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Abstract. We consider a d-dimensional bounded domain Ω which regular boundary consists of
the union of three disjoint portions. We study different optimal control problems (distributed,
boundary and simultaneous distributed-boundary) for systems governed by elliptic variational
inequalities or elliptic hemivariational inequalities. For both cases, we also consider a parameter,
like a heat transfer coefficient on a portion of the boundary, which tends to infinity. We prove
an existence result for three different optimal control problems, and we show the asymptotic
behavior results for the corresponding optimal controls and system states.

1. Introduction. In this paper, we review several previous works of our authorship and
some of them in collaboration with other authors. We consider elliptic mixed problems
defined in a d-dimensional domain Ω, whose regular boundary Γ consists of the union
of three (or possibly two) disjoint portions. These problems are governed by the Poisson
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equation in Ω and by mixed boundary conditions on Γ. More precisely, we consider
Dirichlet, Neumann and Robin boundary conditions. We remark that, under additional
hypotheses on the data, these problems can be considered as steady-state two phase Stefan
problems, which have been extensively studied in several papers such as [10, 34, 35, 36,
37, 38]. In [12, 13], related to these mixed elliptic problems, we formulate distributed
optimal control problems on the internal energy, which are dependent of a parameter
(heat transfer coefficient). We study existence, uniqueness and asymptotic behaviour of
the optimal solutions when this parameter goes to infinity. In [14], we consider boundary
optimal control problems on the heat flux and we obtain similar existence, uniqueness and
convergence results when heat transfer coefficient goes to infinity. In [15], simultaneous
distributed-boundary optimal control problems have been formulated and similar results
to [12, 13, 14] have been obtained.

More recently, in [11], a non-monotone multivalued subdifferential boundary condition
on a portion of the boundary described by the Clarke generalized gradient of a locally
Lipschitz function has been considered. Such multivalued relation is met in certain types
of steady-state heat conduction problems as well as in several boundary semipermeability
models, see [24, 27, 28, 29, 40, 41], which are motivated by problems arising in hydraulics,
fluid flow problems through porous media, and electrostatics, where the solution repre-
sents the pressure and the electric potentials. The weak formulations of these problems
are given by boundary hemivariational inequalities. In [11], existence result for a class of
boundary hemivariational inequality has been proved. In [16], distributed optimal control
problems on the internal energy has been formulated for this kind of boundary hemivari-
ational inequality and existence and asymptotic behavior of optimal controls and system
states has been obtained. In [4], boundary and simultaneous distributed-boundary opti-
mal control problems related to the same class of boundary hemivariational inequality
has been studied and similar results to [16] has been proved.

The paper is structured as follows. In Section 2, we consider mixed elliptic problems
and we give their variational and hemivariational formulations. We consider preliminaries
concept and we give some existence results and properties of monotonicity, convergence
and continuous dependence of data. Furthermore, we present three examples which sat-
isfy the hypotheses considered. In Section 3, we formulate distributed, boundary and
simultaneous distributed-boundary optimal control problems related with the mixed el-
liptic problems governed by variational equalities. We prove existence and uniqueness
of the optimal solutions and we obtain convergence results of the optimal controls and
the optimal direct and adjoint states, when the heat transfer coefficient goes to infinity.
Finally, in Section 4, we consider distributed, boundary and simultaneous distributed-
boundary optimal control problems related with the mixed elliptic problems governed by
hemivariational inequalities. We prove existence of the optimal solutions and we obtain
convergence results of the optimal controls and the optimal system states, when the heat
transfer coefficient goes to infinity.

2. Mixed elliptic problems. In this section, we consider elliptic mixed problems de-
fined in a d-dimensional domain, which are governed by the Poisson equation with mixed
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conditions on the regular boundary of the domain. That is, we consider Dirichlet, Neu-
mann and Robin boundary conditions and a multivalued condition on a portion of bound-
ary. The weak formulations of these problems are given by variational equalities or hemi-
variational inequalities depending on the boundary conditions we impose. We will give
some necessary definitions and we will prove some important properties.

2.1. Problems with variational equalities. We consider a bounded domain Ω in Rd

which regular boundary Γ consists of the union of three disjoint portions Γi, i = 1, 2, 3
with |Γi| > 0, where |Γi| denotes the (d−1)-dimensional Hausdorff measure of the portion
Γi on Γ. The outward normal vector on the boundary is denoted by n. We formulate the
following two steady-state heat conduction problems with mixed boundary conditions:

−∆u = g in Ω, u
∣∣
Γ1

= 0, −∂u

∂n

∣∣
Γ2

= q, u
∣∣
Γ3

= b (1)

−∆u = g in Ω, u
∣∣
Γ1

= 0, −∂u

∂n

∣∣
Γ2

= q, −∂u

∂n

∣∣
Γ3

= α(u − b) (2)

where u is the temperature in Ω, g is the internal energy in Ω, b is the temperature on
Γ3 for (1) and the temperature of the external neighborhood of Γ3 for (2), q is the heat
flux on Γ2 and α > 0 is the heat transfer coefficient on Γ3, which satisfy the hypothesis:
g ∈ H = L2(Ω), q ∈ Q = L2(Γ2) and b ∈ H

1
2 (Γ3).

We denote
V = H1(Ω), V0 = {v ∈ V | v = 0 on Γ1},

K = {v ∈ V | v = 0 on Γ1, v = b on Γ3},

K0 = {v ∈ V | v = 0 on Γ1 ∪ Γ3},

(g, h) =
∫

Ω
gh dx, (q, η)Q =

∫
Γ2

qη dγ,

a(u, v) =
∫

Ω
∇u ∇v dx, bα(u, v) = a(u, v) + α

∫
Γ3

γ(u)γ(v)dγ,

L(v) =
∫

Ω
gv dx −

∫
Γ2

qγ(v) dγ, Lα(v) = L(v) + α

∫
Γ3

bγ(v) dγ,

where γ : V → L2(Γ) denotes the trace operator on Γ. In what follows, we write u for the
trace of a function u ∈ V on the boundary. In a standard way, we obtain the following
variational formulations to problems (1) and (2), respectively:

find u∞ ∈ K such that a(u∞, v) = L(v) for all v ∈ K0, (3)

find uα ∈ V0 such that bα(uα, v) = Lα(v) for all v ∈ V0. (4)

The standard norms on V and V0 are denoted by

∥v∥V =
(

∥v∥2
H + ∥∇v∥2

L2(Ω;Rd)

)1/2
for v ∈ V,

∥v∥V0 = ∥∇v∥L2(Ω;Rd) for v ∈ V0.

It is well known by the Poincaré inequality, see [6, 20], that on V0 the above two norms
are equivalent. Note that the form a is bilinear, symmetric, continuous and coercive with
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constant ma > 0, i.e.

a(v, v) = ∥v∥2
V0

≥ ma∥v∥2
V for all v ∈ V0. (5)

Note also that the form bα is bilinear, symetric, continuous and coercive in V, i.e.

bα(v, v) ≥ λα||v||2V , ∀v ∈ V (6)

where λα = λ1 min{1, α} and λ1 is the coerciveness constant for the bilinear form a1 [36].
It is well known that the regularity of solution to the mixed elliptic problems (1) and

(2) are problematic in the neighborhood of a part of the boundary, see for example the
monograph [19]. A regularity results for elliptic problems with mixed boundary conditions
can be found in [1, 2, 21]. Moreover, sufficient hypotheses on the data in order to have
H2 regularity for elliptic variational inequalities are given in [30]. We remark that, under
additional hypotheses on the data g, q and b, problems (1) and (2) can be considered as
steady-state two phase Stefan problems, see, for example, [10, 34, 36, 38].

The problems (3) and (4) have been extensively studied in several papers such as [10,
34, 35, 36, 37]. Some properties of monotonicity and convergence, when the parameter α

goes to infinity, obtained in the aforementioned works, are recalled in the following result.

Theorem 2.1. If the data satisfy b = const. > 0, g ∈ H and q ∈ Q with the properties
q ≥ 0 on Γ2 and g ≤ 0 in Ω, then

(i) u∞ ≤ b in Ω,
(ii) uα ≤ b in Ω,
(iii) uα ≤ u∞ in Ω,
(iv) if α1 ≤ α2, then uα1 ≤ uα2 in Ω,
(v) uα → u∞ in V , as α → +∞.

Proof. See [10, 34, 36, 37].

2.2. Problems with hemivariational inequalities. We consider the mixed nonlin-
ear boundary value problem studied in [11]. We begin by giving some definitions and
properties necessary for the development of these topics.

Let (X, ∥·∥X) be a reflexive Banach space, X∗ be its dual, and ⟨·, ·⟩ denote the duality
between X∗ and X. For a real valued function defined on X, we have the following
definitions [5, Section 2.1] and [7, 8, 25].

Definition 2.2. A function φ : X → R is said to be locally Lipschitz if for every x ∈ X

there exist Ux a neighborhood of x and a constant Lx > 0 such that

|φ(y) − φ(z)| ≤ Lx∥y − z∥X for all y, z ∈ Ux.

For such a function the generalized (Clarke) directional derivative of j at the point x ∈ X

in the direction v ∈ X is defined by

φ0(x; v) = lim sup
y→x, λ→0+

φ(y + λv) − φ(y)
λ

.

The generalized gradient (subdifferential) of φ at x is a subset of the dual space X∗ given
by

∂φ(x) = {ζ ∈ X∗ | φ0(x; v) ≥ ⟨ζ, v⟩ for all v ∈ X}.
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We shall use the following properties of the generalized directional derivative and the
generalized gradient, see [25, Proposition 3.23].
Proposition 2.3. Assume that φ : X → R is a locally Lipschitz function. Then the
following hold:

(i) for every x ∈ X, the function X ∋ v 7→ φ0(x; v) ∈ R is positively homogeneous,
and subadditive, i.e.,

φ0(x; λv) = λφ0(x; v) for all λ ≥ 0, v ∈ X,

φ0(x; v1 + v2) ≤ φ0(x; v1) + φ0(x; v2) for all v1, v2 ∈ X,

respectively.
(ii) for every x ∈ X, we have φ0(x; v) = max{⟨ζ, v⟩ | ζ ∈ ∂φ(x)}.
(iii) the function X × X ∋ (x, v) 7→ φ0(x; v) ∈ R is upper semicontinuous.
(iv) for every x ∈ X, the gradient ∂φ(x) is a nonempty, convex, and weakly compact

subset of X∗.
(v) the graph of the generalized gradient ∂φ is closed in X × (weak–X∗)–topology.

Now, we are in a position to formulate the aforementioned problem. The mixed non-
linear boundary value problem is given by

−∆u = g in Ω, u
∣∣
Γ1

= 0, −∂u

∂n

∣∣
Γ2

= q, −∂u

∂n

∣∣
Γ3

∈ α ∂j(u). (7)

Here, as in the problem (2), α is a positive constant while the function j : Γ3 × R → R,
called a superpotential (nonconvex potential), is such that j(x, ·) is locally Lipschitz for
a.e. x ∈ Γ3 and not necessary differentiable. Since in general j(x, ·) is nonconvex, so
the multivalued condition on Γ3 in problem (7) is described by a nonmonotone relation
expressed by the generalized gradient of Clarke. Such multivalued relation in problem
(7) is met in certain types of steady-state heat conduction problems (the behavior of a
semipermeable membrane of finite thickness, a temperature control problems, etc.). Fur-
ther, problem (7) can be considered as a prototype of several boundary semipermeability
models, see [24, 27, 28, 41], which are motivated by problems arising in hydraulics, fluid
flow problems through porous media, and electrostatics, where the solution represents
the pressure and the electric potentials. Note that the analogous problems with maxi-
mal monotone multivalued boundary relations (that is the case when j(x, ·) is a convex
function) were considered in [3, 9], see also references therein.

Under the above notation, the weak formulation to the elliptic problem (7) becomes
the following boundary hemivariational inequality:

find uα ∈ V0 such that a(uα, v) + α

∫
Γ3

j0(uα; v) dγ ≥ L(v) for all v ∈ V0. (8)

Here and in what follows we often omit the variable x and we simply write j(r) instead
of j(x, r). Observe that if j(x, ·) is a convex function for a.e. x ∈ Γ3, then the problem
(8) reduces to the variational inequality of second kind:

find uα ∈ V0 such that

a(uα, v − uα) + α

∫
Γ3

(j(v) − j(uα)) dγ ≥ L(v − uα) for all v ∈ V0. (9)
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Note that when j(r) = 1
2 (r − b)2, problem (9) reduces to a variational inequality corre-

sponding to problem (2).
The stationary heat conduction models with nonmonotone multivalued subdifferen-

tial interior and boundary semipermeability relations cannot be described by convex
potentials. They use locally Lipschitz potentials and their weak formulations lead to
hemivariational inequalities, see [27, Chapter 5.5.3] and [28].

In [11], for the problem (8), sufficient conditions were studied that guarantee the
existence of a solution and the comparison properties and asymptotic behavior, as α →
+∞, stated in Theorem 2.1. Moreover, continuous dependence of solutions was obtained.
In order to provide an existence result for the following elliptic hemivariational inequality

find u ∈ V0 such that a(u, v) + α

∫
Γ3

j0(u; v) dγ ≥ h(v) for all v ∈ V0 (10)

with h ∈ V ∗
0 , in [11], the following hypotheses were considered.

H(j): j : Γ3 × R → R is such that
(a) j(·, r) is measurable for all r ∈ R,
(b) j(x, ·) is locally Lipschitz for a.e. x ∈ Γ3,
(c) there exist c0, c1 ≥ 0 such that |∂j(x, r)| ≤ c0 + c1|r| for all r ∈ R, a.e. x ∈ Γ3,
(d) j0(x, r; b − r) ≤ 0 for all r ∈ R, a.e. x ∈ Γ3 with a constant b ∈ R.

Note that the existence results for elliptic hemivariational inequalities can be found
in several contributions, see [6, 17, 18, 23, 25, 26, 27, 31, 32, 33]. In comparison to
other works, the new hypothesis is H(j)(d). Under this condition, in [11], both existence
of solution to problem (10) and a convergence result when α → ∞ have been proved.
Moreover, if the hypothesis H(j)(d) is replaced by the relaxed monotonicity condition
(see [11] for details)

j0(x, r; s − r) + j0(x, s; r − s) ≤ mj |r − s|2

for all r, s ∈ R, a.e. x ∈ Γ3 with mj ≥ 0, and the smallness condition

ma > α mj∥γ∥2

is assumed, then problem (10) is uniquely solvable, see [26, Lemma 20] for the proof.
However, this smallness condition is not suitable in the study of problem (10) since for a
sufficiently large value of α, it is not satisfied.

Theorem 2.4. If H(j) holds, h ∈ V ∗
0 and α > 0, then the hemivariational inequality

(10) has a solution.

Proof. This results applying a surjectivity result in [25, Proposition 3.61] and partially
follow arguments of [26, Lemma 20]. Here, we will give an idea of the proof, for details
see [11, Theorem 4].

i) If we consider A : V0 → V ∗
0 such that ⟨Au, v⟩ = a(u, v), ∀u, v ∈ V0, we prove that

the operator A is a linear, bounded (∥A(u)∥V ∗
0

≤ ∥u∥V0) and coercive (⟨Av, v⟩ = ∥v∥2
V0

).
Moreover, A is a pseudomonotone operator.
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ii) Next, we define F : L2(Γ3) → R such that

F (y) =
∫

Γ3

j(x, y(x))dγ, y ∈ L2(Γ3).

The functional F enjoys the following properties (see [25]).

p1) F is well defined and Lipschitz continuous on bounded subsets of L2(Γ3), hence
also locally Lipschitz,

p2) F 0(y, z) ≤
∫

Γ3
j(x, y(x), z(x))dγ, y, z ∈ L2(Γ3).

p3) ∥∂F (y)∥L2(Γ3) ≤ c1 + c2∥y∥L2(Γ3), y ∈ L2(Γ3) with c1, c2 ≥ 0.

iii) Now, we define B : V0 → 2V ∗
0 such that

B(v) = αγ∗∂F (γv), ∀v ∈ V0

where γ∗ : L2(Γ) → V ∗
0 denotes the adjoint of the trace γ. B is pseudomonotone and

bounded multivalued operator.
iv) We prove that A + B is a bounded, pseudomonotone and coercive multivalued

operator, hence also surjective.
v) Next, there exists u ∈ V0 such that (A + B)u ∋ h.
vi) We obtain that u solves problem (8).

Note that, from Theorem 4.5 it follows that for each α > 0, problem (8) has a solution
uα ∈ V0 while [6, Corollary 2.102] entails that problem (3) has a unique solution u∞ ∈ K.
Moreover, it is easy to observe that problem (3) can be equivalently formulated as follows

find u∞ ∈ K such that a(u∞, v − u∞) = L(v − u∞) for all v ∈ K. (11)

In what follows we need the hypothesis on the data.

(H0): g ∈ H, g ≤ 0 in Ω, q ∈ Q, q ≥ 0 on Γ2.

Theorem 2.5. If H(j), (H0) hold and b ≥ 0, then

(a) uα ≤ b in Ω,
(b) uα ≤ u∞ in Ω,

where uα ∈ V0 is a solution to problem (8) and u∞ ∈ K is the unique solution to
problem (3).

Proof. a) Let w = uα −b. Since w
∣∣
Γ1

= −b ≤ 0, then w+
∣∣
Γ1

= 0. If we choose v = −w+ ∈
V0 in (8), by (H0) we have L(w+) ≤ 0, then

a(w+, w+) ≤ α

∫
Γ3

j0(uα; −(uα − b)+) dγ.

Next, by H(j)(d) and the coerciveness of a, we deduce ma∥w+∥2
V ≤ 0. Hence w+ = 0 in

Ω, and uα ≤ b in Ω.
b) If we denote w = uα − u∞, we have that w

∣∣
Γ1

= 0. If we take v = −w+ ∈ V0

in (8), by (a) we have that w
∣∣
Γ3

= (uα − b)
∣∣
Γ3

≤ 0 and consequently w+ ∈ K0. Taking
v = w+ ∈ K0 in (3), we have

a(w+, w+) ≤ α

∫
Γ3

j0(uα; −w+) dγ.
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Since u∞ = b on Γ3, by H(j)(d) and the coerciveness of a, we deduce ma∥w+∥2
V ≤ 0.

Therefore, w+ = 0 in Ω and uα ≤ u∞ in Ω.

In what follows, we comment on the monotonicity property analogous to condition
(iv) stated for problem (3) in Theorem 2.1.

Proposition 2.6. Assume that H(j) and (H0) hold, and

j0(x, r; −(r − s)+) + c j0(x, s; (r − s)+) ≤ 0 (12)

for all c ≥ 1, all r, s ∈ R, r ≤ b, s ≤ b and a.e. x ∈ Γ3. Let uαi
∈ V0 denote the unique

solution to the inequality (8) corresponding to αi > 0, i = 1, 2. Then the following
monotonicity property holds:

α1 ≤ α2 =⇒ uα1 ≤ uα2 in Ω.

Proof. Let 0 < α1 ≤ α2 and w = uα1 − uα2 in Ω. It is sufficient to prove that w+ = 0 in
Ω. Since w

∣∣
Γ1

= 0, we have w+ ∈ V0. We choose v = −w+ ∈ V0 in problem (8) for α1,
v = w+ ∈ V0 in problem (8) for α2 and by adding, we have

−a(w, w+) + α1

∫
Γ3

j0(uα1 ; −w+) dΓ + α2

∫
Γ3

j0(uα2 ; w+) dΓ ≥ 0

which implies

a(w+, w+) ≤
∫

Γ3

(
α1 j0(uα1 ; −w+) + α2 j0(uα2 ; w+)

)
dΓ

= α1

∫
Γ3

(
j0(uα1 ; −w+) + α2

α1
j0(uα2 ; w+)

)
dΓ ≤ 0.

Using the coercivity of the form a, we deduce that w+ = 0, which completes the proof.

Next, with the aim of studying the asymptotic behavior of solutions to problem (8)
when α → ∞, it is necessary to consider the following additional hypothesis on the
superpotential j.

(H1): if j0(x, r; b − r) = 0 for all r ∈ R, a.e. x ∈ Γ3, then r = b.

Theorem 2.7. Assume H(j), (H0) and (H1). Let {uα} ⊂ V0 be a sequence of solutions
to problem (8) and u∞ ∈ K be the unique solution to problem (3). Then uα → u∞ in V ,
as α → +∞.

Proof. We will give a sketch of the proof, see [11, Theorem 7] for details.
i) We prove that the sequence {uα} is bounded in V , ∀α > 0.
ii) Next, there exists c1 > 0 (independent of α) such that

−
∫

Γ3

j0(uα, u∞ − uα)dγ ≤ c1

α
.

iii) We obtain that there exists u∗ ∈ V0 such that uα ⇀ u∗ weakly in V , as α → ∞.
iv) Next, we prove that u∗ satisfies: a(u∗, w − u∗) ≥ L(w − u∗), ∀w ∈ K and we have

that u∗ ∈ K.
v) We have that u∗ = u∞.
vi) Finally, uα → u∞ strongly in V , as α → +∞.
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Now, we present a result on continuous dependence of solution to problem (8) on the
internal energy g and the heat flux q for fixed α > 0. First, we give a previous result.

Lemma 2.8. Let gn ∈ H, qn ∈ Q for n ∈ N. Define Ln ∈ V ∗, n ∈ N, by

Ln(v) =
∫

Ω
gnv dx −

∫
Γ2

qnv dγ for v ∈ V.

If gn ⇀ g weakly in H, qn ⇀ q weakly in L2(Γ2), and vn ∈ V , vn ⇀ v weakly in V , then

Ln(vn) → L(v), as n → ∞,

and there exists a constant C > 0 independent of n such that ∥Ln∥V ∗ ≤ C for all n ∈ N.

Proof. The proof results from the compactness of the embedding V into H and of the
trace operator from V into L2(Γ).

The continuous dependence result reads as follows.

Theorem 2.9. Assume that α > 0 is fixed, L, Ln ∈ V ∗, n ∈ N and H(j) holds. Let
un ∈ V0, n ∈ N, be a solution to problem (8) corresponding to Ln, and

lim Ln(zn) = L(z) for any zn ⇀ z weakly in V, as n → ∞. (13)

Then, there exists a subsequence of {un} which converges weakly in V to a solution of
problem (8) corresponding to L. If, in addition, the following hypotheses hold:

j0(x, r; s − r) + j0(x, s; r − s) ≤ mj |r − s|2 for all r, s ∈ R, a.e. x ∈ Γ3, (14)

ma > α mj∥γ∥2, (15)

where mj ≥ 0, then problem (8) has a unique solution u and un ∈ V0 corresponding to L

and Ln, respectively, and the whole sequence {un} converges to u in V , as n → ∞.

Proof. See [11, Theorem 9] for details.

Finally, we present three examples of functions which satisfy the hypotheses H(j),
(H1) and (14). Note that the first example is a nonconvex function and the second and
third examples are convex fuctions. Moreover, the last example allows us to arrive to the
Robin boundary condition.

Example 2.10. Let j : R → R be the function defined by

j(r) =
{

(r − b)2 if r < b,

1 − e−(r−b) if r ≥ b

for r ∈ R with a constant b ∈ R. This function is nonconvex, locally Lipschitz and its
subdifferential is given by

∂j(r) =


2(r − b) if r < b,

[0, 1] if r = b,

e−(r−b) if r > b
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for all r ∈ R. Hence, we have |∂j(r)| ≤ 1 + 2|b| + 2|r| for all r ∈ R. Moreover, using
Proposition 2.3(ii), one has

j0(r; b − r) = max{ζ (b − r) | ζ ∈ ∂j(r)} =


−2(b − r)2 if r < b,

0 if r = b,

e−(r−b)(b − r) if r > b

for all r ∈ R. Thus H(j) is satisfied. By the above formula, we also infer that (H1) is
satisfied and the condition (14) holds with mj = 1.

Example 2.11. We define j : R → R by

j(r) = |r − b| =
{

−r + b if r ≤ b,

r − b if r > b

for r ∈ R with a constant b ∈ R. Then, we have for all r ∈ R

∂j(r) =


−1 if r < b,

[−1, 1] if r = b,

1 if r > b

and j0(r; b − r) =


b − r if r > b,

0 if r = b,

r − b if r < b

for all r ∈ R. Thus, j0(r; b − r) ≤ 0 for all r ∈ R. Also, we observe that if j0(r; b − r) = 0
for all r ∈ R, then r = b. In consequence, the properties H(j) and (H1) are verified.
Further, since j is convex, it satisfies (14) with mj = 0.

Example 2.12. Let j : R → R be the function defined by

j(r) = 1
2(r − b)2

for r ∈ R with b ∈ R. Then

j0(r; s) = (r − b) s and ∂j(r) = r − b

for r, s ∈ R. Moreover, we have j0(r; b − r) = (r − b) (b − r) = −(b − r)2 ≤ 0 for all r ∈ R.
Also, for all r ∈ R, if j0(r; b − r) = 0, then (r − b) (b − r) = −(b − r)2 = 0, which implies
r = b. Hence, we deduce that j satisfies properties H(j), (H1) and j satisfies (14) with
mj = 0.

3. Optimal control problems with variational equalities. In this section, we con-
sider optimal control problems related with mixed elliptic problems of type considered
in subsection 2.1. More precisely, we review the optimal control problems studied in
[12, 13, 14, 15].

3.1. Optimal control problems on the internal energy. In [12], we consider a
bounded domain Ω in Rd which regular boundary Γ consists of the union of two disjoint
portions Γi, i = 1, 2 with |Γi| > 0, where |Γi| denotes the (d − 1)-dimensional Hausdorff
measure of the portion Γi on Γ. We formulate, in a similar way to problems (1) and (2),
the following mixed elliptic problems:

−∆u = g in Ω, u|Γ1
= b, − ∂u

∂n

∣∣∣∣
Γ2

= q, (16)
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−∆u = g in Ω, − ∂u

∂n

∣∣∣∣
Γ1

= α(u − b), − ∂u

∂n

∣∣∣∣
Γ2

= q, (17)

where g is the internal energy in Ω, b is the temperature on Γ1 for (16) and the temper-
ature of the external neighborhood of Γ1 for (17), q is the heat flux on Γ2 and α > 0 is
the heat transfer coefficient of Γ1, that satisfy the following assumptions g ∈ H, q ∈ Q,
b ∈ H

1
2 (Γ1).

We denote by ug and uαg the unique solutions of the mixed elliptic problems (16) and
(17), respectively, for which variational equalities are given by [20]

a (ug, v) = Lg(v), ∀v ∈ V0, ug ∈ K, (18)

aα (uαg, v) = Lαg(v), ∀v ∈ V, uαg ∈ V, (19)

where
V = H1(Ω), V0 = {v ∈ V : v = 0 on Γ1} , K = v0 + V0,

a(u, v) =
∫

Ω
∇u · ∇vdx, aα(u, v) = a(u, v) + α

∫
Γ1

uvdγ,

Lg(v) = (g, v) −
∫

Γ2

qvdγ, Lαg(v) = Lg(v) + α

∫
Γ1

bvdγ

for a given v0 ∈ V, v0|Γ1
= b.

We consider the following distributed optimal control problems [22, 39] given by:

find g∗ ∈ H such that J(g∗) = min
g∈H

J(g) (20)

with
J(g) = 1

2 ||ug − zd||2H + M

2 ||g||2H (21)

where ug is the unique solution to the variational equality (18), zd ∈ H given and M a
positive constant.

For each α > 0, we formulate the following distributed optimal control problem:

find g∗
α ∈ H such that Jα(g∗

α) = min
g∈H

Jα(g) (22)

with
Jα(g) = 1

2 ||uαg − zd||2H + M

2 ||g||2H (23)

where uαg is a solution to the problem (19), zd ∈ H given and M a positive constant.
In [12], following [22], we prove existence and uniqueness of optimal solution to the

problem (20) and (22), for each α > 0. For this purpose, we define the following mappings.
Let C : H → V0 be the mapping such that C(g) = ug −u0, where u0 is the solution of

problem (18) for g = 0. Let Π : H × H → R and L : H → R be defined by the following
expressions:

Π(g, h) = (C(g), C(h)) + M(g, h), ∀g, h ∈ H,

L(g) = (C(g), zd − u0) , ∀g ∈ H.

For each α > 0, we define Cα : H → V0 such that Cα(g) = uαg − uα0, where uα0 is the
solution of problem (19) for g = 0. Let Πα : H × H → R and Lα : H → R be defined by



70 C. M. GARIBOLDI AND D. A. TARZIA

the following expressions:

Πα(g, h) = (Cα(g), Cα(h)) + M(g, h), ∀g, h ∈ H,

Lα(g) = (Cα(g), zd − uα0) , ∀g ∈ H.

We obtain the following results, whose proofs can be seen in [12].

Lemma 3.1. a) C is a linear and continuous mapping, Π is a bilinear, continuous,
symmetric and coercive form on H × H and L is linear and continuous on H.

b) The functional J can be also written as

J(g) = 1
2Π(g, h) − L(g) + 1

2 ∥u0 − zd∥2
H , ∀g ∈ H.

c) There exists a unique optimal control g∗ ∈ H such that

J (g∗)) = min
g∈H

J(g).

Lemma 3.2. For each α > 0, we have:

a) Cα is a linear and continuous mapping, Πα is a bilinear, continuous, symmetric
and coercive form on H × H and Lα is linear and continuous on H.

b) The functional Jα can be also written as

Jα(g) = 1
2Πα(g, h) − Lα(g) + 1

2 ∥uα0 − zd∥2
H , ∀g ∈ H.

c) There exists a unique optimal control g∗
α ∈ H such that

Jα (g∗
α) = min

g∈H
Jα(g).

We define the adjoint state pg corresponding to (16) or (18), for each g ∈ H, as the
unique solution of the following mixed elliptic problem

−∆pg = ug − zd in Ω, pg|Γ1
= 0,

∂pg

∂n

∣∣∣∣
Γ2

= 0,

whose variational formulation is given by

a (pg, v) = (ug − zd, v) , ∀v ∈ V0, pg ∈ V0. (24)

For each α > 0, we define the adjoint state pαg as the unique solution of the following
mixed elliptic problem corresponding to (17) or (19), for each g ∈ H

−∆pαg = uαg − zd in Ω, − ∂pαg

∂n

∣∣∣∣
Γ1

= αpαg,
∂pαg

∂n

∣∣∣∣
Γ2

= 0,

which variational formulation is given by

aα (pαg, v) = (uαg − zd, v) , ∀v ∈ V, pαg ∈ V. (25)

Next, we give the optimality conditions to the problems (20) and (22).

Lemma 3.3. a) The optimality condition for problem (20) is given by J ′ (g∗) = 0 in
H, that is,

pg∗ + Mg∗ = 0 in H.
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b) For each α > 0, the optimality condition for problem (22) is given by J ′
α (g∗

α) = 0
in H, that is,

pαg∗
α

+ Mg∗
α = 0 in H.

Proof. a) This results taking into account that ∀g, h ∈ H

(J ′(g), h) = (ug − zd, C(h)) + M(g, h) = Π(g, h) − L(g)

and
(ug − zd, C(h)) = a (pg, C(h)) = (pg, h) .

b) For each α > 0, we have that ∀g, h ∈ H

⟨J ′
α(g), h⟩ = (uαg − zd, Cα(h)) + M(g, h) = Πα(g, h) − Lα(g),

and
(uαg − zα, Cα(h)) = aα (pαg, Cα(h)) = (pαg, h) .

Now, we consider the operator W : H → V0 ⊂ H defined by

W (g) = − 1
M

pg, g ∈ H

and for each α > 0, the operator Wα : H → V0 ⊂ H defined by

Wα(g) = − 1
M

pαg, g ∈ H.

We prove the following property.

Lemma 3.4. a) W is a Lipschitz operator over H, i.e.

∥W (g2) − W (g1)∥H ≤ 1
λ2M

∥g1 − g2∥H , ∀g1, g2 ∈ H,

and it is a contraction for all M > 1/λ2, where λ is the coerciveness constant of
the bilinear form a.

b) Wα is a Lipschitz operator over H, i.e.

∥Wα (g2) − Wα (g1)∥H ≤ 1
λ2

αM
∥g1 − g2∥H , ∀g1, g2 ∈ H,

and it is a contraction for all M > 1/λ2
α, where λα is the coerciveness constant of

the bilinear form aα.

Proof. a) By using the coerciveness of the bilinear form a we have

λ ∥pg2 − pg1∥2
V ≤ a (pg2 − pg1 , pg2 − pg1) ≤ ∥ug2 − ug1∥H ∥pg2 − pg1∥H

therefore
∥pg2 − pg1∥v ≤ 1

λ
∥ug2 − ug1∥H

and taking into account that the mapping g ∈ H → ug ∈ V is Lipschitzian, that is,

∥ug2 − ug1∥V ≤ 1
λ

∥g2 − g1∥H , ∀g1, g2 ∈ H

we obtain
∥W (g2) − W (g1)∥H ≤ 1

λ2M
∥g1 − g2∥H .
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b) In a similar way that (a), by using the coerciveness of the bilinear form aα, we obtain
that

∥pαg2 − pαg1∥v ≤ 1
λ

∥uαg2 − uαg1∥H

and taking into account that g ∈ H → uαg ∈ V is a Lipschitzian application, we have

∥Wα (g2) − Wα (g1)∥H ≤ 1
λ2

αM
∥g1 − g2∥H .

We have a convergence result for fixed data, when α goes to infinity.

Lemma 3.5. For all α > 0, q ∈ Q and b ∈ H
1
2 (Γ1), we have that:

a) uαg → ug strongly in V as α → +∞, ∀g ∈ H.
b) pαg → pg strongly in V as α → +∞, ∀g ∈ H.

Proof. An idea of the proof is as follows, for details see [12, Lemma 3.5].

a) We prove that:

i) The sequence {uαg} is bounded in V , ∀α > 0.
ii) There exists c1 > 0 (independent of α) such that∫

Γ1

(uαg − b)2dγ ≤ (c1)2

λ1(α − 1) .

iii) There exists wg ∈ V such that uαg ⇀ wg weakly in V , as α → ∞.
iv) wg ∈ K satisfies a(wg, v) = L(v), ∀v ∈ V0.

v) By uniqueness, we have that wg = ug.
vi) uαg → ug strongly in V , as α → +∞.

b) We obtain that:

i) The sequence {pαg} is bounded in V , ∀α > 0.
ii) There exists c2 > 0 (independent of α) such that∫

Γ1

(pαg − pg)2dγ ≤ (c2)2

λ1(α − 1) .

iii) There exists ξg ∈ V such that uαg ⇀ ξg weakly in V , as α → +∞.
iv) ξg ∈ V0 satisfies a(ξg, v) = (ug − zd, v), ∀v ∈ V0.

v) By uniqueness, ξg = pg.
vi) pαg → pg strongly in V , as α → +∞.

In [12], we obtain the following convergence result for the optimal solutions g∗
α, uαg∗

α

and pαg∗
α

of the optimal control problems (22) to the optimal solutions g∗, ug∗ and pg∗

of the problem (20), when the parameter α goes to infinity. This result is presented as
follows.

Theorem 3.6. If M > 1
λ1

, with λ1 the coerciveness constant of a1, we have that, when
α → +∞:

a) If g∗ and g∗
α are the unique solutions of the optimal control problems (20) and (22),

respectively, then g∗
α → g∗ strongly in H.
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b) If ug∗ and uαg∗
α

are the system states corresponding to problems (18) and (19),
respectively, then uαg∗

α
→ ug∗ strongly in V .

c) If pg∗ and pαg∗
α

are the adjoint states corresponding to problems (18) and (19),
respectively, then pαg∗

α
→ pg∗ strongly in V .

Proof. We will give a scheme of the proof in three steps. For details see [12, Theorem
4.1].
Step 1. By using that g∗

α is the unique solution of problem (22), we obtain that there
exist positive constants c1, c2 and c3 such that

||g∗
α||H ≤ c1; ||uαg∗

α
||V ≤ c2;

∫
Γ1

(uαg∗
α

− ug∗)2dγ ≤ c3

λ1(α − 1) .

Therefore, we deduce that there exist f ∈ H and η ∈ K such that g∗
α ⇀ f weakly in H

and uαg∗
α

⇀ η weakly in V , as α → +∞. Next, taking v = pαg∗
α

− pg∗ ∈ V in (25), we
prove that there exist positive constants c4 and c5 such that

||pαg∗
α
||V ≤ c4;

∫
Γ1

(pαg∗
α

− pg∗)2dγ ≤ c5

λ1(α − 1)
and there exists ξ ∈ V0 such that pαg∗

α
⇀ ξ weakly in V , as α → +∞.

Step 2. Taking v ∈ V0 in (25) and (19), respectively, and by passing to the limits, we
obtain

a(ξ.v) = (η − zd, v), ∀v ∈ V0, ξ ∈ V0. (26)
and

a(η.v) = (f, v) −
∫

Γ2

qv dγ, ∀v ∈ V0, η ∈ K. (27)

Now, by using Lemma 3.4, we have f = − 1
M ξ in H. From the uniqueness of fixed point

we have g∗ = − 1
M pg∗ in H and therefore, f = g∗, η = ug∗ and ξ = pg∗ .

Step 3. The strong convergence are obtained by the previous weak convergence and the
following inequalities:

λ1||pαg∗
α

− pg∗ ||2V ≤ (uαg∗
α

− zd, pαg∗
α

− pg∗) − a(pg∗ , pαg∗
α

− pg∗),

||g∗
α − g∗||H ≤ 1

M
||pαg∗

α
− pg∗ ||V ,

λ1||uαg∗
α

− ug∗ ||2V ≤ a(uαg∗ − ug∗ , uαg∗
α

− ug∗).
In [13], we obtain a new proof of the convergence results obtained in [12] for the

optimal solutions of the optimal control problems (22) to the optimal solutions of the
problem (20), when α → ∞. This result is given as follows.
Theorem 3.7. We have that, when α → +∞:

a) If g∗ and g∗
α are the unique solutions of the optimal control problems (20) and (22),

respectively, then g∗
α → g∗ strongly in H.

b) If ug∗ and uαg∗
α

are the system states corresponding to problems (18) and (19),
respectively, then uαg∗

α
→ ug∗ strongly in V .

c) If pg∗ and pαg∗
α

are the adjoint states corresponding to problems (18) and (19),
respectively, then pαg∗

α
→ pg∗ strongly in V .
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Proof. This proof is different from the previous theorem in step 2, for details see [13,
Theorem 4.1]. That is, by variational equalities (26) and (27), from uniqueness of solution
of the variational equalities (19) and (24), we have η = uf and ξ = pf , respectively. Now,
taking into account that ∀h ∈ H

J(f) = Jα(f) ≤ lim inf
α→∞

Jα(g∗
α) ≤ lim inf

α→∞
Jα(h) = lim

α→∞
Jα(h) = J(h)

and from the uniqueness of the optimal control, we obtain that f = g∗. Therefore η =
uf = ug∗ and ξ = pf = pg∗ .

3.2. Optimal control problems on the heat flux. In [14], we consider the mixed
elliptic problems (16) and (17) and we denote by uq and uαq the unique solutions of the
following variational equalities:

a (uq, v) = Lq(v), ∀v ∈ V0, uq ∈ K, (28)

aα (uαq, v) = Lqα(v), ∀v ∈ V, uαq ∈ V, (29)

where V , V0, K, a and aα are given as in the previous subsection and

Lq(v) = (g, v) −
∫

Γ2

qvdγ, Lαq(v) = Lq(v) + α

∫
Γ1

bvdγ.

We consider Uad = {q ∈ Q : q ≥ 0 on Γ2} and we formulate the following distributed
optimal control problems [22, 39]:

find q∗ ∈ Uad such that J2(q∗) = min
q∈Uad

J2(q) (30)

with
J2(q) = 1

2 ||uq − zd||2H + M

2 ||q||2Q (31)

where uq is the unique solution to the variational equality (28), zd ∈ H is given and M

is a positive constant. For each α > 0, we formulate the following distributed optimal
control problem:

find q∗
α ∈ Uad such that J2α(q∗

α) = min
q∈Uad

J2α(q) (32)

with
J2α(q) = 1

2 ||uαq − zd||2H + M

2 ||q||2Q (33)

where uαq is a solution to the problem (29), zd ∈ H given and M a positive constant.
In [14], in a similar way to [12], we prove existence and uniqueness of optimal solutions

to the problems (30) and (32).

Lemma 3.8. a) There exists a unique optimal control q∗ ∈ Uad to the problem (30).
b) For each α > 0, there exists a unique optimal control q∗

α ∈ Uad to the problem (32).

Proof. This results in a similar way to Lemma 3.1 and Lemma 3.2. For details see [14,
Lemma 1 and Lemma 6].

Lemma 3.9. a) The optimality condition for the optimal control problem (30) is given by

(Mq∗ − pq∗ , η − q∗)Q ≥ 0, ∀η ∈ Uad, q∗ ∈ Uad. (34)
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b) For each α > 0, the optimality condition for the optimal control problem (32) is given
by

(Mq∗
α − pαq∗

α
, η − q∗)Q ≥ 0, ∀η ∈ Uad, q∗

α ∈ Uad. (35)

Proof. The inequalities (34) and (35) results following [20, 22] and taking into account
that, the Gateaux derivative for J2 is given by

(J ′
2(q), η − q) = (uη − uq, uq − zd) + M(q, η − q)Q

= −(pq, η − q)Q + M(q, η − q)Q, ∀η, q ∈ Q

and for each α > 0, the Gateaux derivative for J2α is given by
(J ′

2α(q), η − q) = (uαη − uαq, uαq − zd) + M(q, η − q)Q

= −(pαq, η − q)Q + M(q, η − q)Q, ∀η, q ∈ Q.

Now, we give the following characterization of the optimal controls.

Theorem 3.10. a) Let q∗ ∈ Uad be, q∗ is optimal control in Q if and only if q∗ ∈ Q

satisfies the complementary conditions

q∗ ≥ 0 on Γ2, Mq∗ − pq∗ ≥ 0 on Γ2, q∗(Mq∗ − pq∗) = 0 on Γ2.

b) For each α > 0, let q∗
α ∈ Uad be, q∗

α is optimal control in Q if and only if q∗
α ∈ Q

satisfies the complementary conditions

q∗
α ≥ 0 on Γ2, Mq∗

α − pαq∗
α

≥ 0 on Γ2, q∗
α(Mq∗

α − pαq∗
α
) = 0 on Γ2.

Proof. We present an idea of the proof, for more details see [14, Theorems 4 and 9].

a) If we take η = 0 ∈ Uad and η = 2q∗ ∈ Uad in (34), we obtain

(Mq∗ − pq∗ , q∗) = 0

next
(Mq∗ − pq∗ , η) ≥ (Mq∗ − pq∗ , q∗) = 0, ∀η ∈ Uad

therefore Mq∗ − pq∗ ≥ 0 on Γ2 and since q∗ ≥ 0 on Γ2, we have that

(Mq∗ − pq∗)q∗ = 0.

Conversely, ∀η ∈ Uad we have

(Mq∗ − pq∗ , η − q∗) = (Mq∗ − pq∗ , η) ≥ 0

therefore q∗ is the optimal control in Q.
b) By taking η = 0 ∈ Uad and η = 2q∗

α ∈ Uad in (35) and following a similar way as in
(a), we have (b).

Corollary 3.11. If we consider the boundary optimal control problems (30) and (32)
without restrictions (i.e., Uad = Q), we obtain that q∗ = 1

M pq∗ and q∗
α = 1

M pαq∗
α
, respec-

tively, similar to [12].

In a similar way to the previous subsection, we can prove the following convergence
results.

Lemma 3.12. For all α > 0, g ∈ H and b ∈ H
1
2 (Γ1), we have that:

a) uαq → uq strongly in V as α → +∞, ∀q ∈ Q.
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b) pαq → pq strongly in V as α → +∞, ∀q ∈ Q.

Proof. An idea of the proof is as follows, for details see [14, Theorem 11].

a) We prove that:

i) If we take v = uαq − uq in (29) with α > 1, then there exists c1 > 0 (indepen-
dent of α) such that

λ1||uαq − uq||2V + (α − 1)
∫

Γ1

(uαq − uq)2dγ ≤ c1||uαq − uq||V ,

where λ1 is the coerciveness constant of a1.
ii) Then, we deduce that there exists wq ∈ V such that uαq ⇀ wq weakly in V ,

as α → ∞ and ∫
Γ1

(uαq − b)2dγ ≤ (c1)2

λ1(α − 1) ;

iii) Moreover, wq ∈ K satisfies a(wq, v) = L(v), ∀v ∈ V0 and by uniqueness, we
have that wq = uq;

iv) Finally, from the inequality

λ1||uαq − uq||2V ≤ Lq(uαq − uq) − a(uq, uαq − uq)

we obtain that uαq → uq strongly in V , as α → +∞.

b) This results in a similar way to (a).

Theorem 3.13. We have that, when α → +∞:

a) If q∗ and q∗
α are the unique solutions of the optimal control problems (30) and (32),

respectively, then q∗
α → q∗ strongly in Q.

b) If uq∗ and uαq∗
α

are the system states corresponding to problems (18) and (19),
respectively, then uαq∗

α
→ uq∗ strongly in V .

c) If pq∗ and pαq∗
α

are the adjoint states corresponding to problems (18) and (19),
respectively, then pαq∗

α
→ pq∗ strongly in V .

Proof. We will give a scheme of the proof in three steps. For details see [14, Theorem
12].

Step 1. By using that q∗
α is the unique solution of problem (32), we obtain that there

exist positive constants c1, c2 and c3 such that

||q∗
α||Q ≤ c1; ||uαq∗

α
||V ≤ c2;

∫
Γ1

(uαq∗
α

− uq∗)2dγ ≤ c3

λ1(α − 1) .

Therefore, we deduce that there exist f ∈ Q and η ∈ K such that q∗
α ⇀ f weakly in Q

and uαq∗
α

⇀ η weakly in V , as α → +∞. Next, taking v = pαq∗
α

− pq∗ ∈ V in (25), we
prove that there exist positive constants c4 and c5 such that

||pαq∗
α
||V ≤ c4;

∫
Γ1

(pαq∗
α

− pq∗)2dγ ≤ c5

λ1(α − 1)
and there exists ξ ∈ V0 such that pαq∗

α
⇀ ξ weakly in V , as α → +∞.
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Step 2. Taking v ∈ V0 in (25) and (4), respectively, and by passing to the limits, we
obtain

a(ξ.v) = (η − zd, v), ∀v ∈ V0, ξ ∈ V0. (36)

and
a(η.v) = (f, v) −

∫
Γ2

qv dγ, ∀v ∈ V0, η ∈ K. (37)

Next, from the uniqueness of solution of the variational equality (19) and (24), we have
η = uf and ξ = pf , respectively. Now, taking into account that ∀h ∈ Q

J2(f) = J2α(f) ≤ lim inf
α→∞

J2α(q∗
α) ≤ lim inf

α→∞
J2α(h) = lim

α→∞
J2α(h) = J2(h)

and from the uniqueness of the optimal control, we obtain that f = q∗. Therefore η =
uf = uq∗ and ξ = pf = pq∗ .

Step 3. The strong convergence is obtained by the previous weak convergence and the
following inequalities

λ1||pαq∗
α

− pq∗ ||2V ≤ (uαq∗
α

− zd, pαq∗
α

− pq∗) − a(pq∗ , pαq∗
α

− pq∗),

||q∗
α − q∗||Q ≤ 1

M
||pαq∗

α
− pq∗ ||V ,

||uαq∗
α

− uq∗ ||V ≤ ||γ||
λ

||q∗
α − q∗||Q

where γ denote the trace operator.

3.3. Simultaneous optimal control problems on the internal energy and the
heat flux. In [15], we consider the mixed elliptic problems (16) and (17) and we denote
by ugq and uαgq the unique solutions of the following variational equalities:

a (ugq, v) = Lgq(v), ∀v ∈ V0, ugq ∈ K, (38)

aα (uαgq, v) = Lαgq(v), ∀v ∈ V, uαgq ∈ V, (39)

where V , V0, K, a and aα are defined as in previous subsections and

Lgq(v) = (g, v) −
∫

Γ2

qvdγ, Lαgq(v) = Lgq(v) + α

∫
Γ1

bvdγ.

We consider Uad = {q ∈ Q : q ≥ 0 on Γ2} and we formulate the following simultaneous
distributed-boundary optimal control problems [39]:

find (g, q) ∈ H × Uad such that J3(g, q) = min
(g,q)∈H×Uad

J3(g, q) (40)

with
J3(g, q) = 1

2 ||ugq − zd||2H + M1

2 ||g||2H + M2

2 ||q||2Q (41)

and, for each α > 0

find (gα, qα) ∈ H × Uad such that J3α(gα, qα) = min
(g,q)∈H×Uad

J3α(g, q) (42)

with
J3α(g, q) = 1

2 ||uαgq − zd||2H + M1

2 ||g||2H + M2

2 ||q||2Q (43)



78 C. M. GARIBOLDI AND D. A. TARZIA

where ugq is the unique solution to the variational equality (38), uαgq is a solution to the
problem (39), zd ∈ H is given and M1 and M2 are positive constants.

In [15], in a similar way to [12, 14], we prove existence and uniqueness results of
optimal solutions to the problem (40) and (42).

Lemma 3.14. a) There exists a unique optimal control (g, q) ∈ H × Uad to the problem
(40) and the optimality condition is given by

(h − g, pg q + M1g) + (η − q, M2q − pg q)Q ≥ 0, ∀(h, η) ∈ H × Uad. (44)

b) For each α > 0, there exists a unique optimal control (gα, qα) ∈ H ×Uad to the problem
(42) and the optimality condition is given by ∀(h, η) ∈ H × Uad

(h − gα, pαgαqα
+ M1gα) + (η − qα, M2qα − pαgαqα

)Q ≥ 0. (45)

Proof. The proof results in a similar way to Lemma 3.1, Lemma 3.2, Lemma 3.8 and
Lemma 3.9. For details see [15, Theorem 1 and Theorem 2].

If we consider the simultaneous distributed and boundary optimal control problems
(40) and (42) without restrictions, i.e. Uad = Q, we can characterize their solutions by
using the fixed point theory.

We consider the norm in H × Q defined by

||(g, q)||2H×Q = ||g||2H + ||q||2Q ∀(g, q) ∈ H × Q.

We define the operator W : H × Q → H × Q by

W (g, q) =
(

− 1
M1

pgq,
1

M2
pgq

)
(46)

and for each α > 0, the operator Wα : H × Q → H × Q by the expression

Wα(g, q) =
(

− 1
M1

pαgq,
1

M2
pαgq

)
(47)

and we can prove the following result.

Theorem 3.15. a) W is a Lipschitz operator over H × Q, that is, there exists a positive
constant C0 = C0(λ, γ, M1, M2) such that, ∀(g1, q1), (g2, q2) ∈ H × Q

∥W (g2, q2) − W (g1, q1)∥H×Q ≤ C0∥(g2, q2) − (g1, q1)∥H×Q (48)

and W is a contraction operator if and only if data satisfy that

C0 =
√

2
λ2

√
1

M2
1

+ ∥γ∥2

M2
2

(1 + ∥γ∥) < 1. (49)

b) Wα is a Lipschitz operator over H × Q, that is, there exists a positive constant C0α =
C0α(λα, γ, M1, M2), such that

∥Wα(g2, q2) − Wα(g1, q1)∥H×Q ≤ C0α∥(g2 − g1, q2 − q1)∥H×Q (50)

and Wα is a contraction operator if and only if data satisfy that

C0α =
√

2
λ2

α

√
1

M2
1

+ ∥γ∥2

M2
2

(1 + ∥γ∥) < 1. (51)
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Proof. This results by estimates between the direct and adjoint states and the vector
control variable. For details see [15, Theorem 4 and Theorem 6].
Corollary 3.16. a) If data satisfy inequality (49) then the unique solution (g, q) ∈ H×Q

of optimal control problem (40) can be obtained as the unique fixed point of the operator
W , that is

W (g, q) = (− 1
M1

pg q,
1

M2
pg q) = (g, q).

b) If data satisfy inequality C0α < 1, then the unique solution (gα, qα) ∈ H × Q of the
vectorial optimal control problem (42) can be obtained as the unique fixed point of the
operator Wα, that is:

Wα(gα, qα) = (− 1
M1

pαgαqα
,

1
M2

pαgαqα
) = (gα, qα).

Now, we present the convergence results for the simultaneous distributed-boundary
optimal control problems (40) and (42).
Lemma 3.17. For each α > 0, (g, q) ∈ H × Q, b ∈ H1/2(Γ1), we have:

a) uαgq → ugq strongly in V as α → +∞.
b) pαgq → pgq strongly in V as α → +∞.

Proof. The proof is similar to that of Lemma 3.5 and Lemma 3.12. An idea of the proof
is as follows, for details see [15, Lemma 1].

a) We prove that:
i) If we take v = uαgq − ugq in (39) with α > 1, then there exists c1 > 0

(independent of α) such that

λ1||uαgq − ugq||2V + (α − 1)
∫

Γ1

(uαgq − uq)2dγ ≤ c1||uαgq − ugq||V ,

where λ1 is the coerciveness constant of a1;
ii) Then, we deduce that there exists wq ∈ V such that uαgq ⇀ wgq weakly in V ,

as α → ∞ and ∫
Γ1

(uαgq − b)2dγ ≤ (c1)2

λ1(α − 1) ;

iii) Moreover, wgq ∈ K satisfies a(wgq, v) = L(v), ∀v ∈ V0 and by uniqueness, we
have that wgq = ugq;

iv) Finally, from the inequality
λ1||uαgq − ugq||2V ≤ Lgq(uαgq − ugq) − a(ugq, uαgq − ugq)

we obtain that uαgq → ugq strongly in V , as α → +∞.
b) This results in a similar way to (a).

Theorem 3.18. We have that, when α → +∞:
a) If (g, q) and (gα, qα) are the unique solutions of the optimal control problems (40)

and (42), respectively, then (gα, qα) → (g, q) strongly in H × Q.
b) If ug q and uαgαqα

are the system states corresponding to problems (18) and (19),
respectively, then uαgαqα

→ ug q strongly in V .
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c) If pg q and pαgαqα
are the adjoint states corresponding to problems (18) and (19),

respectively, then pαgαqα
→ pg q strongly in V .

Proof. We will give a scheme of the proof in three steps. For details see [15, Theorem 7].

Step 1. By using that (gα, qα) is the unique solution of problem (42), we obtain that
there exist positive constants c1, c2, c3 and c4 such that

||gα||H ≤ c1; ||qα||Q ≤ c2; ||uαgαqα
||V ≤ c3; ||pαgαqα

||V ≤ c4.

Therefore, we deduce that there exist h ∈ H, f ∈ Q, η ∈ K and ξ ∈ V0 such that gα ⇀ h

weakly in H, qα ⇀ f weakly in Q, uαgαqα
⇀ η weakly in V and pαgαqα

⇀ ξ weakly in
V , as α → +∞.

Step 2. Taking v ∈ V0 in (19) and passing to the limits, we obtain

a(η.v) = (h, v) −
∫

Γ2

fv dγ, ∀v ∈ V0, η ∈ K. (52)

Next, by uniqueness of solution of the variational equality (18), we have η = uhf . For
v ∈ V0 in (25) and passing to the limits, we have

a(ξ.v) = (uhf − zd, v), ∀v ∈ V0, ξ ∈ V0. (53)

and by the uniqueness of solution of the variational equality (24), we have ξ = phf . Now,
taking into account that ∀(h′, f ′) ∈ H × Q

J3(h, f) ≤ lim inf
α→∞

J3α(gα, qα) ≤ lim inf
α→∞

J3α(h′, f ′)

= lim
α→∞

J3α(h′, f ′) = J3(h′, f ′)

and from the uniqueness of the optimal control, we obtain that h = g and f = q. Therefore
uhf = ug q and phf = pg q.

Step 3. The strong convergence is obtained by the previous weak convergence and the
following inequalities

||gα − g||H ≤ 1
M1

||pαgαqα
− pg q||V , ||qα − q||Q ≤ ||γ||

M2
||pαgαqα

− pg q||V .

For α > 1

λ1∥uαgαqα
− ug q∥2

V ≤ (g, uαgαqα
− ug q)H − (q, uαgαqα

− ug q)Q

−a(ug q, uαgαqα
− ug q)

and
λ1∥pαgαqα

− pg q∥2
V ≤ (uαgαqα

− zd, pαgαqα
− pg q)H

−a(pg q, pαgαqα
− pg q) − α(pg q, pαgαqα

− pg q)L2(Γ1)

where λ1 is the coerciveness constant of bilinear form a1.

4. Optimal control problems with hemivariational inequalities. In this section,
we consider optimal control problems related with mixed elliptic problems governed by
variational and hemivariational inequalities considered in subsection 2.2. More precisely,
we will review the optimal control problems studied in [4, 16].
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4.1. Optimal control problems on the internal energy. We consider distributed
optimal control problems of the type studied in [12, 22, 39] given by:

find g∗ ∈ H such that I(g∗) = min
g∈H

I(g) (54)

with
I(g) = 1

2 ||u∞g − zd||2H + M

2 ||g||2H (55)

where u∞g is the unique solution to the variational equality (3), zd ∈ H given and M a
positive constant.

For each α > 0, we formulate the following distributed optimal control problem

find g∗
α ∈ H such that Iα(g∗

α) = min
g∈H

Iα(g) (56)

with
Iα(g) = 1

2 ||uαg − zd||2H + M

2 ||g||2H (57)

where uαg is a solution to the hemivariational inequality (8), zd ∈ H given and M a
positive constant.

In [16], for each α > 0, we obtain an existence result of optimal solutions to the
optimal control problem (56). Moreover, asymptotic behavior of optimal controls and
system states of the problem (56), when the parameter α goes to infinity, was studied.

Now, we pass to a result on existence of solution to the optimal control problem (56)
in which the system is governed by the hemivariational inequality (8).

Theorem 4.1. For each α > 0, if H(j) holds, then the distributed optimal control prob-
lems (56) has a solution.

Proof. We give a sketch of the proof. For details, see [16, Theorem 2].

i) For each α > 0 and g ∈ H, we have

m = inf{Iα(g), g ∈ H, uαg ∈ T 1
α(g)} ≥ 0

with T 1
α(g) the set of solutions of (8).

ii) If gα
n ∈ H is a minimizing sequence, then there exist positive constants k1 and k2

such that
||gα

n ||H ≤ k1 and ||uαgα
n

||V0 ≤ k2.

iii) Therefore, there exist f ∈ H and ηα ∈ V0 such that

uαgα
n

⇀ ηα weakly in V0 and gα
n ⇀ f weakly in H.

iv) Next, we have that ηα ∈ V0 satisfies

a(ηα, v) + α

∫
Γ3

j0(ηα; v) dγ ≥
∫

Ω
fv dx −

∫
Γ2

qv dγ for all v ∈ V0

and therefore ηα = uαf , where uαf is a solution of the problem (8) for data f ∈ H

and q ∈ Q.
v) Finally, we have that m ≥ Iα(f) and therefore, (f, uαf ) is an optimal pair to optimal

control problem (56).
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In what follows, we present the asymptotic behavior of the optimal solutions to prob-
lem (56), when α → +∞.

Theorem 4.2. Assume H(j) and (H1). If (gα, uαgα) is an optimal solution to problem
(56) and (g∗, u∞g∗) is the unique solution to problem (54), then gα → g∗ strongly in H

and uαgα → u∞g∗ strongly in V , when α → +∞.

Proof. We will make a sketch of the proof in three steps. For details see [16, Theorem 3].

Step 1. For all α > 0, we prove that the sequence (gα, uαgα
) is bounded in H × H, that

is
||gα||H ≤ k1 ||uαgα

||V ≤ k2

for positive constants k1 and k2. Next, we have that, there exists k3 > 0 (independent of
α) such that

−
∫

Γ3

j0(uαgα
, u∞g∗ − uαgα

)dγ ≤ k3

α
.

Therefore, we obtain that, there exist η ∈ V and h ∈ H such that, as α → +∞

uαgα ⇀ η weakly in V and gα ⇀ h weakly in H.

Step 2. Since V0 is sequentially weakly closed in V , η ∈ V0 and

η ∈ V0 satisfies L(w − η) ≤ a(η, w − η) for all w ∈ K.

Next, we obtain that η ∈ K and

η ∈ K satisfies a(η, v) = L(v) for all v ∈ K0,

i.e., η ∈ K is a solution to problem (3) and by the uniqueness of solution to problem (3),
we have η = u∞h. From the uniqueness of the optimal control problem (65), we obtain
h = g∗. Therefore, when α → +∞

gα ⇀ g∗ weakly in H and uαgα ⇀ u∞g∗ weakly in V.

Step 3. We have that

ma ∥u∞g∗ − uαgα
∥2

V ≤ a(u∞g∗ , u∞g∗ − uαgα
) + L(uαgα

− u∞g∗).

Next, from the weak continuity of a(u∞g∗ , ·), the compactness of the trace operator and
uαgα → u∞g∗ strongly in H,

uαgα
→ u∞g∗ strongly in V, when α → +∞.

Finally, as gα ⇀ g∗ weakly in H and ||gα||H → ||g∗||H , we deduce that

gα → g∗ strongly in H when α → +∞.

4.2. Optimal control problems on the heat flux. We consider the boundary optimal
control problems studied in [4], which are given by

find q∗ ∈ Q such that I2(q∗) = min
q∈Q

I2(q) (58)

with
I2(q) = 1

2 ||u∞q − zd||2H + M

2 ||q||2Q (59)
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and, for each α > 0, the problem

find q∗
α ∈ Q such that I2α(q∗

α) = min
q∈Q

I2α(q) (60)

with
I2α(q) = 1

2 ||uαq − zd||2H + M

2 ||q||2Q (61)

where u∞q is the unique solution to the variational equality (3), uαq is a solution to the
hemivariational inequality (8), zd ∈ H given and M a positive constant.

It is know, by [14], that there exists a unique optimal solution q∗ ∈ Q of the boundary
optimal control problem (58). In [4], existence of solution to the optimal control problem
(60), which is governed by the hemivariational inequality (8), has been proved. This result
is presented as follows.

Theorem 4.3. For each α > 0, if H(j) holds, then the boundary optimal control problems
(60) has a solution.

Proof. We denote, for each α > 0 and each q ∈ Q, by T 2
α(q) the set of solutions of (8)

and we have that
m = inf{I2α(q), q ∈ Q, uαq ∈ T 2

α(q)} ≥ 0. (62)

Next, for each α > 0, we consider qα
n ∈ Q a minimizing sequence to (62) and we prove

that there exist ξα ∈ Q and ηα ∈ V0 such that, when n → ∞

uαqα
n

⇀ ηα weakly in V0 and qα
n ⇀ ξα weakly in Q.

After that, we obtain that ηα = uαξα
where uαξα

is a solution of the hemivariational
inequality (8) for data ξα ∈ Q and g ∈ H. Finally, we prove that

m ≥ I2α(ξα)

and therefore ξα is an optimal solution to optimal control problem (60).

In [4], following [16], has been studied the asymptotic behavior of optimal solutions
of the problems (60) when the parameter α goes to infinity. This result is presented as
follows.

Theorem 4.4. Assume H(j) and (H1). If q∗
α is an optimal solution to problem (60) and

q∗ is the unique solution to problem (58), then q∗
α → q∗ strongly in Q and uαq∗

α
→ u∞q∗

strongly in V , when α → +∞.

Proof. We give the scheme of the proof in three steps. For details see [4, Theorem 3.2].

Step 1. Since q∗
α is an optimal solution to problem (60), we deduce that there exist

positive constants k1 and k2 such that

||q∗
α||Q ≤ k1, ||uαq∗

α
||V ≤ k2.

Moreover, there exists a positive constant k3 such that

−
∫

Γ3

j0(uαq∗
α
; u∞q∗ − uαq∗

α
) dγ ≤ k3

α
.

Therefore, there exist η ∈ V and ξ ∈ Q such that

uαq∗
α

⇀ η weakly in V, as α → +∞, (63)
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q∗
α ⇀ ξ weakly in Q, as α → +∞. (64)

Step 2. We obtain that

η ∈ K satisfies a(η, v) = L(v) for all v ∈ K0,

i.e., η ∈ K is a solution to problem (3) and by the uniqueness of solution to problem (3),
we have η = u∞ξ and hence uαq∗

α
⇀ u∞ξ weakly in V , as α → +∞. Next, ∀q ∈ Q

I2(ξ) ≤ lim inf
α→+∞

I2α(q∗
α) ≤ lim inf

α→∞
I2α(q) = lim

α→∞
I2α(q) = I2(q)

and from the uniqueness of the optimal control problem (58), we obtain that ξ = q∗,
therefore u∞ξ = u∞q∗ . Therefore, when α → +∞

q∗
α ⇀ q∗ weakly in Q and uαq∗

α
⇀ u∞q∗ weakly in V.

Step 3. By H(j)(d) and the coerciveness of the form a, we obtain

ma ∥u∞q∗ − uαq∗
α
∥2

V ≤ a(u∞q∗ , u∞q∗ − uαq∗
α
) + L(uαq∗

α
− u∞q∗).

Next, we have that uαq∗
α

→ u∞q∗ strongly in V as α → ∞. Now, from uαq∗
α

→ u∞q∗

strongly in H and as q∗
α ⇀ q∗ weakly in Q we obtain

I2(q∗) ≤ lim inf
α→∞

I2α(q∗
α).

On the other hand, from the definition of q∗
α and taking into account that uαq∗ → u∞q∗

strongly in H, we obtain

lim sup
α→∞

I2α(q∗
α) ≤ lim sup

α→∞
I2α(q∗) = I2(q∗)

and therefore

lim
α→∞

(
1
2 ||uαq∗

α
− zd||2H + M

2 ||q∗
α||2Q

)
= 1

2 ||u∞q∗ − zd||2H + M

2 ||q∗||2Q.

Finally, when α → +∞, we have ||q∗
α||2Q → ||q∗||2Q and as q∗

α ⇀ q∗ weakly in Q, we deduce
that q∗

α → q∗ strongly in Q.

4.3. Simultaneous optimal control problems on the internal energy and the
heat flux. We consider the simultaneous distributed and Neumann boundary optimal
control problems studied in [4]. These problems are given by

find (g, q) ∈ H × Q such that I3(g, q) = min
(g,q)∈H×Q

I3(g, q) (65)

with
I3(g, q) = 1

2 ||u∞gq − zd||2H + M1

2 ||g||2H + M2

2 ||q||2Q (66)

where u∞gq is the unique solution to the variational equality (3), zd ∈ H given and
M1 and M2 are given positive constants. For each α > 0, the following simultaneous
distributed and Neumann boundary optimal control problem

find (gα, qα) ∈ H × Q such that I3α(gα, qα) = min
(g,q)∈H×Q

I3α(g, q) (67)

with
I3α(g, q) = 1

2 ||uαgq − zd||2H + M1

2 ||g||2H + M2

2 ||q||2Q (68)
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where uαgq is a solution to the hemivariational inequality (8), zd ∈ H is given and M1
and M2 are positive constants.

It is known, by [15], that there exists a unique optimal pair (g, q) ∈ H × Q of the
simultaneous distributed-boundary optimal control problem (65). In similar way to [16],
in [4] a result on existence of solution to the simultaneous optimal control problem (67)
which is governed by the hemivariational inequality (8) has been proved. This result and
an idea of its proof are presented as follows.

Theorem 4.5. For each α > 0, if H(j) holds, then the simultaneous distributed-boundary
optimal control problem (67) governed by the hemivariational inequality (8) has a solution.

Proof. i) For each α > 0 and (g, q) ∈ H × Q, we have

m = inf{I3α(g, q), (g, q) ∈ H × Q, uαgq ∈ T 3
α(g, q)} ≥ 0

with T 3
α(g, q) the set of solutions of (8).

ii) Next, if (gα
n , qα

n) ∈ H × Q is a minimizing sequence, there exist positive constants
k1, k2 and k3 such that, as n → ∞

||gα
n ||H ≤ k1, ||qα

n ||Q ≤ k2 and ||uαgα
n qα

n
||V0 ≤ k3.

iii) Therefore, there exist fα ∈ H, ξα ∈ Q and ηα ∈ V0 such that

qα
n ⇀ ξα weakly in Q, gα

n ⇀ fα weakly in H

uαgα
n qα

n
⇀ ηα weakly in V0.

iv) Next, we prove that ηα ∈ V0 satisfies

a(ηα, v) + α

∫
Γ3

j0(ηα; v) dγ ≥
∫

Ω
fαv dx −

∫
Γ2

ξαv dγ ∀v ∈ V0

and therefore ηα = uαfαξα
, where uαfαξα

is a solution of the (8) for data fα ∈ H and
ξα ∈ Q.

v) Finally, we have m ≥ I3α(fα, ξα) and therefore, (fα, ξα) is an optimal pair for
optimal control problem (67).

The asymptotic behavior of the optimal solutions to problem (67) when α goes to
infinity, studied in [4], is presented as follows.

Theorem 4.6. Assume H(j) and (H1). If (gα, qα) is an optimal solution to simultaneous
distributed and Neumann boundary optimal control problem (67) and (g, q) is the unique
solution to simultaneous optimal control problem (65), then (gα, qα) → (g, q) in H × Q

strongly and uαgαqα
→ u∞g q in V strongly, when α → ∞.

Proof. We give a sketch of the proof. For details see [4, Theorem 5.1].

Step 1. For all α > 0, the sequence (gα, qα) is bounded in H × Q and uαgαqα
is bounded

in H, that is
||gα||H ≤ k1, ||qα||Q ≤ k2, ||uαgαqα

||V ≤ k3

for positive constants k1, k2 and k3. Moreover, there exists k4 > 0 (independent of α)
such that

−
∫

Γ3

j0(uαgαqα
, u∞g q − uαgαqα

)dγ ≤ k4

α
.
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Next, we prove that there exist η ∈ V , h ∈ H and p ∈ Q such that, as α → +∞

uαgαqα
⇀ η weakly in V

gα ⇀ h weakly in H and qα ⇀ p weakly in Q.

Step 2. Since V0 is sequentially weakly closed in V , η ∈ V0 satisfies
L(w − η) ≤ a(η, w − η) for all w ∈ K.

Next, we obtain that η ∈ K and
η ∈ K satisfies a(η, v) = L(v) for all v ∈ K0,

i.e., η ∈ K is a solution to problem (3) and by the uniqueness of solution to problem
(3), we have that η = uhp. From the uniqueness of the optimal control problem (65), we
obtain

h = g and p = q.

Therefore, when α → +∞

gα ⇀ g weakly in H, qα ⇀ q weakly in Q

uαgαqα
⇀ u∞g q weakly in V.

Step 3. We have
ma ∥u∞g q − uαgαqα

∥2
V ≤ a(u∞g q, u∞g q − uαgαqα

) + L(uαgαqα
− u∞g q).

Next, from the weak continuity of a(ug q, ·), the compactness of the trace operator and
uαgαqα

→ u∞g q strongly in H,
uαgαqα

→ u∞g q strongly in V, when α → +∞.

Finally, as gα ⇀ g weakly in H, qα ⇀ q weakly in Q

||gα||H → ||g||H and ||qα||Q → ||q||Q
we deduce that, as α → +∞

gα → g strongly in H and qα → q strongly in Q.
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