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Abstract. We consider a d-dimensional bounded domain 2 which regular boundary consists of
the union of three disjoint portions. We study different optimal control problems (distributed,
boundary and simultaneous distributed-boundary) for systems governed by elliptic variational
inequalities or elliptic hemivariational inequalities. For both cases, we also consider a parameter,
like a heat transfer coefficient on a portion of the boundary, which tends to infinity. We prove
an existence result for three different optimal control problems, and we show the asymptotic
behavior results for the corresponding optimal controls and system states.

1. Introduction. In this paper, we review several previous works of our authorship and
some of them in collaboration with other authors. We consider elliptic mixed problems
defined in a d-dimensional domain 2, whose regular boundary I' consists of the union
of three (or possibly two) disjoint portions. These problems are governed by the Poisson
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equation in €2 and by mixed boundary conditions on I'. More precisely, we consider
Dirichlet, Neumann and Robin boundary conditions. We remark that, under additional
hypotheses on the data, these problems can be considered as steady-state two phase Stefan
problems, which have been extensively studied in several papers such as [10] 34} 35} [36]
37, [38]. In [12] 13], related to these mixed elliptic problems, we formulate distributed
optimal control problems on the internal energy, which are dependent of a parameter
(heat transfer coefficient). We study existence, uniqueness and asymptotic behaviour of
the optimal solutions when this parameter goes to infinity. In [14], we consider boundary
optimal control problems on the heat flux and we obtain similar existence, uniqueness and
convergence results when heat transfer coefficient goes to infinity. In [I5], simultaneous
distributed-boundary optimal control problems have been formulated and similar results
to [12], 13}, [14] have been obtained.

More recently, in [I1], a non-monotone multivalued subdifferential boundary condition
on a portion of the boundary described by the Clarke generalized gradient of a locally
Lipschitz function has been considered. Such multivalued relation is met in certain types
of steady-state heat conduction problems as well as in several boundary semipermeability
models, see [24) 27, 28] 29] 40, 4], which are motivated by problems arising in hydraulics,
fluid flow problems through porous media, and electrostatics, where the solution repre-
sents the pressure and the electric potentials. The weak formulations of these problems
are given by boundary hemivariational inequalities. In [I1], existence result for a class of
boundary hemivariational inequality has been proved. In [I6], distributed optimal control
problems on the internal energy has been formulated for this kind of boundary hemivari-
ational inequality and existence and asymptotic behavior of optimal controls and system
states has been obtained. In [4], boundary and simultaneous distributed-boundary opti-
mal control problems related to the same class of boundary hemivariational inequality
has been studied and similar results to [16] has been proved.

The paper is structured as follows. In Section 2, we consider mixed elliptic problems
and we give their variational and hemivariational formulations. We consider preliminaries
concept and we give some existence results and properties of monotonicity, convergence
and continuous dependence of data. Furthermore, we present three examples which sat-
isfy the hypotheses considered. In Section 3, we formulate distributed, boundary and
simultaneous distributed-boundary optimal control problems related with the mixed el-
liptic problems governed by variational equalities. We prove existence and uniqueness
of the optimal solutions and we obtain convergence results of the optimal controls and
the optimal direct and adjoint states, when the heat transfer coefficient goes to infinity.
Finally, in Section 4, we consider distributed, boundary and simultaneous distributed-
boundary optimal control problems related with the mixed elliptic problems governed by
hemivariational inequalities. We prove existence of the optimal solutions and we obtain
convergence results of the optimal controls and the optimal system states, when the heat
transfer coefficient goes to infinity.

2. Mixed elliptic problems. In this section, we consider elliptic mixed problems de-
fined in a d-dimensional domain, which are governed by the Poisson equation with mixed
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conditions on the regular boundary of the domain. That is, we consider Dirichlet, Neu-
mann and Robin boundary conditions and a multivalued condition on a portion of bound-
ary. The weak formulations of these problems are given by variational equalities or hemi-
variational inequalities depending on the boundary conditions we impose. We will give
some necessary definitions and we will prove some important properties.

2.1. Problems with variational equalities. We consider a bounded domain  in R¢
which regular boundary I' consists of the union of three disjoint portions I';, i =1, 2, 3
with |T';| > 0, where |T';| denotes the (d—1)-dimensional Hausdorff measure of the portion
I'; on I'. The outward normal vector on the boundary is denoted by n. We formulate the
following two steady-state heat conduction problems with mixed boundary conditions:

0
—Au=g in 9, u|Fl =0, —8—Z|F2 =q, u‘FS =b (1)
0 0
—Au=g in €, u|rl =0, fa—;ﬂrz:q, 7%“3 =a(u—1>) (2)

where u is the temperature in §2, g is the internal energy in €2, b is the temperature on
I's for and the temperature of the external neighborhood of I's for , q is the heat
flux on I's and a > 0 is the heat transfer coefficient on I's, which satisfy the hypothesis:
ge H=1I2Q),qeQ=L*Iy) and be Hz(Is3).
We denote
V=H"Q), Vo={veV]|v=0 on It}
K={veV]v=0 on Ty, v=> on T3},

Ko={veV|v=0 on I'y UT3},

Q T2

a(u,v) = /QVu Vvdz, ba(u,v)=a(u,v)+ oz/F ~y(u)y(v)dy,

3

£ = [ godo— [ ) B, L) = L) +o [ nwa

s
where v: V — L?(T") denotes the trace operator on I'. In what follows, we write u for the
trace of a function u € V on the boundary. In a standard way, we obtain the following
variational formulations to problems and , respectively:

find us € K such that a(us,v) = L(v) for all v € Ky, (3)
find w, € Vo such that b, (ua,v) = La(v) for all v e V. (4)
The standard norms on V and Vj; are denoted by
) ) 1/2
lollv = (ol + IVoleops)  for veV,

lollv, = HV'UHL2(Q;]R¢1) for v e V.

It is well known by the Poincaré inequality, see [6], 20], that on Vj the above two norms
are equivalent. Note that the form a is bilinear, symmetric, continuous and coercive with
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constant mg, > 0, i.e.
a(v,v) = ||UH%/0 > ma||v|\%, for all v e V. (5)
Note also that the form b, is bilinear, symetric, continuous and coercive in V, i.e.
ba(v,0) > Ao |v|[3, Vo €V (6)

where A\, = A; min{1, a} and A is the coerciveness constant for the bilinear form a; [36].

It is well known that the regularity of solution to the mixed elliptic problems and
are problematic in the neighborhood of a part of the boundary, see for example the
monograph [19]. A regularity results for elliptic problems with mixed boundary conditions
can be found in [T}, 2, 21]. Moreover, sufficient hypotheses on the data in order to have
H? regularity for elliptic variational inequalities are given in [30]. We remark that, under
additional hypotheses on the data g, ¢ and b, problems and can be considered as
steady-state two phase Stefan problems, see, for example, [10, [34, [36], [38].

The problems and have been extensively studied in several papers such as [10]
341, 135], 136], [37]. Some properties of monotonicity and convergence, when the parameter «
goes to infinity, obtained in the aforementioned works, are recalled in the following result.

THEOREM 2.1. If the data satisfy b = const. > 0, g € H and q € @ with the properties
q>0o0onTs and g <0 in 2, then
(i)
(ii) ue <b in €,
(iii) ve <o in Q,
(iv) if ag < ag, then wu, <uq, in £
(V) g = uso in V, as a— +oo.

Proof. See [10, 34, [36, 37]. =

Uso < b In €,

2.2. Problems with hemivariational inequalities. We consider the mixed nonlin-
ear boundary value problem studied in [II]. We begin by giving some definitions and
properties necessary for the development of these topics.

Let (X, ||-1lx) be a reflexive Banach space, X* be its dual, and (-, -} denote the duality
between X* and X. For a real valued function defined on X, we have the following
definitions [B Section 2.1] and [7} 8] 25].

DEFINITION 2.2. A function ¢: X — R is said to be locally Lipschitz if for every z € X
there exist U, a neighborhood of z and a constant L, > 0 such that

0(y) = p(2)] < Lafly — zllx forall y,z € U,.

For such a function the generalized (Clarke) directional derivative of j at the point © € X
in the direction v € X is defined by

By _
Alzv) = Timsup ply +2v) —oly)
y—x, A—0t A

The generalized gradient (subdifferential) of ¢ at x is a subset of the dual space X* given
by
Op(z) = {C € X* | Q°(x;v) > (¢,v) forall ve X}
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We shall use the following properties of the generalized directional derivative and the
generalized gradient, see |25, Proposition 3.23].

ProPOSITION 2.3. Assume that p: X — R is a locally Lipschitz function. Then the
following hold:

(i) for every x € X, the function X > v — ©°(z;v) € R is positively homogeneous,
and subadditive, i.e.,

@ (x; ) = A\ (z;0) forall A >0, ve X,
gpo(x;vl +ug) < gpo(z;vl) —|—<p0(x;112) for all wvi,vg € X,

respectively.

(ii) for every x € X, we have ©°(x;v) = max{(¢,v) | ¢ € dp(z)}.

(iii) the function X x X > (x,v) — ¢°(x;v) € R is upper semicontinuous.

(iv) for every x € X, the gradient dp(x) is a nonempty, convex, and weakly compact
subset of X*.

(v) the graph of the generalized gradient Oy is closed in X x (weak—X™*)-topology.

Now, we are in a position to formulate the aforementioned problem. The mixed non-

linear boundary value problem is given by
—Au=g in 9, u’rl =0, —%’FQ =gq, —g—Z|F3 € adj(u). (7)

Here, as in the problem , « is a positive constant while the function j: I's x R — R,
called a superpotential (nonconvex potential), is such that j(z,-) is locally Lipschitz for
a.e. x € I's and not necessary differentiable. Since in general j(z,-) is nonconvex, so
the multivalued condition on I's in problem @ is described by a nonmonotone relation
expressed by the generalized gradient of Clarke. Such multivalued relation in problem
is met in certain types of steady-state heat conduction problems (the behavior of a
semipermeable membrane of finite thickness, a temperature control problems, etc.). Fur-
ther, problem can be considered as a prototype of several boundary semipermeability
models, see |24, 27, 28] [41], which are motivated by problems arising in hydraulics, fluid
flow problems through porous media, and electrostatics, where the solution represents
the pressure and the electric potentials. Note that the analogous problems with maxi-
mal monotone multivalued boundary relations (that is the case when j(z,-) is a convex
function) were considered in [3} [9], see also references therein.

Under the above notation, the weak formulation to the elliptic problem @ becomes
the following boundary hemivariational inequality:

find @, € Vo such that a(us,v) + a/ §%(Ta;v) dy > L(v) for all v € Vj. (8)

I's

Here and in what follows we often omit the variable x and we simply write j(r) instead
of j(x,r). Observe that if j(x,-) is a convex function for a.e. x € T's, then the problem
reduces to the variational inequality of second kind:

find w, € Vy such that

a(Uq, v — Uy) + a/F (J(v) — j(@Wa)) dy > L(v —1,) for all v e V. (9)
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Note that when j(r) = %(7“ — b)?2, problem @ reduces to a variational inequality corre-
sponding to problem .

The stationary heat conduction models with nonmonotone multivalued subdifferen-
tial interior and boundary semipermeability relations cannot be described by convex
potentials. They use locally Lipschitz potentials and their weak formulations lead to
hemivariational inequalities, see [27, Chapter 5.5.3] and [28].

In [I1], for the problem , sufficient conditions were studied that guarantee the
existence of a solution and the comparison properties and asymptotic behavior, as o —
400, stated in Theorem Moreover, continuous dependence of solutions was obtained.
In order to provide an existence result for the following elliptic hemivariational inequality

find w e Vp such that a(@,v) + a/ 3%(@;v) dy > h(v) for all v € Vj (10)
I's

with h € Vj, in [I1], the following hypotheses were considered.

H(j): j: I's x R — R is such that

j(-,7) is measurable for all r € R,

) j(z,) is locally Lipschitz for a.e. x € I's,

c) there exist cg, ¢; > 0 such that |0j(x,r)| < ¢o + c1|r| for all » € R, a.e. x € 'z,
) j%(z, 70— 1) <0 for all r € R, a.e. x € ' with a constant b € R.

Note that the existence results for elliptic hemivariational inequalities can be found
in several contributions, see [0, 17, 18, 23 25, 26, 27, BT, B2, B3]. In comparison to
other works, the new hypothesis is H(j)(d). Under this condition, in [I1], both existence
of solution to problem and a convergence result when a — oo have been proved.
Moreover, if the hypothesis H(j)(d) is replaced by the relaxed monotonicity condition
(see [IT] for details)

3o, rys =)+ 0, s;0 = s) < my fr — s
for all , s € R, a.e. x € I's with m; > 0, and the smallness condition
ma > armyl|y|?

is assumed, then problem is uniquely solvable, see [26] Lemma 20] for the proof.
However, this smallness condition is not suitable in the study of problem since for a
sufficiently large value of «, it is not satisfied.

THEOREM 2.4. If H(j) holds, h € V§ and o > 0, then the hemivariational inequality
has a solution.

Proof. This results applying a surjectivity result in [25, Proposition 3.61] and partially
follow arguments of [26], Lemma 20]. Here, we will give an idea of the proof, for details
see [IT, Theorem 4].

i) If we consider A : Vi — Vj* such that (Au,v) = a(u,v), Vu,v € Vp, we prove that
the operator A is a linear, bounded (|| A(u)|v;s < |lullv,) and coercive ((Av,v) = [[v[|3, ).
Moreover, A is a pseudomonotone operator.
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ii) Next, we define F': L?(I'3) — R such that
Flo) = [ iteyta)dr. y € IA(T),
3

The functional F' enjoys the following properties (see [25]).

p1) F is well defined and Lipschitz continuous on bounded subsets of L?(I'3), hence
also locally Lipschitz,

p2) Fo(yv'z) < frsj(x,y(w),z(x))d% Y,z € LQ(FL’:)
p3) 10F (W)llz2ry) < 1+ @llYllz2(rs), y € L*(Ts) with 21,7 > 0.
iii) Now, we define B : V5 — 2% such that
B(v) = ay*0F (yv), Yv €

where v* : L?(I") — Vg denotes the adjoint of the trace v. B is pseudomonotone and
bounded multivalued operator.

iv) We prove that A + B is a bounded, pseudomonotone and coercive multivalued
operator, hence also surjective.

v) Next, there exists u € V; such that (A + B)u > h.

vi) We obtain that u solves problem . L]

Note that, from Theoremit follows that for each o > 0, problem (8]) has a solution
uq € Vg while [6, Corollary 2.102] entails that problem has a unique solution u., € K.
Moreover, it is easy to observe that problem can be equivalently formulated as follows

find uo € K such that a(teo, v — teo) = L(v — us) for all v e K. (11)
In what follows we need the hypothesis on the data.

(HO): QGHaQSOiHQaQGQM]ZOOHFz
THEOREM 2.5. If H(j), (Hp) hold and b > 0, then

(a) Ue <b in Q,

(b) Tq <us in Q,
where T, € Vy is a solution to problem and us € K is the unique solution to
problem (3 @

Proof. ) Let w = U, —b. Since w| = —b <0, then wﬂr = 0. If we choose v = —w™ €
Vo in (8)), by (Hp) we have L(w™) < 0, then

a(wt,wh) < a/ 3% (T — (T — b)) dy.
s

Next, by H(j)(d) and the coerciveness of a, we deduce m,|w*||?, < 0. Hence w* =0 in
Q, and u, < bin Q.
b) If we denote W = Uy — Uso, We have that w|r1 = 0. If we take v = —wt € 1}

< 0 and consequently wt € Kj. Taking

in , by we have that w!r = (U — b)}l“g

v=wt eKom , we have

a(wt,wh) < a/ jo(ﬂa; —wt) dy.
I's
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Since us = b on I's, by H(j)(d) and the coerciveness of a, we deduce m,|w*||?, < 0.
Therefore, wt = 0in Q and 1y < Uso in 2. w

In what follows, we comment on the monotonicity property analogous to condition
(iv) stated for problem in Theorem [2.1

PROPOSITION 2.6. Assume that H(j) and (Hp) hold, and
3@, =(r = s)) + e, s (r—5)T) <0 (12)
foralle>1, allr, seR, r<b, s <band a.e. x € I's. Let u,, € Vo denote the unique

solution to the inequality corresponding to «; > 0, i = 1, 2. Then the following
monotonicity property holds:

a1 <y = Uy <Up, n Q.
Proof. Let 0 < a1 < ag and w = Uy, — Uy, in Q. It is sufficient to prove that w™ =0 in
Q. Since w|r1 = 0, we have wt € V5. We choose v = —w™ € V; in problem for aq,
v=w" € V; in problem for ay and by adding, we have

—a(w,w") + al/

jo(ﬂal; —wt)dl + 042/ jo(ﬂaz; wt)dl' >0
s

s
which implies

a(wt,wh) < / (al jo(ﬂal; —wt) + ay jo(ﬂaz;w+)) dr’
T3

= / (jo(ﬂal; —wt) + %jo(ﬂaz;w"’)) dr’ < 0.
s ai
Using the coercivity of the form a, we deduce that w™ = 0, which completes the proof. m

Next, with the aim of studying the asymptotic behavior of solutions to problem
when a — oo, it is necessary to consider the following additional hypothesis on the
superpotential j.

(Hy): if j%(z,7;b—7) =0 for all r € R, a.e. x € I'3, then r = b.

THEOREM 2.7. Assume H(j), (Ho) and (Hy). Let {t,} C Vo be a sequence of solutions
to problem and uss € K be the unique solution to problem . Then U, — Uso 0V,
as o — +00.

Proof. We will give a sketch of the proof, see [I1], Theorem 7] for details.
i) We prove that the sequence {@,} is bounded in V, Va > 0.
ii) Next, there exists ¢; > 0 (independent of a) such that

.0 /— _ C1
—/ (T, oo — o )dy < —.
I's &

iii) We obtain that there exists u* € Vj such that u, — u* weakly in V, as a — oo.

iv) Next, we prove that u* satisfies: a(u*,w—u*) > L(w—u*), Yw € K and we have
that u* € K.

v) We have that u* = u.

vi) Finally, T, — uc strongly in V, as @« — +00. n
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Now, we present a result on continuous dependence of solution to problem on the
internal energy ¢ and the heat flux ¢ for fixed a > 0. First, we give a previous result.

LEMMA 2.8. Let g, € H, q, € Q forn € N. Define L,, € V*, n € N, by
Ln(v):/gnvdxf/ gpvdy for vevV.
Q T's

If g, — g weakly in H, g, — q weakly in L*(T3), and v, € V, v, — v weakly in V, then
L,(v,) — L(v), as n — oo,
and there exists a constant C' > 0 independent of n such that | L,|v- < C for alln € N.

Proof. The proof results from the compactness of the embedding V' into H and of the
trace operator from V into L*(T). m

The continuous dependence result reads as follows.

THEOREM 2.9. Assume that o > 0 is fized, L, L,, € V*, n € N and H(j) holds. Let
uy € Vo, n € N, be a solution to problem corresponding to Ly, and

lim L, (z,) = L(2) for any z, — z weakly in V, as n — oo. (13)

Then, there exists a subsequence of {u,} which converges weakly in V to a solution of
problem corresponding to L. If, in addition, the following hypotheses hold:

2z, s — 1) + %2, 857 — ) <my|r—s|® forall r,s€R, ae x€Tls, (14)
ma > amylly[?, (15)

where m; > 0, then problem has a unique solution u and u,, € Vi corresponding to L
and Ly, respectively, and the whole sequence {u,} converges to u in V, as n — oo.

Proof. See [11, Theorem 9] for details. m

Finally, we present three examples of functions which satisfy the hypotheses H(j),
(H1) and . Note that the first example is a nonconvex function and the second and
third examples are convex fuctions. Moreover, the last example allows us to arrive to the
Robin boundary condition.

EXAMPLE 2.10. Let j: R — R be the function defined by
) (r —b)? if r<b,
j(r) = et}
1—e (=% §f r>p

for r € R with a constant b € R. This function is nonconvex, locally Lipschitz and its
subdifferential is given by

2(r—0b) if r<b,
dj(r) = 1 [0,1] if r=4a,
et if >
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for all » € R. Hence, we have |9j(r)] < 1+ 2|b| + 2|r| for all » € R. Moreover, using
Proposition ii), one has

—2(b —r)? if r<b,
Orsb—r) =max{C(b—7)| € dj(r)} =0 if r=ho,
e~ (b —r) if r>b

for all r € R. Thus H(j) is satisfied. By the above formula, we also infer that (H;) is
satisfied and the condition holds with m; = 1.

EXAMPLE 2.11. We define j: R — R by

ﬂm=v—b={

for r € R with a constant b € R. Then, we have for all r € R

—r+b if r<b,
r—b if r>b

-1 if r<b, b—r if r>b,
0j(r)=<[-1,1] if r=0b, and P2rb—r) =140 it r=>o,
1 it r>b r—>b if r<b

for all » € R. Thus, j°(r;b—7) < 0 for all r € R. Also, we observe that if j°(r;b—17) =0
for all r € R, then r = b. In consequence, the properties H(j) and (H;) are verified.
Further, since j is convex, it satisfies with m; = 0.

ExXAMPLE 2.12. Let j: R — R be the function defined by
. 1
() = 50 = b2

for r € R with b € R. Then

J‘O(T;S):(be)s and 9j(r)=r—b

for r, s € R. Moreover, we have jo(r;b—1) = (r—b) (b—r) = —(b—7r)? <0 for all r € R.
Also, for all r € R, if j%(r;b—17) = 0, then (r —b) (b —r) = —(b —r)? = 0, which implies
r = b. Hence, we deduce that j satisfies properties H(j), (Hy) and j satisfies with
m; = 0.

3. Optimal control problems with variational equalities. In this section, we con-
sider optimal control problems related with mixed elliptic problems of type considered
in subsection More precisely, we review the optimal control problems studied in
[12], (13 [14], [15].

3.1. Optimal control problems on the internal energy. In [I2], we consider a
bounded domain € in R? which regular boundary I' consists of the union of two disjoint
portions I';, ¢ = 1,2 with |T';| > 0, where |T';| denotes the (d — 1)-dimensional Hausdorff
measure of the portion I'; on I'. We formulate, in a similar way to problems and ,
the following mixed elliptic problems:

Ju

22 = 1
o, q, (16)

—Au=g inQ, aulp =0b,
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ou ou

—Au=g inQ =au-"0), —— =gq (17)

) - % I
where g is the internal energy in €2, b is the temperature on I'; for and the temper-
ature of the external neighborhood of I'; for , q is the heat flux on I'y and a > 0 is
the heat transfer coefficient of I'y, that satisfy the following assumptions g € H, q¢ € Q,
be Hz(Iy).
We denote by uy and ua4 the unique solutions of the mixed elliptic problems and
(17), respectively, for which variational equalities are given by [20]
a(ug,v) =Ly(v), YveVy, uy€K, (18)
Ao (Uag, V) = Lag(v), YU EV, gy €V, (19)

where
V=H(Q), V={veV:iv=00onT1}, K=uv9+V,

a(u,v) = /QVu -Voudz,  aq(u,v) = alu,v) + a/F uvdry,

Lg(v) = (gﬂ)) - /I‘ qu’yv Lag('U) = Lg(’l}) + O[/ b’l)d’)/

Iy
for a given vg € V, vo|p, = b.
We consider the following distributed optimal control problems [22] [39] given by:

find ¢" € H suchthat J(¢") = Hél]gl J(g) (20)
9

with v
1
T9) = 5llug = 24l + 5 ol (21)
where ug is the unique solution to the variational equality , zq € H given and M a

positive constant.
For each o > 0, we formulate the following distributed optimal control problem:

find g> € H suchthat J,(g)) = mig Ja(9) (22)
ge

with ) M
Ja(g) = §||Uag—2d||§1+7|lgllir (23)

where 144 is a solution to the problem , zq € H given and M a positive constant.
In [I2], following [22], we prove existence and uniqueness of optimal solution to the
problem and , for each o > 0. For this purpose, we define the following mappings.
Let C' : H — Vj be the mapping such that C(g) = u, — uo, where ug is the solution of
problem for g=0.Let II: Hx H— Rand L: H — R be defined by the following
expressions:

(g, h) = (C(9),C(h)) + M(g,h), Vg,h € H,
L(g) = (C(9), 24 —uo), Vg€ H.

For each a > 0, we define C,, : H — V; such that Co(g) = tag — Uao, Where uqg is the
solution of problem forg=0.Let II,: H x H— R and L, : H — R be defined by
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the following expressions:
Ia(g,h) = (Calg), Ca(h)) + M(g,h), Vg,heH,

La(g9) = (Cal9), 24 — ua0), Vg € H.
We obtain the following results, whose proofs can be seen in [12].
LEMMA 3.1.  a) C is a linear and continuous mapping, 11 is a bilinear, continuous,

symmetric and coercive form on H x H and L is linear and continuous on H.
b) The functional J can be also written as

1 1
J(g) = 51M(g.h) = L(9) + 5 lluo — zall3y . Vg € H.

¢) There exists a unique optimal control g* € H such that
J(g")) = min J(g).
(7)) = min J(g)
LEMMA 3.2. For each o > 0, we have:

a) Cy is a linear and continuous mapping, I, is a bilinear, continuous, symmetric
and coercive form on H x H and L, is linear and continuous on H.
b) The functional J, can be also written as

1 1
Ja(g) = ina(gah)7Loz(g)+§||uozofzd“§—17 v9€H~
¢) There exists a unique optimal control g% € H such that
Ja (92) = min Ja(g).

We define the adjoint state p, corresponding to or (18), for each g € H, as the
unique solution of the following mixed elliptic problem

. Opg
—Apg =ug—2¢inQ, pglp =0, o . =0,
whose variational formulation is given by
a(pg,v) = (ug — zq,v), YveVy, pge€Wp. (24)

For each o > 0, we define the adjoint state pn4 as the unique solution of the following
mixed elliptic problem corresponding to or , for each g € H

Opa Opa
—-A = Uqg — 24 In , — g = OPag, g =0
pag ag d 871 o pag 87?, v 9
which variational formulation is given by
o (Pag, V) = (Uag — 24,V), YV EV, pag € V. (25)

Next, we give the optimality conditions to the problems and .
LEMMA 3.3. @) The optimality condition for problem (20) is given by J' (g*) = 0 in
H, that is,
Py +Mg* =0 in H.
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b) For each oo > 0, the optimality condition for problem (23) is given by J (g%) =0
in H, that is,
Pagx + Mgy, =0 in H.

Proof. a) This results taking into account that Vg, h € H
(J'(9),h) = (ug — 24, C(h)) + M(g, h) =TI(g, h) — L(g)
and
(Ug — Zd, C(h)) =a (pg7 C(h)) = (pg7 h) :
b) For each o > 0, we have that Vg,h € H
<J¢,x(g)7 h> = (uag — Zd; Ca(h>) + M(g, h) = Ha(g, h) - La(g)7
and
(Uag = 2a, Ca(h)) = aa (Pag, Ca(h)) = (Pag: h) - =
Now, we consider the operator W : H — V;y C H defined by

1
Wlg)=—;p 9€H
and for each a > 0, the operator W, : H — V; C H defined by
1
Wal(g) = _Mpaga g€ H.

We prove the following property.

LEMMA 3.4. a) W is a Lipschitz operator over H, i.e.

1
W (g2) = W (91)]l g < S0 lgr — 92llg> V91,92 € H,

and it is a contraction for all M > 1/, where \ is the coerciveness constant of
the bilinear form a.
b) W, is a Lipschitz operator over H, i.e.

1
IWa (92) = Wa (9l < 557 191 — 92l s Vor,92 € H,
«
and it is a contraction for all M > 1/)\2, where A\, is the coerciveness constant of
the bilinear form a,.
Proof. a) By using the coerciveness of the bilinear form a we have
2
Mlpgy = Pg,lly < a (g = PgysPgo — Pgr) < lltig, — tg, [l IPge — Pgu Il
therefore .
Ipg; — Pgy I, < 3 g, — ug, |l 5

and taking into account that the mapping g € H — uy € V is Lipschitzian, that is,

1
Hugz _ug1||v <= Hg2 _91||H7 Yg1,92 € H
A

we obtain

1
IW (92) = W (92) s < 557 92 — 921l
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b) In a similar way that (a), by using the coerciveness of the bilinear form a,,, we obtain
that

||pagz *paglny <z ||Uagz - ua_cu”H
A

and taking into account that g € H — ug € V is a Lipschitzian application, we have

1
1Wa (92) = W (90) L < 57 91 — 21l
We have a convergence result for fixed data, when « goes to infinity.
LEMMA 3.5. Foralla>0,qg€ @ andb € H%(Fl), we have that:

a) Uag —> ug strongly in'V as o — 400, Vg € H.
b) Pag = pg strongly in V as o — 400, Vg € H.

Proof. An idea of the proof is as follows, for details see [I2, Lemma 3.5].

a) We prove that:

i) The sequence {uqag} is bounded in V, Va > 0.
ii) There exists ¢; > 0 (independent of «) such that

2 (c1)”
/Fl(uag_b) dy < Ma—1)

ili) There exists wy € V such that uy, — wy weakly in V, as o — o0.
) wy € K satisfies a(wg,v) = L(v), Yv € V.
)
)

By uniqueness, we have that wy = ug.
Vi) Uag —+ ug strongly in V, as oo = +-o00.

b) We obtain that:

v
A

i) The sequence {pag} is bounded in V, Var > 0.
ii) There exists co > 0 (independent of «) such that

(c2)®
/Fl(pozg *Pg)de < m-

ili) There exists £, € V such that v,y — £, weakly in V, as @ — +o0.
) & € Vo satisfies a(&y,v) = (uy — zq,v), Yo € Vj.
)
)

By uniqueness, £; = pg.
Vi) pag — pg strongly in V, as a = +00. m

v
\

In [12], we obtain the following convergence result for the optimal solutions g7, ag:
and pag+ of the optimal control problems to the optimal solutions g*, uy« and p,-
of the problem (20]), when the parameter o goes to infinity. This result is presented as
follows.

THEOREM 3.6. If M > )\%, with A\ the coerciveness constant of a1, we have that, when
o — +00:

a) If g* and g% are the unique solutions of the optimal control problems (@) and (@),
respectively, then g7, — g* strongly in H.
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b) If ug- and ung: are the system states corresponding to problems @) and @),
respectively, then uag: — ug+ strongly in V.
c) If pg« and pag: are the adjoint states corresponding to problems @) and @),
respectively, then pagx — pg« strongly in V.
Proof. We will give a scheme of the proof in three steps. For details see [I2, Theorem
4.1].
STEP 1. By using that ¢ is the unique solution of problem , we obtain that there
exist positive constants ¢y, co and c3 such that
cs
v < co; / (Uags — ugr)?dy < ————.
I, Agq g )\1(0[ _ 1)
Therefore, we deduce that there exist f € H and n € K such that ¢} — f weakly in H
and uqgx — n weakly in V', as a — +o00. Next, taking v = pagx — pg+ € V in , we
prove that there exist positive constants ¢4 and c5 such that

lgalle < ci; uage

Cs
N < ¢y e = )dy < —=2
llPags llv < s /Fl(paga pg+) dy < Ma—1)

and there exists £ € Vp such that pag« — § weakly in V, as a — +o0.

STEP 2. Taking v € Vj in and , respectively, and by passing to the limits, we
obtain

a(&v) = (n — zq,v), YoeVy, €eV. (26)
and
atn) = (F0) = [ avdr,  VoeVi nek. (27)
s
. _ 1 . . .
Now, by using Lemma we have f = —5:€ in H. From the uniqueness of fixed point
we have g* = —ﬁpg* in H and therefore, f = g*, n = ug+ and § = py-.

STEP 3. The strong convergence are obtained by the previous weak convergence and the
following inequalities:

)\alag; — Pg* %/ < (uag(’; — Zd;Pagy _pg*) - a(pg*vpag; _pg*)a

* * 1
llgn — g%l < Mllpag; — pg-llvs

/\1||“ag; - Ugr %/ < a(Uags — Uges Uagy — Ug+). ®

In [13], we obtain a new proof of the convergence results obtained in [I2] for the
optimal solutions of the optimal control problems to the optimal solutions of the
problem , when a — o0o. This result is given as follows.

THEOREM 3.7. We have that, when o — +00:

a) If g* and g% are the unique solutions of the optimal control problems (@) and @,
respectively, then g% — g* strongly in H.

b) If ug- and ungx are the system states corresponding to problems @) and @),
respectively, then uag: — ug+ strongly in V.

c) If pg« and pag: are the adjoint states corresponding to problems @) and @),
respectively, then pags — pg« strongly in V.
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Proof. This proof is different from the previous theorem in step 2, for details see [I3]
Theorem 4.1]. That is, by variational equalities and , from uniqueness of solution
of the variational equalities and , we have 7 = uy and £ = py, respectively. Now,
taking into account that Vh € H

J(f)=Ju(f) < lirginf Ja(gl) < lirgiana(h) = li_>m Jao(h) = J(h)
and from the uniqueness of the optimal control, we obtain that f = g*. Therefore n =
Uf = Ug= and gzpf = Pg*- 1

3.2. Optimal control problems on the heat flux. In [I4], we consider the mixed
elliptic problems and and we denote by u, and a4 the unique solutions of the
following variational equalities:

a(ug,v) = Lg(v), Yvely, wuq€kK, (28)
Ao (Uag, V) = Lga(v), YW EV, wuqyq €V, (29)

where V, Vj, K, a and a,, are given as in the previous subsection and
L0) = (0:0) = [ @0, Log(s) = L)+ [ v,
FQ Fl
We consider Uyg = {qg € Q : ¢ > 0 on I's} and we formulate the following distributed
optimal control problems [22] 39]:

find ¢* € Uyg such that Jy(¢*) = Ien(}n J2(q) (30)
q€lUad
with o
1
1a(a) = 5lug — ally + laly (31)

where g is the unique solution to the variational equality (28)), zq € H is given and M
is a positive constant. For each a > 0, we formulate the following distributed optimal
control problem:

find ¢ € Uyg such that Jan(qk) = Ig[}n J20.(q) (32)
q<Uad
with o
1
Joa(q) = iuuaq_zd”%{""?HQHé (33)

where uq, is a solution to the problem (29)), z4 € H given and M a positive constant.
In [I4], in a similar way to [I2], we prove existence and uniqueness of optimal solutions

to the problems and .

LEMMA 3.8. a) There exists a unique optimal control ¢* € U,q to the problem (@)
b) For each o > 0, there exists a unique optimal control qf, € Uyq to the problem @

Proof. This results in a similar way to Lemma and Lemma For details see [14]
Lemma 1 and Lemma 6]. =

LEMMA 3.9. a) The optimality condition for the optimal control problem (@) is given by
(Mq" —pg+n—q")g 20, VN €U, ¢ € U (34)
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b) For each o > 0, the optimality condition for the optimal control problem @ s given
by
(Mg, —pagzsn—4 ) 20, Vn€Uaa, q; € Uaa- (35)

Proof. The inequalities (34)) and results following [20] 22] and taking into account
that, the Gateaux derivative for Js is given by

(J3():m = q) = (un — ug, tq — za) + M(q;1 = q)q
=—(pg:n—a)o+M(g,n—a)q, Yn.qe@
and for each a > 0, the Gateaux derivative for Ja, is given by
(J5a(@); 1 = @) = (tan — Uags Uag — 2a) + M(g,1 — @)
=—(Pagn— Do +M(g,n—q)g,  Vn,g€Q. =
Now, we give the following characterization of the optimal controls.

THEOREM 3.10. a) Let ¢* € Uyq be, q* is optimal control in Q if and only if ¢* € Q
satisfies the complementary conditions

g*>0o0nTy, Mg —pg >00nTy ¢ (Mg —pg)=0onTs.
b) For each o > 0, let ¢ € Uuq be, ¢ is optimal control in Q if and only if ¢, € Q
satisfies the complementary conditions
q >0o0nTy, Mg, —pag: >0 o0nTs, ¢ (Mg}, —pag:) =0 onTs.
Proof. We present an idea of the proof, for more details see [14] Theorems 4 and 9].
a) If we take n =0 € Uyy and n = 2¢* € Uyq in , we obtain
(Mq" = pg,q") =0
next
(Mq" = pg=,n) = (Mq" = pg,q") =0, V1 € Uaa
therefore Mq* — pg+ > 0 on I'y and since ¢* > 0 on I';, we have that
(Mg* = pg-)q” = 0.
Conversely, Vn € Uyq we have
(Mq* = pg-sn—q") = (Mq" = pg=,n) =0
therefore ¢* is the optimal control in Q.

b) By taking n =0 € U,q and n = 2¢g% € U,y in and following a similar way as in
(a), we have (b). m

COROLLARY 3.11. If we consider the boundary optimal control problems (@) and @
without restrictions (i.e., Upsg = @), we obtain that ¢* = %pq* and g} = ﬁpaq;, respec-
tively, similar to [12].

In a similar way to the previous subsection, we can prove the following convergence
results.

LEMMA 3.12. For alla >0, g€ H and b€ H=(T'y), we have that:

a) Uaq — Uq strongly in V as oo — +00, Vg € Q.
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b) Pag — pq Strongly in V' as o — +00, Vg € Q.
Proof. An idea of the proof is as follows, for details see [14], Theorem 11].

a) We prove that:

i) If we take v = Uqq — Uq In with a > 1, then there exists ¢; > 0 (indepen-
dent of «) such that
Mlltag = ol + (0= 1) [ (g = )0 < ealtag =l
Iy
where A is the coerciveness constant of a.
ii) Then, we deduce that there exists w, € V such that uy, — wy weakly in V,

as o — oo and
2
« *bzd <7(Cl) N
/1_:1(11’(1 ) ’Y—)\l(a_l)7

ili) Moreover, w, € K satisfies a(wy,v) = L(v), Yv € V, and by uniqueness, we
have that wq = ug;
iv) Finally, from the inequality

Ailtag = ugl[i < Log(tagq — ttq) — alug, uag — uq)
we obtain that u,q, — u4 strongly in V, as o = +-o00.
b) This results in a similar way to (a). =
THEOREM 3.13. We have that, when o — +00:

a) If ¢* and g}, are the unique solutions of the optimal control problems (@) and (@),
respectively, then g}, — ¢* strongly in Q).

b) If ug- and uag: are the system states corresponding to problems @) and @),
respectively, then uaqx — ug~ strongly in V.

c) If pg= and pag: are the adjoint states corresponding to problems @) and @),
respectively, then pagx — pg+ strongly in V.

Proof. We will give a scheme of the proof in three steps. For details see [14) Theorem
12].
STEP 1. By using that ¢} is the unique solution of problem , we obtain that there
exist positive constants c¢1, co and c3 such that

C3
v < e / (tagy, — uge)*dy < ~———=.
p, oo~ S 30

Therefore, we deduce that there exist f € @ and n € K such that ¢, — f weakly in Q
and uqgx — 1 weakly in V', as o — +o00. Next, taking v = pagx — pg+ € V in , we
prove that there exist positive constants ¢4 and c¢5 such that

laalle < eis luaq;

C5
v S €y /(P *—p*)2d7§7
b Ai(a—1)

and there exists £ € Vp such that paq: — § weakly in V, as a — +o0.

| |paq;§
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STEP 2. Taking v € Vj in and , respectively, and by passing to the limits, we
obtain

a(v) = —zq,v), Yvel, eV (36)
and
a(nw) = (f,v) —/ qudy, YveV, nek. (37)
1)

Next, from the uniqueness of solution of the variational equality and , we have
n = uy and & = py, respectively. Now, taking into account that Vh € Q

Jo(f) = Jau(f) < lilginf Joa(qh) < lirginf Joo(h) = ILm Joa(h) = Jo(h)
and from the uniqueness of the optimal control, we obtain that f = ¢*. Therefore =
Up = ug= and § = py = pg-.

STEP 3. The strong convergence is obtained by the previous weak convergence and the
following inequalities

Atl|pag:, _pq*H%/ < (Uagy — 2ds Pagy, — Pg*) — @(Pg* Pagz, — Pg+),

* * 1
a5 — "l < 571lPagy — Pe-llv,
M

1l
[uagy — ug-[lv < \ llaa — a"lle
where v denote the trace operator. m

3.3. Simultaneous optimal control problems on the internal energy and the
heat flux. In [I5], we consider the mixed elliptic problems (16| and and we denote
by ug4q and uqgq the unique solutions of the following variational equalities:

a (Ugq, v) = Lgq(v), Yv € Vy, wuyq €K, (38)
aa (tagg, V) = Lagq(v), Y0 €V, tagq €V, (39)
where V, Vj, K, a and a,, are defined as in previous subsections and
Lun(0) = 9:0) = [ @01, Laga(0) = Lyu(o) +a [ bua.
2 1
We consider Ugg = {q € Q : ¢ > 0 on I's} and we formulate the following simultaneous
distributed-boundary optimal control problems [39]:

find (g,9) € H x Uyg such that J3(g,q) = min  J3(g,q) (40)

(9,9)€EH X Uqaq

with
M,

1 M,
J3(9,9) = 5llugq — zallts + = llgll + = Mlallg (41)
2 2 2

and, for each a > 0

find (gcwqa) € H x Uad such that JSoc (ga?qa) = min J3oc (97 q) (42)
(gv(I)eHXUad

with ) u A
1 2
T8, ) = 3 g — =all3 + S5t 1lgl% + 52 lall (43)
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where w44 is the unique solution to the variational equality (38)), uqgq is a solution to the
problem (39), z4 € H is given and M; and M, are positive constants.

In [I5], in a similar way to [I2, [I4], we prove existence and uniqueness results of
optimal solutions to the problem and .

LEMMA 3.14. a) There exists a unique optimal control (g,q) € H x U,q to the problem
(@) and the optimality condition is given by

(h=9,pg7 + Mig) + (0 =G Mod ~ pgg)e 2 0, ¥(hn) € H x U (44)

b) For each a > 0, there exists a unique optimal control (g,,q,) € H x Usq to the problem
{“9) and the optimality condition is given by ¥(h,n) € H x Uaq

(h - gaapaﬁaﬁa + Mlga) + (77 - qaa MQqa - paﬁaﬁa)Q 2 0. (45)

Proof. The proof results in a similar way to Lemma Lemma Lemma [3.8] and
Lemma For details see |15, Theorem 1 and Theorem 2|. m

If we consider the simultaneous distributed and boundary optimal control problems
(40) and without restrictions, i.e. U,y = @, we can characterize their solutions by
using the fixed point theory.

We consider the norm in H x Q) defined by

109, D Erwq = llallzr + lalls, — ¥(9.0) € H x Q.
We define the operator W : H x Q@ — H x @ by

Wi(g,q) = <_]\}[1pgq7 ]\LPQQ> (46)
and for each a > 0, the operator W, : H x Q — H x @Q by the expression
Walg,q) = (_1pa9q7 1pa9q) (47)
M,y M,

and we can prove the following result.
THEOREM 3.15. a) W is a Lipschitz operator over H x Q, that is, there exists a positive
constant Co = Co(\, v, M1, Ms) such that, ¥(g1,q1), (g2,92) € H X Q

W (g2, q2) — W(g1, 1) llaxq < Coll(92,92) — (91, q01) |l <@ (48)
and W is a contraction operator if and only if data satisfy that

_ V2 1 P

“=% M2 M2

A+l <1. (19)
b) W, is a Lipschitz operator over H X Q, that is, there exists a positive constant Coo, =
Coa(Aa,7, My, Ms), such that

Wal(g2,a2) = Walgr, a1)llaxq < Coall(g2 — 91,02 — 1)l xq (50)
and Wy, is a contraction operator if and only if data satisfy that

_ V2 /1
SO\ M7

iods
Mg

Coa + (1 + ) < 1. (51)
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Proof. This results by estimates between the direct and adjoint states and the vector
control variable. For details see [I5, Theorem 4 and Theorem 6]. m

COROLLARY 3.16. a) If data satisfy inequality ([49) then the unique solution (g,q) € HxQ

of optimal control problem @ can be obtained as the unique fixed point of the operator

W, that is
_ 1 1 _
VV(97Q)::(“jjIpﬁaajjgpﬁa)::(Q,Q)
b) If data satisfy inequality Coo < 1, then the unique solution (g,,q,) € H x Q of the
vectorial optimal control problem (@) can be obtained as the unique fized point of the
operator W, that is:
_ 1 1 _
Wa(gom qa) = (7ﬁ1pagoﬁaa Epozgoﬁa) = (gom qa)'

Now, we present the convergence results for the simultaneous distributed-boundary
optimal control problems and (42).
LEMMA 3.17. For each o > 0, (g,q) € H x Q, b€ HY*(T'), we have:

a) Uagg — Ugq Strongly in V as o — +o00.

b) Pagq — Pgq Strongly in'V as a — +oo.
Proof. The proof is similar to that of Lemma [3.5] and Lemma [3.12] An idea of the proof
is as follows, for details see [I5, Lemma 1].

a) We prove that:

i) If we take v = Uqgq — Ugq I with « > 1, then there exists ¢4 > 0
(independent of «) such that

At|tagg — uqu%/ + (o — 1)/ (Uagg — “q)zd’Y < c1l|uagg — uggllvs

Iy
where A is the coerciveness constant of aq;
if) Then, we deduce that there exists w, € V such that ungq — wgq weakly in V,
as a — oo and
(c1)?

by < ——L .
J from =7 < 50y

ili) Moreover, wy, € K satisfies a(wgyq,v) = L(v), Yv € V; and by uniqueness, we
have that wgq = ugq;
iv) Finally, from the inequality
2
Ail|tagg = ugqlli < Lgq(tiagg — tgq) — altgg, Uagg — Ugq)
we obtain that uagq — ugq strongly in V', as a — +o0.
b) This results in a similar way to (a). =

THEOREM 3.18. We have that, when o — +00:

a) If (,9) and (g,,q,) are the unique solutions of the optimal control problems (@/
and @, respectively, then (4,,7,) — (7,49) strongly in H x Q.

b) If ugg and ung g, are the system states corresponding to problems (@) and @),
respectively, then ung g — ugqg strongly in V.
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c¢) If pgg and pag 3. are the adjoint states corresponding to problems (@) and @),
respectively, then pug 3. — pgg strongly in V.

Proof. We will give a scheme of the proof in three steps. For details see [I5, Theorem 7].
STEP 1. By using that (g,,q,) is the unique solution of problem , we obtain that
there exist positive constants ¢y, ¢o, ¢z and ¢4 such that

Gallz < cii ldallo < c2i luag,z,llv < esi lpag,g,llv < ca.

Therefore, we deduce that there exist h € H, f € Q, n € K and £ € V such that g, — h
weakly in H, g, — f weakly in Q, uag, g, — n weakly in V and pog_ g, — § weakly in
V,as a — 4o0.

STEP 2. Taking v € V; in and passing to the limits, we obtain

a(nv) = (h,v)— | fudy, YveVy, neK. (52)
s

Next, by uniqueness of solution of the variational equality , we have n = upy¢. For
v € Vpin and passing to the limits, we have

a(§v) = (upy — zq,v), Yo eV, EeW. (53)

and by the uniqueness of solution of the variational equality , we have § = ppr. Now,
taking into account that V(h'/, f') € H x Q

J3(h, f) <liminf J3,(9,,7,) < liminf J3o (R, )
o—r 00 a—r 00
= lim Jga(h/,fl) = Jg(hl,f,)

a—r 00
and from the uniqueness of the optimal control, we obtain that h = g and f = §. Therefore
Uns = tugg and prs = pgg.
STEP 3. The strong convergence is obtained by the previous weak convergence and the
following inequalities

16 =3l <~ llpeg.z, —paallve e ~lo < W pag. 5.~ paallv-
o =, Padada 9q o =M, 9ala 9q
Fora>1
Mg, g, = u§§||%, < (9, 07,3, — Uga)m — (¢ Uag,7, — U57)Q
—alugg; tag,g, — Ugq)

and

Mllpag,a, = pgally < (vag,a, = 2a:Pag,a, —Psan

N

—a(pgq, Pag,a, — Pga) — ¢(Pgg: Pag,a, — Pga)m(rl)

where A; is the coerciveness constant of bilinear form a;. m

4. Optimal control problems with hemivariational inequalities. In this section,
we consider optimal control problems related with mixed elliptic problems governed by
variational and hemivariational inequalities considered in subsection [2.2] More precisely,
we will review the optimal control problems studied in [4 [16].
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4.1. Optimal control problems on the internal energy. We consider distributed
optimal control problems of the type studied in [12} 22} [39] given by:

find ¢* € H suchthat I(g*) = mi}{l I(g) (54)
ge
with \
1
1(g) = 3 lltoey — zall3 + 5 llol% (53)
where o4 is the unique solution to the variational equality , zq € H given and M a

positive constant.
For each o > 0, we formulate the following distributed optimal control problem

find g> € H suchthat I,(g}) = néilr}la(g) (56)
g

with ) M
Io(9) = §|Iﬂag—zd||%+7|\g|lir (57)

where o4 is a solution to the hemivariational inequality , zqg € H given and M a
positive constant.

In [I6], for each o > 0, we obtain an existence result of optimal solutions to the
optimal control problem . Moreover, asymptotic behavior of optimal controls and
system states of the problem 7 when the parameter o goes to infinity, was studied.

Now, we pass to a result on existence of solution to the optimal control problem
in which the system is governed by the hemivariational inequality .

THEOREM 4.1. For each o > 0, if H(j) holds, then the distributed optimal control prob-
lems has a solution.

Proof. We give a sketch of the proof. For details, see [I6, Theorem 2].
i) For each a@ > 0 and g € H, we have
m = inf{l,(g),9 € H,Tay € T1(g9)} >0

with T}}(g) the set of solutions of (8.
ii) If g¢ € H is a minimizing sequence, then there exist positive constants k; and ko
such that

lgnlle < kv and  [[Uagallv, < k2.

iii) Therefore, there exist f € H and 7, € Vp such that

Ugge — Nao Weakly in Vo and gy — f weakly in H.
iv) Next, we have that n, € V| satisfies
a(Na,v) +a/ 30 (Ma;v) dy > / fudx —/ qudy for all v eV
FS Q 1—‘2
and therefore n, = Uy, where %, ¢ is a solution of the problem for data f € H
and ¢ € Q.

v) Finally, we have that m > I,,(f) and therefore, (f, W) is an optimal pair to optimal
control problem (56). =



82 C. M. GARIBOLDI AND D. A. TARZIA

In what follows, we present the asymptotic behavior of the optimal solutions to prob-
lem , when a — +oo.

THEOREM 4.2. Assume H(j) and (H1). If (9o, Tag,) s an optimal solution to problem
@) and (g*, Usog+) is the unique solution to problem , then go — g* strongly in H
and Uqg, — Usog= Strongly in 'V, when a — 4o00.

Proof. We will make a sketch of the proof in three steps. For details see [16, Theorem 3].

STEP 1. For all o > 0, we prove that the sequence (gq, Uayg, ) is bounded in H x H, that
is
galla <kt [[ag.|lv < k2

for positive constants k; and ks. Next, we have that, there exists k3 > 0 (independent of

«) such that

0/ _ k3
*/ ]O(uagaauoog* - Uozga)d'y < —.
I's &

Therefore, we obtain that, there exist n € V and h € H such that, as a« — 400
Uag, — N weakly in V' and g, — h weakly in H.
STEP 2. Since V; is sequentially weakly closed in V', n € Vj and
n € Vo satisfies L(w —1n) <a(n,w—n) forall we K.
Next, we obtain that n € K and
n € K satisfies a(n,v) = L(v) for all v € K,

i.e., n € K is a solution to problem (3] and by the uniqueness of solution to problem (3,
we have 1) = toop. From the uniqueness of the optimal control problem (65), we obtain
h = g*. Therefore, when a — 400

go — ¢° weakly in H and g, — Ucogr weakly in V.

STEP 3. We have that

My |[Usogs — Taga %/ < a(Uoogrs Uoog* — Uag,) + L(Uag, — Uoog*)-

Next, from the weak continuity of a(uscg-,-), the compactness of the trace operator and
Uag, — Usog= Strongly in H,

Uag, —F Usog= Strongly in V,  when o — +o0.
Finally, as g, — ¢* weakly in H and ||go||g — ||¢*|| =z, we deduce that

Jo — g* strongly in H when a — 400. n

4.2. Optimal control problems on the heat flux. We consider the boundary optimal
control problems studied in [4], which are given by

find ¢* € @ suchthat Iy(¢")= I%lél I>(q) (58)
q

with ) v
12(a) = 5o — zal B + 5 lall3 (59)
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and, for each o > 0, the problem
find ¢ € Q suchthat Iz,(q)) = Il’élél Ir,(q) (60)
q

with ) v
Foa(a) = 5lTaq = 2all} + 5 llll} (61)

where uoo4 is the unique solution to the variational equality , Uqaq is a solution to the
hemivariational inequality , zq € H given and M a positive constant.

It is know, by [14], that there exists a unique optimal solution ¢* € @ of the boundary
optimal control problem . In [4], existence of solution to the optimal control problem
, which is governed by the hemivariational inequality , has been proved. This result
is presented as follows.

THEOREM 4.3. For each a > 0, if H(j) holds, then the boundary optimal control problems
(@) has a solution.

Proof. We denote, for each a > 0 and each q € @, by T2(q) the set of solutions of
and we have that

m = inf{lz.(q), ¢ € Q,Uaq € TZ(q)} > 0. (62)

Next, for each o > 0, we consider ¢ € () a minimizing sequence to and we prove
that there exist &, € @ and 7, € V; such that, when n — oo

Ugqe — Mo weakly in Vo and g — &, weakly in Q.

After that, we obtain that 1, = Uae, Where Uqe, is a solution of the hemivariational
inequality (8) for data &, € Q and g € H. Finally, we prove that

m Z 12(1 (éa)
and therefore £, is an optimal solution to optimal control problem (60). m

In [4], following [I6], has been studied the asymptotic behavior of optimal solutions
of the problems when the parameter o goes to infinity. This result is presented as
follows.

THEOREM 4.4. Assume H(j) and (Hy). If ¢, is an optimal solution to problem (60}) and
q* is the unique solution to problem @), then q;, — q* strongly in Q and Uag: — Usog~
strongly in V', when o — +o00.

Proof. We give the scheme of the proof in three steps. For details see [4, Theorem 3.2].

STEP 1. Since ¢}, is an optimal solution to problem , we deduce that there exist
positive constants k1 and kg such that

||q(§||Q < k17 ||ﬂaqg v < k2-

Moreover, there exists a positive constant k3 such that

0/— _ ks
_/ .70<uaq;;uooq* —ang)chﬁ .
T «

Therefore, there exist n € V and £ € @ such that

Uagx — 1 weakly in V, as a — +o0, (63)
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qn — & weakly in @, as @ — +o0. (64)
STEP 2. We obtain that
n € K satisfies a(n,v) = L(v) for all v € Ko,

i.e., n € K is a solution to problem and by the uniqueness of solution to problem ,
we have 1 = use and hence Uagx — Usee Weakly in V', as a — +oo. Next, Vg € Q

I(§) < liminf Iq(qz) < liminf Iq(q) = lim Ioa(q) = I2(q)

and from the uniqueness of the optimal control problem , we obtain that & = ¢*,
therefore toog = Uoog+. Therefore, when av — 400

¢, —¢° weakly in Q and TUgqr — Usogr weakly in V.
STEP 3. By H(j)(d) and the coerciveness of the form a, we obtain
Ma || Uoogs — Uagr, ||\2/ < aUoog Usogs — ﬂaqg) + L(ﬂaq; — Uoog*)-

Next, we have that Uagx — Useg strongly in V' as a — oco. Now, from %ag: — Uoog=
strongly in H and as ¢} — ¢* weakly in ) we obtain

I (") < 1irr_1>inf Isa ().

On the other hand, from the definition of ¢}, and taking into account that Tgg« — Usoq=
strongly in H, we obtain

lim sup I24(q}) < limsup I3, (¢%) = I2(q")

a—r 00 a—r 00
and therefore
: 1 — 2 M 2 1 2 M 2
i (51ag; = zall + G 621 ) = 3l —zally + 1471

Finally, when o — 400, we have ||¢}||3, = |l¢*[|3, and as ¢, — ¢* weakly in @, we deduce
that ¢} — ¢* strongly in ). =

4.3. Simultaneous optimal control problems on the internal energy and the
heat flux. We consider the simultaneous distributed and Neumann boundary optimal
control problems studied in [4]. These problems are given by

find (g,q9) € H x Q such that I3(g,q) = min I5(g,q) (65)
(9, 9)EHXQ
with ) u oL
1 2
I5(g,q) = §\|Uoogq—ZdH%I‘FTHQH%H‘THQHé (66)

where Uaoqq is the unique solution to the variational equality , zq € H given and
My and Ms are given positive constants. For each a > 0, the following simultaneous
distributed and Neumann boundary optimal control problem

find (?avqa) € H x Q such that IBa(gavqa) = min -[3(1 (ga q) (67)
(9,9)EHXQ

with M u
1, 1 2
30(0,0) = 3 gy — zall} + 5 o3 + 22110l (68)
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where Uqgq is a solution to the hemivariational inequality , zq € H is given and M
and Ms are positive constants.

It is known, by [I5], that there exists a unique optimal pair (g,gq) € H x Q of the
simultaneous distributed-boundary optimal control problem . In similar way to [16],
in [4] a result on existence of solution to the simultaneous optimal control problem
which is governed by the hemivariational inequality has been proved. This result and
an idea of its proof are presented as follows.

THEOREM 4.5. For each o > 0, if H(j) holds, then the simultaneous distributed-boundary
optimal control problem (@) governed by the hemivariational inequality (@ has a solution.

Proof. i) For each a > 0 and (g,¢) € H X @, we have

m = inf{l3.(9,9),(9,9) € H X Q,Uagq € T5(9:9)} =0

with T:3(g, q) the set of solutions of .

ii) Next, if (¢5,¢%) € H x @ is a minimizing sequence, there exist positive constants
ki1, ko and k3 such that, as n — oo

lonlla < k1 llgnlle < k2 and  |[Uaggqqlvy < ks
iii) Therefore, there exist f, € H, £, € @ and 71, € Vj such that
gy — &, weakly in @, gn — fo weakly in H
Uagaqe — Na Weakly in Vp.
iv) Next, we prove that n, € V; satisfies
a(navv)+a/ jo(na;v)d'VZ/favdx* Savdy Vv € V)
F3 Q 1_‘2

and therefore 7o = Uaf, ¢, Where Uy g ¢, is a solution of the for data f, € H and
o € Q.

v) Finally, we have m > I3,(fa,&n) and therefore, (fa,&s) is an optimal pair for
optimal control problem @ m

The asymptotic behavior of the optimal solutions to problem when « goes to
infinity, studied in [4], is presented as follows.

THEOREM 4.6. Assume H(j) and (Hy). If (4,,,d,,) is an optimal solution to simultaneous
distributed and Neumann boundary optimal control problem @ and (g,q) is the unique
solution to simultaneous optimal control problem @, then (g,,4,) — (9,9) in H x Q
strongly and Uag_ g, — Usegg 0V strongly, when o — oo.

Proof. We give a sketch of the proof. For details see [4, Theorem 5.1].
STEP 1. For all @ > 0, the sequence (gq, ¢ ) is bounded in H x @ and Uqg,q, is bounded
in H, that is

galla <k, ldalle < k2 |[tagagallv < ks

for positive constants ki, ko and k3. Moreover, there exists k4 > 0 (independent of «)

such that

.0 /— _ k4
- J (uagaqa » Uoogqg — uocgaqa)d7 S e
I's @
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Next, we prove that there exist n € V', h € H and p € Q such that, as « — +o0
Uagaq, — N weakly in V
go — h weakly in H and ¢, — p weakly in Q.
STEP 2. Since Vj is sequentially weakly closed in V', n € V| satisfies
Lw—n) <a(p,w—mn) forall we K.

Next, we obtain that n € K and

n € K satisfies a(n,v) = L(v) for all v € Ky,
i.e., n € K is a solution to problem and by the uniqueness of solution to problem
(3), we have that n = up,. From the uniqueness of the optimal control problem , we
obtain

h=9 and p=7q.

Therefore, when o — +o0

go — ¢ weakly in H, ¢, — ¢ weakly in @

Uagage — Uscgg Weakly in V.
STEP 3. We have
Ma |[Uocgg — Tagaga [V < a(Uocg, Uocgs — Tagaga) + L(Tagaga — Uocgy)-
Next, from the weak continuity of a(Ggg,-), the compactness of the trace operator and
Uagoge —F Uoogg Strongly in H,
Ungaqa — Usogg Strongly in V,  when o — +4-o0.
Finally, as g, — g weakly in H, ¢, — q weakly in Q
galln = llglla and lgallo = Ifallo
we deduce that, as « — +oo
Ja — g strongly in H and ¢, — @ strongly in Q. =
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