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a b s t r a c t

In this paper, we study optimal control problems on the internal energy for a system
governed by a class of elliptic boundary hemivariational inequalities with a parameter.
The system has been originated by a steady-state heat conduction problem with non-
monotone multivalued subdifferential boundary condition on a portion of the boundary
of the domain described by the Clarke generalized gradient of a locally Lipschitz function.
We prove an existence result for the optimal controls and we show an asymptotic result
for the optimal controls and the system states, when the parameter, like a heat transfer
coefficient, tends to infinity on a portion of the boundary.

© 2021 Published by Elsevier B.V.

1. Introduction

We consider a bounded domain Ω in Rd whose regular boundary Γ consists of the union of three disjoint portions
i, i = 1, 2, 3 with |Γi| > 0, where |Γi| denotes the (d − 1)-dimensional Hausdorff measure of the portion Γi on Γ .
he outward normal vector on the boundary is denoted by n. We formulate the following steady-state heat conduction
roblem with mixed boundary conditions [1–6]:

− ∆u = g in Ω, u
⏐⏐
Γ1

= 0, −
∂u
∂n

⏐⏐
Γ2

= q, u
⏐⏐
Γ3

= b, (1)

here u is the temperature in Ω , g is the internal energy in Ω , b is the temperature on Γ3 and q is the heat flux on Γ2,
hich satisfy the hypothesis: g ∈ H = L2(Ω), q ∈ Q = L2(Γ2) and b ∈ H

1
2 (Γ3).

Throughout the paper we use the following notation

V = H1(Ω), V0 = {v ∈ V | v = 0 on Γ1},
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K = {v ∈ V | v = 0 on Γ1, v = b on Γ3}, K0 = {v ∈ V | v = 0 on Γ1 ∪ Γ3},

a(u, v) =

∫
Ω

∇u∇v dx, L(v) =

∫
Ω

gv dx −

∫
Γ2

qγ (v) dΓ ,

where γ : V → L2(Γ ) denotes the trace operator on Γ . In what follows, we write u for the trace of a function u ∈ V on
he boundary. In a standard way, we obtain the following variational formulation of (1):

find u∞ ∈ K such that a(u∞, v) = L(v) for all v ∈ K0, (2)

The standard norms on V and V0 are denoted by

∥v∥V =

(
∥v∥

2
L2(Ω) + ∥∇v∥

2
L2(Ω;Rd)

)1/2
for v ∈ V , and ∥v∥V0 = ∥∇v∥L2(Ω;Rd) for v ∈ V0.

t is well known by the Poincaré inequality, see [5,7,8], that on V0 the above two norms are equivalent. Note that the form
is bilinear, symmetric, continuous and coercive with constant ma > 0, i.e.

a(v, v) = ∥v∥
2
V0 ≥ ma∥v∥

2
V for all v ∈ V0. (3)

We remark that, under additional hypotheses on the data g , q and b, problem (1) can be considered as steady-state
wo-phase Stefan problem, see, for example, [6,9–11]. We can particularly see it in [9] (Example 1 in page 629, Example
in page 630, and Example 3 in page 631); in [10] (Example (i) and (ii) in psge 35, and Example (iii) in page 36), and

n [6] (Example 1 and Example 2 in page 180).
Now, in this paper, we consider the mixed nonlinear boundary value problem for an elliptic equation as follows:

− ∆u = g in Ω, u
⏐⏐
Γ1

= 0, −
∂u
∂n

⏐⏐
Γ2

= q, −
∂u
∂n

⏐⏐
Γ3

∈ α ∂ j(u), (4)

hich has been recently studied in [12].
Here α is a positive constant which can be considered as the heat transfer coefficient on the boundary while the

unction j:Γ3 × R → R, called a superpotential (nonconvex potential), is such that j(x, ·) locally Lipschitz for a.e. x ∈ Γ3
nd not necessary differentiable. Since in general j(x, ·) is nonconvex, so the multivalued condition on Γ3 in problem
4) is described by a nonmonotone relation expressed by the generalized gradient of Clarke [13]. Such multivalued
elation in problem (4) is met in certain types of steady-state heat conduction problems (the behavior of a semipermeable
embrane of finite thickness, a temperature control problems, etc.). Further, problem (4) can be considered as a prototype
f several boundary semipermeability models, see [14–17], which are motivated by problems arising in hydraulics, fluid
low problems through porous media, and electrostatics, where the solution represents the pressure and the electric
otentials. Note that the analogous problems with maximal monotone multivalued boundary relations (that is the case
hen j(x, ·) is a convex function) were considered in [18,19], see also references therein.
Under the above notation, the weak formulation of the elliptic problem (4) becomes the following elliptic boundary

emivariational inequality [12]:

find u ∈ V0 such that a(u, v) + α

∫
Γ3

j0(u; v) dΓ ≥ L(v) for all v ∈ V0. (5)

ere and in what follows we often omit the variable x and we simply write j(r) instead of j(x, r). The stationary heat
onduction models with nonmonotone multivalued subdifferential interior and boundary semipermeability relations
annot be described by convex potentials. They use locally Lipschitz potentials and their weak formulations lead to
emivariational inequalities, see [15, Chapter 5.5.3] and [16].
We mention that theory of hemivariational and variational inequalities has been proposed in the 1980s by Pana-

iotopoulos, see [15,20,21], as variational formulations of important classes of inequality problems in mechanics. In
he last few years, new kinds of variational, hemivariational, and variational–hemivariational inequalities have been
nvestigated, see recent monographs [7,22,23], and the theory has emerged today as a new and interesting branch of
pplied mathematics.
We consider the distributed optimal control problem of the type studied in [24–26] given by:

find g∗
∈ H such that J(g∗) = min

g∈H
J(g) (6)

ith

J(g) =
1
2
∥ug − zd∥2

H +
M
2

∥g∥
2
H (7)

where ug is the unique solution to the variational equality (2), zd ∈ H given and M a positive constant.
The goal of this paper is to formulate, for each α > 0, the following new distributed optimal control problem

find g∗

α ∈ H such that Jα(g∗

α) = min Jα(g) (8)

g∈H

2
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Jα(g) =
1
2
∥uαg − zd∥2

H +
M
2

∥g∥
2
H (9)

where uαg is a solution to the hemivariational inequality (5), zd ∈ H given and M a positive constant, and to study the
onvergent to problem (8) when the parameter α goes to infinity.
The paper is structured as follows. In Section 2 we establish preliminaries concepts of the hemivariational inequalities

heory, which are necessary for the development of the following sections. In Section 3, for each α > 0, we obtain an
xistence result of solution to the optimal control problem (8). Finally, in Section 4, we prove the strong convergence of
sequence of optimal controls of the problems (8) to the unique optimal control of the problem (6), when the parameter
goes to infinity. Moreover, we obtain the strong convergence of the system states related to the problems (8) to the

ystem state related to the problem (6), when α goes to infinity. These results generalize for a locally Lipschitz function
, under the hypothesis H(j) and (H1), the classical results obtained in [24] for a quadratic superpotential j.

. Preliminaries

In this section we recall standard notation and preliminary concepts, which are necessary for the development of this
aper.
Let (X, ∥ · ∥X ) be a reflexive Banach space, X∗ be its dual, and ⟨·, ·⟩ denote the duality between X∗ and X . For a real

alued function defined on X , we have the following definitions [13, Section 2.1] and [22,27].

efinition 1. A function ϕ: X → R is said to be locally Lipschitz, if for every x ∈ X there exist Ux a neighborhood of x
nd a constant Lx > 0 such that

|ϕ(y) − ϕ(z)| ≤ Lx∥y − z∥X for all y, z ∈ Ux.

or such a function the generalized (Clarke) directional derivative of j at the point x ∈ X in the direction v ∈ X is defined
by

ϕ0(x; v) = lim sup
y→x, λ→0+

ϕ(y + λv) − ϕ(y)
λ

.

The generalized gradient (subdifferential) of ϕ at x is a subset of the dual space X∗ given by

∂ϕ(x) = {ζ ∈ X∗
| ϕ0(x; v) ≥ ⟨ζ , v⟩ for all v ∈ X}.

We consider the following hypothesis.
H(j): j:Γ3 × R → R is such that
(a) j(·, r) is measurable for all r ∈ R,
(b) j(x, ·) is locally Lipschitz for a.e. x ∈ Γ3,
(c) there exist c0, c1 ≥ 0 such that |∂ j(x, r)| ≤ c0 + c1|r| for all r ∈ R, a.e. x ∈ Γ3,
(d) j0(x, r; b − r) ≤ 0 for all r ∈ R, a.e. x ∈ Γ3 with a constant b ∈ R.
Note that the existence results for elliptic hemivariational inequalities can be found in several contributions, see [7,15,

2,28,29]. In [12, Theorem 4], the hypothesis H(j)(d) is considered in order to obtain existence of a solution to problem (5).
oreover, under this condition the authors have studied the asymptotic behavior when α → ∞ (see [12, Theorem 7]).
We note that, if the hypothesis H(j)(d) is replaced by the relaxed monotonicity condition (see [12, Remark 10] for

etails)

(e) j0(x, r; s − r) + j0(x, s; r − s) ≤ mj |r − s|2

or all r , s ∈ R, a.e. x ∈ Γ3 with mj ≥ 0, and the following smallness condition

(f ) ma > α mj∥γ ∥
2

s assumed, then problem (5) is uniquely solvable, see [29, Lemma 20] for the proof. However, this smallness condition is
ot suitable in the study to problem (5) since for a sufficiently large value of α, it is not satisfied. Finally, in [12] we can find
everal examples of locally Lipschitz (nondifferentiable and nonconvex) functions which satisfies the above hypotheses.

. Optimal control problems

We know, by [24], that there exists a unique optimal pair (g∗, ug∗ ) ∈ H×V0 of the distributed optimal control problem
6). Now, we pass to a result on existence of solution to the optimal control problem (8) in which the system is governed
y the hemivariational inequality (5).

heorem 2. For each α > 0, if H(j)(a) − (d) holds, then the distributed optimal control problems (8) has a solution.
3
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Proof. By definition, for each α > 0, the functional Jα is bounded from below. Next, taking into account that the
hemivariational inequality (5) has solution (see [12, Theorem 4]), for each α > 0 and each g ∈ H , we denote by Tα(g) the
et of solutions of (5) and we have that

m = inf{Jα(g), g ∈ H, uαg ∈ Tα(g)}≥ 0. (10)

et gn ∈ H be a minimizing sequence to (10) such that

m ≤ Jα(gn) ≤ m +
1
n
. (11)

aking into account that the functional Jα satisfies

lim
∥g∥H→+∞

Jα(g) = +∞

e obtain that there exists C1 > 0 such that

∥gn∥H ≤ C1. (12)

oreover, we can prove that there exists C2 > 0 such that

∥uαgn∥V0 ≤ C2. (13)

n fact, let u∞ ∈ K be the solution to problem (2). We have

a(uαgn , u∞ − uαgn ) + α

∫
Γ3

j0(uαgn; u∞ − uαgn ) dΓ ≥

∫
Ω

gn(u∞ − uαgn ) dx

−

∫
Γ2

q(u∞ − uαgn ) dΓ .

ence

a(u∞ − uαgn , u∞ − uαgn ) ≤ a(u∞, u∞ − uαgn ) + α

∫
Γ3

j0(uαgn; b − uαgn ) dΓ

+

∫
Ω

gn(uαgn − u∞) dx −

∫
Γ2

q(u∞ − uαgn ) dΓ .

rom hypothesis H(j)(d), since the form a is bounded (with positive constant Ma), we get

∥u∞ − uαgn∥
2
V0 ≤ a(u∞, u∞ − uαgn ) +

∫
Ω

gn(uαgn − u∞) dx −

∫
Γ2

q(u∞ − uαgn ) dΓ

≤ Ma∥u∞∥V∥u∞ − uαgn∥V +
(
∥gn∥H + ∥q∥Q∥γ ∥

)
∥u∞ − uαgn∥V

≤
(
Ma∥u∞∥V + C1 + C3∥q∥Q∥γ ∥

)
∥u∞ − uαgn∥V0

here ∥γ ∥ denote the norm of trace operator and C3 is a positive constant due to the equivalence of norms. Subsequently,
e obtain (13). Therefore, there exist f ∈ H and ηα ∈ V0 such that

uαgn ⇀ ηα in V0 weakly and gn ⇀ f in H weakly.

ow, for all gn ∈ H , we have

a(uαgn , v) + α

∫
Γ3

j0(uαgn; v) dΓ ≥

∫
Ω

gnv dx −

∫
Γ2

qv dΓ for all v ∈ V0

nd taking the upper limit, we obtain

a(ηα, v) + α lim sup
n→+∞

∫
Γ3

j0(uαgn; v) dΓ ≥

∫
Ω

f v dx −

∫
Γ2

qv dΓ for all v ∈ V0. (14)

y the compactness of the trace operator from V into L2(Γ3), we have uαgn

⏐⏐
Γ3

→ ηα

⏐⏐
Γ3

in L2(Γ3), as n → +∞, and at
east for a subsequence, uαgn (x) → ηα(x) for a.e. x ∈ Γ3 and |uαgn (x)| ≤ hα(x) a.e. x ∈ Γ3, where hα ∈ L2(Γ3). Since the
unction R × R ∋ (r, s) ↦→ j0(x, r; s) ∈ R a.e. on Γ3 is upper semicontinuous, see [12, Proposition 3], we obtain

lim sup
n→+∞

j0(x, uαgn (x); v(x)) ≤ j0(x, ηα(x); v(x)) a.e. x ∈ Γ3.

ext, from H(j)(c), we deduce the estimate

|j0(x, u (x); v(x))| ≤ (c + c |u (x)|) |v(x)| ≤ k (x) a.e. x ∈ Γ
αgn 0 1 αgn α 3

4
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where kα ∈ L1(Γ3), kα(x) = (c0 + c1hα(x))|v(x)| and we apply the dominated convergence theorem, see [27] to get

lim sup
n→+∞

∫
Γ3

j0(uαgn; v) dΓ ≤

∫
Γ3

lim sup
n→+∞

j0(uαgn; v) dΓ ≤

∫
Γ3

j0(ηα; v) dΓ .

sing the latter in (14), we obtain

a(ηα, v) + α

∫
Γ3

j0(ηα; v) dΓ ≥

∫
Ω

f v dx −

∫
Γ2

qv dΓ for all v ∈ V0

hat is, ηα ∈ V0 is a solution to the hemivariational inequality (5). Next, we have proved that

ηα = uαf

here uαf is a solution of the hemivariational inequality (5) for data f ∈ H and q ∈ Q . Finally, from (11) and the weak
ower semicontinuity of Jα , we have

m ≥ lim inf
n→+∞

Jα(gn)

≥
1
2
lim inf
n→+∞

∥uαgn − zd∥2
H +

M
2

lim inf
n→+∞

∥gn∥2
H

≥
1
2
∥uαf − zd∥2

H +
M
2

∥f ∥2
H = Jα(f ),

nd therefore, (f , uαf ) is an optimal pair to optimal control problem (8). □

. Asymptotic behavior of the optimal controls

In this section we investigate the asymptotic behavior of the optimal solutions to problem (8) when α → ∞. To this
nd, we need the following additional hypothesis on the superpotential j.
(H1): if j0(x, r; b − r) = 0 for all r ∈ R, a.e. x ∈ Γ3, then r = b.

heorem 3. Assume H(j) and (H1). If (gα, uαgα ) is a optimal solution to problem (8) and (g∗, u∞g∗ ) is the unique solution to
roblem (6), then gα → g∗ in H strongly and uαgα → u∞g∗ in V strongly, when α → ∞.

roof. We will make the prove in three steps.
Step 1. Since (gα, uαgα ) is a optimal solution to problem (8), we have the following inequality

1
2
∥uαgα − zd∥2

H +
M
2

∥gα∥
2
H ≤

1
2
∥uαg − zd∥2

H +
M
2

∥g∥
2
H , ∀g ∈ H

and taking g = 0, we obtain that there exists a positive constant C1 such that
1
2
∥uαgα − zd∥2

H +
M
2

∥gα∥
2
H ≤

1
2
∥uα0 − zd∥2

H ≤ C1

because {uα0} is convergent when α → ∞, see [12, Theorem 7]. Therefore, there exist positive constants C2 and C3,
ndependent of α, such that

∥gα∥H ≤ C2 and ∥uαgα∥H ≤ C3. (15)

ow, we choose v = u∞g∗ − uαgα ∈ V0 as a test function in the elliptic boundary hemivariational inequality (5) to obtain

a(uαgα , u∞g∗ − uαgα ) + α

∫
Γ3

j0(uαgα ; u∞g∗ − uαgα ) dΓ ≥ L(u∞g∗ − uαgα ).

rom the equality

a(uαgα , u∞g∗ − uαgα ) = −a(u∞g∗ − uαgα , u∞g∗ − uαgα ) + a(u∞g∗ , u∞g∗ − uαgα ),

e get

a(u∞g∗ − uαgα , u∞g∗ − uαgα ) − α

∫
Γ3

j0(uαgα ; u∞g∗ − uαgα ) dΓ

≤ a(u∞g∗ , u∞g∗ − uαgα ) − L(u∞g∗ − uαgα ).
(16)

aking into account that j0(x, uαgα ; u∞g∗ − uαgα ) = j0(x, uαgα ; b − uαgα ) on Γ3, and by H(j)(d), we have j0(x, uαgα ; u∞g∗ −

αgα ) ≤ 0 on Γ3. Hence

a(u ∗ − u , u ∗ − u ) ≤ a(u ∗ , u ∗ − u ) − L(u ∗ − u ).
∞g αgα ∞g αgα ∞g ∞g αgα ∞g αgα

5
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ma∥u∞g∗ − uαgα∥
2
V ≤ (Ma∥u∞g∗∥V + ∥L∥V∗ ) ∥u∞g∗ − uαgα∥V

ith Ma > 0, and subsequently

∥uαgα∥V ≤ ∥u∞g∗ − uαgα∥V + ∥u∞g∗∥V

≤
1
ma

(Ma∥u∞g∗∥V + ∥L∥V∗ ) + ∥u∞g∗∥V

=: C4,

(17)

here C4 > 0 is a constant independent of α. Hence, since a(u∞g∗ − uαgα , u∞g∗ − uαgα ) ≥ 0, from (16), we have

−α

∫
Γ3

j0(uαgα ; u∞g∗ − uαgα ) dΓ ≤ (Ma∥u∞g∗∥V + ∥L∥V∗ ) ∥u∞g∗ − uαgα∥V

≤
1
ma

(Ma∥u∞g∗∥V + ∥L∥V∗ )2

=: C5,

where C5 > 0 is independent of α. Thus

−

∫
Γ3

j0(uαgα ; u∞g∗ − uαgα ) dΓ ≤
C5

α
. (18)

t follows from (17) that {uαgα } remains in a bounded subset of V . Thus, there exists η ∈ V such that, by passing to a
subsequence if necessary, we have

uαgα ⇀ η weakly in V , as α → ∞. (19)

oreover. from (15) we have that there exists h ∈ H such that

gα ⇀ h weakly in H, as α → ∞. (20)

Step 2. Next, we will show that h = g∗ and η = u∞g∗ . We observe that η ∈ V0 because {uαgα } ⊂ V0 and V0 is
sequentially weakly closed in V . Let w ∈ K and v = w − uαgα ∈ V0. From (5), we have

L(w − uαgα ) ≤ a(uαgα , w − uαgα ) + α

∫
Γ3

j0(uαgα ; w − uαgα ) dΓ .

Since w = b on Γ3, by H(j)(d), we have

α

∫
Γ3

j0(uαgα ; w − uαgα ) dΓ = α

∫
Γ3

j0(uαgα ; b − uαgα ) dΓ ≤ 0

which implies

L(w − uαgα ) ≤ a(uαgα , w − uαgα ). (21)

Next, we use the weak lower semicontinuity of the functional V ∋ v ↦→ a(v, v) ∈ R and from (21), we deduce

η ∈ V0 satisfies L(w − η) ≤ a(η, w − η) for all w ∈ K . (22)

Subsequently, we will show that η ∈ K . In fact, from (19), by the compactness of the trace operator, we have uαgα

⏐⏐
Γ3

→

η
⏐⏐
Γ3

in L2(Γ3), as α → ∞. Passing to a subsequence if necessary, we may suppose that uαgα (x) → η(x) for a.e. x ∈ Γ3

and there exists f ∈ L2(Γ3) such that |uαgα (x)| ≤ f (x) a.e. x ∈ Γ3. Using the upper semicontinuity of the function
R × R ∋ (r, s) ↦→ j0(x, r; s) ∈ R for a.e. x ∈ Γ3, see [12, Proposition 3 (iii)], we get

lim sup
α→∞

j0(x, uαgα (x); b − uαgα (x)) ≤ j0(x, η(x); b − η(x)) a.e. x ∈ Γ3.

Next, taking into account the estimate

|j0(x, uαgα (x); b − uαgα (x))| ≤ (c0 + c1|uαgα (x)|) |b − uαgα (x)| ≤ k(x) a.e. x ∈ Γ3

ith k ∈ L1(Γ3) given by k(x) = (c0 + c1f (x))(|b| + f (x)), by the dominated convergence theorem, see [27], we obtain

lim sup
α→∞

∫
Γ3

j0(uαgα ; b − uαgα ) dΓ ≤

∫
Γ3

j0(η; b − η) dΓ .

Consequently, from H(j)(d) and (18), we have

0 ≤ −

∫
j0(η; b − η) dΓ ≤ lim inf

(
−

∫
j0(uαgα ; b − uαgα ) dΓ

)
≤ 0
Γ3
α→∞ Γ3

6
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S

E
u

d

a

t

O

which gives
∫

Γ3
j0(η; b − η) dΓ = 0. Again by H(j)(d), we get j0(x, η; b − η) = 0 a.e. x ∈ Γ3. Using (H1), we have η(x) = b

for a.e. x ∈ Γ3, which together with (22) implies

η ∈ K satisfies L(w − η) ≤ a(η, w − η) for all w ∈ K .

Next, we will prove that η = u∞h. To this end, let v := w − η ∈ K0 with arbitrary w ∈ K . Hence, L(v) ≤ a(η, v) for all
v ∈ K0. Recalling that v ∈ K0 implies −v ∈ K0, we obtain a(η, v) ≤ L(v) for all v ∈ K0. Hence, we conclude that

η ∈ K satisfies a(η, v) = L(v) for all v ∈ K0,

.e., η ∈ K is a solution to problem (2). By the uniqueness of solution to problem (2), we have η = u∞h and hence
αgα ⇀ u∞h weakly in V , as α → ∞.
Now

Jα(gα) ≤ Jα(f ), ∀f ∈ H

ext

J(h) =
1
2
∥u∞h − zd∥2

H +
M
2

∥h∥2
H =

1
2
∥η − zd∥2

H +
M
2

∥h∥2
H

≤ lim inf
α→∞

Jα(gα) ≤ lim inf
α→∞

Jα(f )

= lim
α→∞

Jα(f ) = J(f ), ∀f ∈ H

and from the uniqueness of the optimal control problem (6), see [24], we obtain that

h = g∗,

therefore u∞h = u∞g∗ . Next, we have that, when α → ∞

gα ⇀ g∗ weakly in H and uαgα ⇀ u∞g∗ weakly in V .

Step 3. Now, we prove the strong convergence uαgα → u∞g∗ in V , as α → ∞. Choosing v = u∞g∗ − uαgα ∈ V0 in
problem (5), we obtain

a(uαgα , u∞g∗ − uαgα ) + α

∫
Γ3

j0(uαgα ; u∞g∗ − uαgα ) dΓ ≥ L(u∞g∗ − uαgα ).

ence
a(u∞g∗ − uαgα , u∞g∗ − uαgα ) ≤ a(u∞g∗ , u∞g∗ − uαgα ) + L(uαgα − u∞g∗ )

+ α

∫
Γ3

j0(uαgα ; u∞g∗ − uαgα ) dΓ .

ince u∞g∗ = b on Γ3, by H(j)(d) and the coerciveness of the form a, we have

ma ∥u∞g∗ − uαgα∥
2
V ≤ a(u∞g∗ , u∞g∗ − uαgα ) + L(uαgα − u∞g∗ ).

mploying the weak continuity of a(u∞g∗ , ·), the compactness of the trace operator and taking into account that uαgα →

∞g∗ strongly in H , we conclude that uαgα → u∞g∗ strongly in V , as α → ∞.
Finally, we prove the strong convergence of gα to g∗ in H , when α → ∞. In fact, from uαgα → u∞g∗ strongly in H , we

educe

lim
α→∞

1
2
∥uαgα − zd∥2

H =
1
2
∥u∞g∗ − zd∥2

H (23)

nd as gα ⇀ g∗ weakly in H , then

∥g∗
∥
2
H ≤ lim inf

α→∞
∥gα∥

2
H . (24)

Next, from (23) and (24), we obtain

1
2
∥u∞g∗ − zd∥2

H +
M
2

∥g∗
∥
2
H ≤ lim inf

α→∞

(
1
2
∥uαgα − zd∥2

H +
M
2

∥gα∥
2
H

)
,

hat is

J(g∗) ≤ lim inf
α→∞

Jα(gα).

n the other hand, from the definition of gα , we have

J (g ) ≤ J (g∗)
α α α

7
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a

o

then, taking into account that uαg∗ → u∞g∗ strongly in H , see [12, Theorem 7], we obtain

lim sup
α→∞

Jα(gα) ≤ lim sup
α→∞

Jα(g∗) = J(g∗)

nd therefore

lim
α→∞

Jα(gα) = J(g∗)

r equivalently

lim
α→∞

(
1
2
∥uαgα − zd∥2

H +
M
2

∥gα∥
2
H

)
=

1
2
∥u∞g∗ − zd∥2

H +
M
2

∥g∗
∥
2
H . (25)

Now, from (23) and (25), when α → ∞, we have

∥gα∥
2
H → ∥g∗

∥
2
H

and as gα ⇀ g∗ weakly in H , we deduce that gα → g∗ strongly in H . This completes the proof. □

We remark that we can find examples of several locally Lipschitz functions j which satisfies the hypothesis H(j) and
(H1) in [12].

5. Conclusions

We have studied a parameter optimal control problems for systems governed by elliptic boundary hemivariational
inequalities with a non-monotone multivalued subdifferential boundary condition on a portion of the boundary of the
domain which is described by the Clarke generalized gradient of a locally Lipschitz function. We prove an existence result
for the optimal controls and we show an asymptotic result for the optimal controls and the system states, when the
parameter (the heat transfer coefficient on a portion of the boundary) tends to infinity. These results generalize for a locally
Lipschitz function j, under the hypothesis H(j) and (H1), the classical results obtained in [24] for a quadratic superpotential
j.
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