation).
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then the following Proposition 3.3 shows that there exist some global solutions of
(SP)′ such that s∞ = ∞. Note that k becomes arbitrarily close to 1 when p goes
to infinity. We conjecture that there exist some solutions of (SP) which satisfy (ii)
in Theorem 3.1, but that these solutions are unstable.

As a matter of fact, by using similar techniques, one can generalize the results
of Theorems 3.1 and 3.2 to the modified problem (SP)′ for k > 1, with different
exponents in the estimates (3.2)–(3.4). This will appear in a forthcoming publica-
tion.

Proposition 3.3. There exists λ > 0, such that for all s0 > 0, there exists a global
solution (u, s) of problem (SP)′ such that limt→∞ ↑ s(t) =∞. More specifically, u
can be found under the self-similar form

u(t, x) = (t+ T )−
1
p−1u0(x/

√
t+ T ), s(t) = s0

√
1 +

t

T

for all t ≥ 0, 0 ≤ x ≤ s(t), and for some T > 0.

Remark 3.1. We note that for the solutions u of Proposition 3.3, |u(t)|∞ decays
exactly like s−2/(p−1)(t) ∼ Ct−1/(p−1). This suggests that the estimate (3.3) in
Theorem 3.1 is sharp.

For convenience, we first prove Theorem 3.2, whose result will be used in part
in the proof of Theorem 3.1.

Proof of Theorem 3.2. The proof relies on the construction of a suitable superso-
lution. The idea is inspired from [RT]. For γ, α and ε > 0 to be fixed, we define

σ(t) = 2s0(2− e−γt), t ≥ 0, V (y) = 1− y2, 0 ≤ y ≤ 1,

and

v(t, x) = εe−αtV (x/σ(t)), t ≥ 0, 0 ≤ x ≤ σ(t).

An easy computation yields:

Pv ≡ vt − vxx − vp = εe−αt[−αV − xσ′σ−2V ′ − σ−2V ′′ − εp−1e−(p−1)αtV p]

≥ εe−αt
[
−α+

1
8s2

0

− εp−1

]
for all t > 0 and 0 < x < σ(t). On the other hand, we have σ′(t) = 2γs0e

−γt > 0
and −vx(t, σ(t)) = 2εσ−1(t)e−αt. If we choose α = γ = (16s2

0)−1, and ε ≤ ε0 ≡
min(1

8 , (16s2
0)−1/(p−1)), it follows that

Pv ≥ 0, t > 0, 0 < x < σ(t),
σ′(t) > −vx(t, σ(t)), t > 0,
v(t, σ(t)) = vx(t, 0) = 0, t > 0,
σ(0) = 2s0 > s0.

Now let K = 1
2 min(1

8 , 16−1/(p−1)), and assume that |u0|∞ ≤ K min(1, s−2/(p−1)
0 ).

Choosing ε = 2|u0|∞ ≤ ε0, we also get u0(x) < v(0, x) for 0 ≤ x ≤ s0. By using
the maximum principle, one then shows that s(t) < σ(t) and that u(t, x) < v(t, x)
for 0 ≤ x ≤ s(t), as long as u exists. In particular, it follows from the continuation
property (2.1) that u exists globally. The proof is complete.
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Let us now prove Theorem 3.1. We first consider the case s∞ < ∞. To prove
boundedness and decay to 0, we adapt the apriori estimate method of Fila [Fi].
This argument was originally designed to prove boundedness (but not decay) of
solutions of problems in fixed bounded domains. We shall need the following two
lemmas.

Lemma 3.4. Assume that T ∗ =∞ and s∞ <∞. Then we have

lim inf
t→∞

|u(t)|L∞ <∞ and lim inf
t→∞

|u(t)|H1 <∞.

Proof of Lemma 3.4. Assume that limt→∞ |ux(t)|L2 = ∞. Using the notation of
Theorem 2.1 and equality (2.7), it follows that

F ′′(t) > 2(p+ 1)
∫ t

0

∫ s(τ)

0

u2
t (τ, x) dx dτ,

for all t sufficiently large, that is, (2.8) holds. But we may then apply the concavity
argument exactly as in the proof of Theorem 2.1 to deduce that T ∗ < ∞. This
contradiction proves that actually lim inft→∞ |ux(t)|L2 <∞.

On the other hand, since u(t, s(t)) = 0 and s(t) ≤ s∞ < ∞, it follows that
|u(t)|2L∞ ≤ s∞|u(t)|2H1 < s∞(1 + s2

∞)|ux(t)|2L2 , hence the conclusion.

Lemma 3.5. Assume that T ∗ =∞ and s∞ <∞. Then, for all A > 0, there exists
τ = τ(A) > 0 such that for all t ≥ 0,

|u(t)|Lp+1 ≤ A⇒ (|u(s)|Lp+1 ≤ 2A, for all s ∈ [t, t+ τ ]).

The proof of Lemma 3.5 is essentially similar to that of [Fi, Lemma 1.6] and is
hence omitted.

It is now convenient to introduce the following change of variables (which is
classical in free-boundary problems): y = x/s(t), V (t, y) = u(t, ys(t)), 0 ≤ y ≤ 1.
We then have

Vy(t, y) = s(t)ux(t, ys(t)), Vyy(t, y) = s2(t)uxx(t, ys(t)),

Vt(t, y) = [ut + ys′(t)ux](t, ys(t)),
(3.5)

and V satisfies the equation:

Vt − s−2Vyy = V p + ys′s−1Vy, t > 0, 0 < y < 1,

Vy(t, 0) = 0, V (t, 1) = 0, t > 0.

Proof of Theorem 3.1 (i). We suppose that T ∗ = ∞ and s∞ < ∞. Assume for
contradiction that lim supt→∞ |u(t)|∞ > 0. Then, using Lemma 3.4, we deduce
that there exist A > 0 and a sequence τn →∞, such that

A ≤ |V (τn)|L∞ = |u(τn)|L∞ ≤ 2A.

In particular, we have |u(τn)|Lp+1 ≤ s
1/(p+1)
∞ |u(τn)|L∞ ≤ K ≡ s

1/(p+1)
∞ 2A. There-

fore, by Lemma 3.5, there exists τ > 0 such that, for all s ∈ [τn, τn+τ ], |u(s)|Lp+1 ≤
2K. Since Ẽ(t) is nonincreasing, it follows that

|u(s)|L∞ ≤ s1/2
∞ |u(s)|H1 ≤ s1/2

∞ (1 + s∞)|ux(s)|L2

≤ s1/2
∞ (1 + s∞)(2Ẽ(0) + (2/(p+ 1))|u(s)|p+1

Lp+1)1/2,

so that

|u(s)|L∞ , |u(s)|H1 , |V (s)|H1 ≤ Const .(3.6)
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for all s ∈ [τn, τn + τ ]. In particular, since the embedding H1(0, 1) ⊂ C([0, 1]) is
compact, it follows that some subsequence of V (τn) (which we still denote V (τn))
converges in C([0, 1]) to some function Z 6≡ 0.

On the other hand, since T ∗ =∞, (2.3) and Theorem 2.1 imply that∫ ∞
0

∫ s(t)

0

u2
t +

∫ ∞
0

s′3

2
<∞.(3.7)

We deduce the existence of tn ∈ [τn, τn + τ ] such that

lim
n→∞

∫ s(tn)

0

u2
t (tn) = lim

n→∞
s′(tn) = 0.(3.8)

This combined with (3.6) implies that∫ 1

0

V 2
yy(tn)dy = s3(tn)

∫ s(tn)

0

u2
xx(tn) dx

≤ 2s3
∞

[∫ s(tn)

0

u2
t (tn) +

∫ s(tn)

0

u2p(tn)

]
≤ Cte,

so that V (tn) is bounded in H2(0, 1). It follows that V (tn) converges in C1([0, 1])
to some function W (up to a subsequence). Also, by combining (3.5), (3.6) and
(3.8), we get

lim
n→∞

|Vt(tn)|L2 = 0.

Therefore, W satisfies the equation

−Wyy = s2
∞W

p in D′(0, 1).(3.9)

But since W ∈ C1([0, 1]), then (3.9) is actually satisfied in [0, 1] in the classical
sense. Next,

Vy(tn, 1) = s(tn)ux(tn, s(tn)) = −s(tn)s′(tn)→ 0, as n→∞,
by (3.8). Therefore Wy(1) = W (1) = 0, so that W ≡ 0 by local uniqueness.

But on the other hand, we have∫ t

0

|V (tn, y)− V (τn, y)|2 dy ≤
∫ 1

0

∫ τn+1

τ

V 2
t (σ, y) dy dσ

≤
∫ τn+1

τn

∫ 1

0

(ut(σ, ys(σ)) + ys′(σ)ux(σ, ys(σ)))2 dy dσ

≤ 2s−1
0

∫ tn+1

tn

∫ s(σ)

0

u2
t dy dσ + 2s−1

0

∫ tn+1

tn

s′2(σ)

(∫ s(σ)

0

u2
x dy

)
dσ

≤ C
∫ t+n+1

tn

∫ s(σ)

0

u2
t dy dσ + C

(∫ tn+1

tn

s′3 dσ

) 2
3

−→
n→∞

0,

where we have used (3.6), (3.7) and Hölder’s inequality. It follows that V (τn)→W
in L2(0, 1), hence W = Z 6≡ 0. This contradiction proves that limt→∞ |u(t)|∞ = 0.
Since s∞ <∞, the estimate (3.1) is then an easy consequence of Theorem 3.2.

We now turn to the case s∞ = ∞ of Theorem 3.1. In this case, the previous
compactness argument does not work any longer since the size of the domain in-
creases without bound. To overcome this difficulty, we shall use a variant of the



790 HAMID GHIDOUCHE, PHILIPPE SOUPLET, AND DOMINGO TARZIA

rescaling argument introduced by Gidas and Spruck [GS] to obtain apriori bounds
for elliptic problems. This argument was adapted by Giga [G] to prove boundedness
of global solutions of (1.1) in bounded domains (also in higher dimensions), and
then modified by the second author [S1] to obtain boundedness and decay to 0 of
global solutions for the Cauchy problem.

Proof of Theorem 3.1 (ii). We suppose that T ∗ = ∞ and s∞ = ∞. Assume for
contradiction that lim supt→∞ |u(t)|∞ > 0. Then there exists a real ε > 0 and
a sequence tn → ∞ such that |u(tn)|∞ = supt∈[t0,tn] |u(t)|∞ = σn ≥ ε. Let
xn ∈ [0, s(t)) be such that u(tn, xn) = σn, and set

λn = σ−(p−1)/2
n ≤M = ε−(p−1)/2.

If limn→∞ xn =∞, we define the rescaled function

vn(s, y) = λ2/(p−1)
n u(tn + λ2

ns, xn − λny),

for

−λ−2
n tn ≤ t ≤ 0, λ−1

n (xn − s(tn)) ≤ y ≤ Ln ≡ λ−1
n xn.

Otherwise, we may assume (up to extracting a subsequence) that limn→∞ xn =
x0 ∈ [0,∞), and we set

vn(s, y) = λ2/(p−1)
n u(tn + λ2

ns, xn + λny),

for

−λ−2
n tn ≤ t ≤ 0, −λ−1

n xn ≤ y ≤ Ln ≡ λ−1
n (s(tn)− xn).

In each case, one has vn(0, 0) = 1, limn→∞ Ln = ∞, and 0 ≤ vn(s, y) ≤ 1 on
Dn = [−tn/M2, 0] × [0, Ln]. Moreover, the equation being invariant under this
rescaling, the function vn satisfies

∂svn − ∂2
yvn = vpn, in Dn.

For each compact Qm = [−m, 0] × [0,m] (m an integer ≥ 1), we have Qm ⊂ Dn

for all sufficiently large n, say n ≥ N(m). By classical parabolic regularity theory
(see, e.g., [LSU]), one then has the estimate

|vn|Cδ/2,δ(Qm) ≤ C(m)|vn|W 1,2
q (Qm) ≤ C

′(m), for all n ≥ N(m+ 1)

for some large q > 1 and small δ ∈ (0, 1). By diagonal procedure, it follows
that (some subsequence of) vn converges uniformly on any compact subset of Q =
(−∞, 0]× [0,∞) to a function v(s, y) ≥ 0, continuous on Q, which is a solution of
vs − vyy = vp in Q in the sense of distributions, and satisfies v(0, 0) = 1.

On the other hand, for all m > 0, one has∫ 0

−m

∫ m

0

(∂svn(s, y))2dy ds ≤ λ2(p+1)/(p−1)−1
n

∫ tn

tn−mλ2
n

∫ s(tn)

0

u2
t (t, x) dx dt.

Using (3.7), 2(p+ 1)/(p− 1) > 1, and the boundedness of λn, it follows that ∂svn
tends to 0 in L2

loc(Q) as n → ∞, hence in D′(Q). Therefore, vs = 0 and v ≡ v(y)
satisfies 0 ≤ v ≤ 1, v(0) = 1, and

−vyy = vp(3.10)

in D′(0,∞). It follows that v ∈ C2([0,∞)). Since v must then be concave and
bounded, it follows easily from (3.10) that v ≡ 0, which contradicts v(0) = 1. This
contradiction proves that limt→∞ |u(t)|∞ = 0.
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The estimate (3.2) follows from Hölder’s inequality and (3.7), by writing s(t)−
s0 =

∫ t
0
s′ ≤ (

∫ t
0
s′3)1/3t2/3. The estimate (3.3) is an immediate consequence of

Theorem 3.2, and (3.4) then follows by combining (3.2) and (3.3).

Proof of Proposition 3.3. Set s(t) = s0(1+t/T )1/2, a = T−1/2s0, y = (t+T )−1/2x =
ax/s(t), and u(t, x) = (t + T )−1/(p−1)V (y) for t ≥ 0 and 0 ≤ x ≤ s(t). An easy
computation shows that the problem is equivalent to finding a > 0 and a function
V ≡ V (y) ∈ C2([0, a]), such that

V p + 1
p−1V + y

2Vy + Vyy = 0, 0 < y < a,(3.11)

V > 0 in [0, a), V (a) = 0, Vy(0) = 0,(3.12)

− Vy(a) = λ(a2 )k.(3.13)

By [HW, Propositions 3.8 and 3.9], there exists a > 0 and a function V satisfying
(3.11), (3.12). Since Vy(a) < 0 by local uniqueness, the condition (3.13) is then
fulfilled for a suitable choice of λ > 0.
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