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We consider a steady-state heat conduction problem Pα with mixed boundary conditions for the Poisson equation in a bounded
multidimensional domain Ω depending of a positive parameter α which represents the heat transfer coefficient on a portion Γ1

of the boundary of Ω. We consider, for each α > 0, a cost function Jα and we formulate boundary optimal control problems
with restrictions over the heat flux q on a complementary portion Γ2 of the boundary of Ω . We obtain that the optimality
conditions are given by a complementary free boundary problem in Γ2 in terms of the adjoint state. We prove that the optimal
control qopα and its corresponding system state uqopα α and adjoint state pqopα α for each α are strongly convergent to qop,

uqop and pqop in L2(Γ2), H1(Ω), and H1(Ω) respectively when α → ∞. We also prove that these limit functions are
respectively the optimal control, the system state and the adjoint state corresponding to another boundary optimal control
problem with restrictions for the same Poisson equation with a different boundary condition on the portion Γ1 . We use the
elliptic variational inequality theory in order to prove all the strong convergences. In this paper, we generalize the convergence
result obtained in Ben Belgacem-El Fekih-Metoui, ESAIM:M2AN, 37 (2003), 833-850 by considering boundary optimal
control problems with restrictions on the heat flux q defined on Γ2 and the parameter α (which goes to infinity) is defined on
Γ1.

1 Introduction

We consider a bounded domain Ω in Rn whose regular boundary Γ consists of the union of two disjoint portions Γ1 and Γ2

with meas(Γi > 0) for i = 1, 2. We consider the following two steady-state heat conduction problems P and Pα (for each
heat transfer parameter α > 0) respectively with mixed boundary conditions:
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where g ∈ H = L2(Ω), q ∈ Q = L2(Γ2) and b ∈ H
1

2 (Γ1). These problems can be considerer as steady-state two-phase
Stefan problems for suitable data [6], [9].

We denote with uq and uqα the unique solutions of the mixed elliptic problems (1) and (2) respectively for each q ∈ Q and
α > 0 whose variational formulations are given as in [3], [4] and [7].

We define the boundary optimal control problems with restrictions as following [2] and [5]:

Find qop ∈ Uad such that J(qop) = min
q∈Uad

J(q), (3)

Find qopα
∈ Uad such that Jα(qopα

) = min
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Jα(q), (4)

with J : Q→R+
0 and Jα : Q→R+

0 are given by:
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with zd ∈ H , M is a positive constant and Uad = {q ∈ Q : q ≥ 0 en Γ2} is a non empty, closed and convex subset of Q.

2 Complementary Conditions and Convergence When the Parameter α Goes to Infinity

We obtain the following results:
Theorem 2.1. i) There exists a unique boundary optimal control with restriction qop for the problem (3) and the corre-

sponding optimality condition is given as a complementary free boundary problem

qop ≥ 0 on Γ2, Mqop − pqop
≥ 0 on Γ2, qop(Mqop − pqop

) = 0 on Γ2
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where pq is the corresponding adjoint state defined by the variational equality:

a(pq, v) = (uq − zd, v)H , ∀v ∈ V0, pq ∈ V0.

with V = H1(Ω), V0 = {v ∈ V/v
∣
∣
Γ1

= 0}, (g, h)H =
∫
Ω

gh dx and a(u, v) =
∫
Ω
∇u.∇v dx.

ii) For each α > 0, there exists a unique boundary optimal control with restriction qopα
for the problem (4) and the

corresponding optimality condition is given as a complementary free boundary problem

qopα
≥ 0 on Γ2, Mqopα

− pqopα α ≥ 0 on Γ2, qopα
(Mqopα

− pqopαα) = 0 on Γ2

where pqα
is the corresponding adjoint state defined by the variational equality:

a(pqα, v) + α(pqα, v)L2(Γ1) = (uqα − zd, v), ∀v ∈ V, pqα ∈ V. (5)

iii) If there is not restriction on the control, i.e. Uad = Q then we have the relations: Mqop = pqop
on Γ2 and Mqopα

=
pqopαα on Γ2.

In similar way that [6], [7] and [8] we prove the following result:
Theorem 2.2. For all α > 0, q ∈ Q, b ∈ H

1

2 (Γ1) we have:

lim
α→∞

‖uqα − uq‖V
= 0 and lim

α→∞

‖pqα − pq‖V
= 0 ∀q ∈ Q.

In [1], it was considered a boundary optimal control problem with Γ = Γ1 and the Dirichlet control variable is the
temperature b which is defined in the same boundary where the penalization parameter ε = 1

α
is given. In this case, the

boundary optimal control is proportional to the corresponding adjoint state. In this paper, we generalize the results obtained in
[1] by considering a Neumann boundary optimal control with restrictions on the heat flux q on Γ2 and the parameter α (= 1

ε
)

which goes to infinity is defined on a complementary boundary portion Γ1.
Finally, we prove that the optimal state system uqopαα and the optimal adjoint states pqopα α of the problems (4) are strongly

convergent in V to the corresponding uqop
and pqop

for the boundary optimal control problem with restrictions (3). Moreover,
the strong convergence in Q of the optimal controls qopα

of problems (4) to the optimal control qop of problem (3) is also
proved, that is:

Theorem 2.3. If qopα
is the unique solution of the boundary optimal control problem (4) for each α > 0 and qop is the

unique solution of the boundary optimal control problem (3), then we have:

lim
α→∞

∥
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∥
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V
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∥
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∥
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V
= lim

α→∞

‖qopα
− qop‖Q

= 0.
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