# A REVIEW OF OPTIMAL CONTROL PROBLEMS FOR ELLIPTIC VARIATIONAL AND HEMIVARIATIONAL INEQUALITIES AND THEIR ASYMPTOTIC BEHAVIORS 

CLAUDIA M. GARIBOLDI<br>Depto. Matemática, FCEFQyN, Univ. Nac. de Río Cuarto 5800 Río Cuarto, Argentina<br>ORCID: 0000-0003-1944-101X E-mail: cgariboldi@exa.unrc.edu.ar

DOMINGO A. TARZIA
Depto. Matemática, FCE, Universidad Austral
S2000FZF Rosario, Argentina
CONICET, Argentina
ORCID: 0000-0002-2813-0419 E-mail: dtarzia@austral.edu.ar


#### Abstract

We consider a $d$-dimensional bounded domain $\Omega$ which regular boundary consists of the union of three disjoint portions. We study different optimal control problems (distributed, boundary and simultaneous distributed-boundary) for systems governed by elliptic variational inequalities or elliptic hemivariational inequalities. For both cases, we also consider a parameter, like a heat transfer coefficient on a portion of the boundary, which tends to infinity. We prove an existence result for three different optimal control problems, and we show the asymptotic behavior results for the corresponding optimal controls and system states.


1. Introduction. In this paper, we review several previous works of our authorship and some of them in collaboration with other authors. We consider elliptic mixed problems defined in a $d$-dimensional domain $\Omega$, whose regular boundary $\Gamma$ consists of the union of three (or possibly two) disjoint portions. These problems are governed by the Poisson

[^0]equation in $\Omega$ and by mixed boundary conditions on $\Gamma$. More precisely, we consider Dirichlet, Neumann and Robin boundary conditions. We remark that, under additional hypotheses on the data, these problems can be considered as steady-state two phase Stefan problems, which have been extensively studied in several papers such as [10, 34, 35, 36, 37, 38. In [12, 13, related to these mixed elliptic problems, we formulate distributed optimal control problems on the internal energy, which are dependent of a parameter (heat transfer coefficient). We study existence, uniqueness and asymptotic behaviour of the optimal solutions when this parameter goes to infinity. In [14], we consider boundary optimal control problems on the heat flux and we obtain similar existence, uniqueness and convergence results when heat transfer coefficient goes to infinity. In [15], simultaneous distributed-boundary optimal control problems have been formulated and similar results to [12, 13, 14 have been obtained.

More recently, in [11], a non-monotone multivalued subdifferential boundary condition on a portion of the boundary described by the Clarke generalized gradient of a locally Lipschitz function has been considered. Such multivalued relation is met in certain types of steady-state heat conduction problems as well as in several boundary semipermeability models, see [24, 27, 28, 29, 40, 41], which are motivated by problems arising in hydraulics, fluid flow problems through porous media, and electrostatics, where the solution represents the pressure and the electric potentials. The weak formulations of these problems are given by boundary hemivariational inequalities. In [11], existence result for a class of boundary hemivariational inequality has been proved. In [16], distributed optimal control problems on the internal energy has been formulated for this kind of boundary hemivariational inequality and existence and asymptotic behavior of optimal controls and system states has been obtained. In [4], boundary and simultaneous distributed-boundary optimal control problems related to the same class of boundary hemivariational inequality has been studied and similar results to [16] has been proved.

The paper is structured as follows. In Section 2, we consider mixed elliptic problems and we give their variational and hemivariational formulations. We consider preliminaries concept and we give some existence results and properties of monotonicity, convergence and continuous dependence of data. Furthermore, we present three examples which satisfy the hypotheses considered. In Section 3, we formulate distributed, boundary and simultaneous distributed-boundary optimal control problems related with the mixed elliptic problems governed by variational equalities. We prove existence and uniqueness of the optimal solutions and we obtain convergence results of the optimal controls and the optimal direct and adjoint states, when the heat transfer coefficient goes to infinity. Finally, in Section 4, we consider distributed, boundary and simultaneous distributedboundary optimal control problems related with the mixed elliptic problems governed by hemivariational inequalities. We prove existence of the optimal solutions and we obtain convergence results of the optimal controls and the optimal system states, when the heat transfer coefficient goes to infinity.
2. Mixed elliptic problems. In this section, we consider elliptic mixed problems defined in a $d$-dimensional domain, which are governed by the Poisson equation with mixed
conditions on the regular boundary of the domain. That is, we consider Dirichlet, Neumann and Robin boundary conditions and a multivalued condition on a portion of boundary. The weak formulations of these problems are given by variational equalities or hemivariational inequalities depending on the boundary conditions we impose. We will give some necessary definitions and we will prove some important properties.
2.1. Problems with variational equalities. We consider a bounded domain $\Omega$ in $\mathbb{R}^{d}$ which regular boundary $\Gamma$ consists of the union of three disjoint portions $\Gamma_{i}, i=1,2,3$ with $\left|\Gamma_{i}\right|>0$, where $\left|\Gamma_{i}\right|$ denotes the ( $d-1$ )-dimensional Hausdorff measure of the portion $\Gamma_{i}$ on $\Gamma$. The outward normal vector on the boundary is denoted by $n$. We formulate the following two steady-state heat conduction problems with mixed boundary conditions:

$$
\begin{gather*}
-\Delta u=g \text { in } \Omega,\left.\quad u\right|_{\Gamma_{1}}=0, \quad-\left.\frac{\partial u}{\partial n}\right|_{\Gamma_{2}}=q,\left.\quad u\right|_{\Gamma_{3}}=b  \tag{1}\\
-\Delta u=g \text { in } \Omega,\left.\quad u\right|_{\Gamma_{1}}=0, \quad-\left.\frac{\partial u}{\partial n}\right|_{\Gamma_{2}}=q, \quad-\left.\frac{\partial u}{\partial n}\right|_{\Gamma_{3}}=\alpha(u-b) \tag{2}
\end{gather*}
$$

where $u$ is the temperature in $\Omega, g$ is the internal energy in $\Omega, b$ is the temperature on $\Gamma_{3}$ for (1) and the temperature of the external neighborhood of $\Gamma_{3}$ for (2), $q$ is the heat flux on $\Gamma_{2}$ and $\alpha>0$ is the heat transfer coefficient on $\Gamma_{3}$, which satisfy the hypothesis: $g \in H=L^{2}(\Omega), q \in Q=L^{2}\left(\Gamma_{2}\right)$ and $b \in H^{\frac{1}{2}}\left(\Gamma_{3}\right)$.

We denote

$$
\begin{gathered}
V=H^{1}(\Omega), \quad V_{0}=\left\{v \in V \mid v=0 \text { on } \Gamma_{1}\right\}, \\
K=\left\{v \in V \mid v=0 \text { on } \Gamma_{1}, v=b \text { on } \Gamma_{3}\right\}, \\
K_{0}=\left\{v \in V \mid v=0 \text { on } \Gamma_{1} \cup \Gamma_{3}\right\}, \\
(g, h)=\int_{\Omega} g h d x, \quad(q, \eta)_{Q}=\int_{\Gamma_{2}} q \eta d \gamma, \\
a(u, v)=\int_{\Omega} \nabla u \nabla v d x, \quad b_{\alpha}(u, v)=a(u, v)+\alpha \int_{\Gamma_{3}} \gamma(u) \gamma(v) d \gamma, \\
L(v)=\int_{\Omega} g v d x-\int_{\Gamma_{2}} q \gamma(v) d \gamma, \quad L_{\alpha}(v)=L(v)+\alpha \int_{\Gamma_{3}} b \gamma(v) d \gamma,
\end{gathered}
$$

where $\gamma: V \rightarrow L^{2}(\Gamma)$ denotes the trace operator on $\Gamma$. In what follows, we write $u$ for the trace of a function $u \in V$ on the boundary. In a standard way, we obtain the following variational formulations to problems (1) and (22), respectively:

$$
\begin{align*}
& \text { find } u_{\infty} \in K \text { such that } a\left(u_{\infty}, v\right)=L(v) \text { for all } v \in K_{0} \text {, }  \tag{3}\\
& \text { find } u_{\alpha} \in V_{0} \text { such that } b_{\alpha}\left(u_{\alpha}, v\right)=L_{\alpha}(v) \text { for all } v \in V_{0} . \tag{4}
\end{align*}
$$

The standard norms on $V$ and $V_{0}$ are denoted by

$$
\begin{aligned}
& \|v\|_{V}=\left(\|v\|_{H}^{2}+\|\nabla v\|_{L^{2}\left(\Omega ; \mathbb{R}^{d}\right)}^{2}\right)^{1 / 2} \text { for } v \in V \\
& \|v\|_{V_{0}}=\|\nabla v\|_{L^{2}\left(\Omega ; \mathbb{R}^{d}\right)} \text { for } v \in V_{0}
\end{aligned}
$$

It is well known by the Poincaré inequality, see [6, 20], that on $V_{0}$ the above two norms are equivalent. Note that the form $a$ is bilinear, symmetric, continuous and coercive with
constant $m_{a}>0$, i.e.

$$
\begin{equation*}
a(v, v)=\|v\|_{V_{0}}^{2} \geq m_{a}\|v\|_{V}^{2} \text { for all } v \in V_{0} . \tag{5}
\end{equation*}
$$

Note also that the form $b_{\alpha}$ is bilinear, symetric, continuous and coercive in V, i.e.

$$
\begin{equation*}
b_{\alpha}(v, v) \geq \lambda_{\alpha}\|v\|_{V}^{2}, \forall v \in V \tag{6}
\end{equation*}
$$

where $\lambda_{\alpha}=\lambda_{1} \min \{1, \alpha\}$ and $\lambda_{1}$ is the coerciveness constant for the bilinear form $a_{1}$ [36].
It is well known that the regularity of solution to the mixed elliptic problems (1) and (2) are problematic in the neighborhood of a part of the boundary, see for example the monograph [19]. A regularity results for elliptic problems with mixed boundary conditions can be found in [1, 2, 21. Moreover, sufficient hypotheses on the data in order to have $H^{2}$ regularity for elliptic variational inequalities are given in [30]. We remark that, under additional hypotheses on the data $g, q$ and $b$, problems (1) and (2) can be considered as steady-state two phase Stefan problems, see, for example, [10, 34, 36, 38,

The problems (3) and (4) have been extensively studied in several papers such as [10, (34, 35, 36, 37. Some properties of monotonicity and convergence, when the parameter $\alpha$ goes to infinity, obtained in the aforementioned works, are recalled in the following result.

Theorem 2.1. If the data satisfy $b=$ const. $>0, g \in H$ and $q \in Q$ with the properties $q \geq 0$ on $\Gamma_{2}$ and $g \leq 0$ in $\Omega$, then
(i) $u_{\infty} \leq b$ in $\Omega$,
(ii) $u_{\alpha} \leq b$ in $\Omega$,
(iii) $u_{\alpha} \leq u_{\infty}$ in $\Omega$,
(iv) if $\alpha_{1} \leq \alpha_{2}$, then $u_{\alpha_{1}} \leq u_{\alpha_{2}}$ in $\Omega$,
(v) $u_{\alpha} \rightarrow u_{\infty}$ in $V$, as $\alpha \rightarrow+\infty$.

Proof. See [10, 34, 36, 37.
2.2. Problems with hemivariational inequalities. We consider the mixed nonlinear boundary value problem studied in [11]. We begin by giving some definitions and properties necessary for the development of these topics.

Let $\left(X,\|\cdot\|_{X}\right)$ be a reflexive Banach space, $X^{*}$ be its dual, and $\langle\cdot, \cdot\rangle$ denote the duality between $X^{*}$ and $X$. For a real valued function defined on $X$, we have the following definitions [5, Section 2.1] and [7, 8, [25].

Definition 2.2. A function $\varphi: X \rightarrow \mathbb{R}$ is said to be locally Lipschitz if for every $x \in X$ there exist $U_{x}$ a neighborhood of $x$ and a constant $L_{x}>0$ such that

$$
|\varphi(y)-\varphi(z)| \leq L_{x}\|y-z\|_{X} \text { for all } y, z \in U_{x}
$$

For such a function the generalized (Clarke) directional derivative of $j$ at the point $x \in X$ in the direction $v \in X$ is defined by

$$
\varphi^{0}(x ; v)=\limsup _{y \rightarrow x, \lambda \rightarrow 0^{+}} \frac{\varphi(y+\lambda v)-\varphi(y)}{\lambda}
$$

The generalized gradient (subdifferential) of $\varphi$ at $x$ is a subset of the dual space $X^{*}$ given by

$$
\partial \varphi(x)=\left\{\zeta \in X^{*} \mid \varphi^{0}(x ; v) \geq\langle\zeta, v\rangle \text { for all } v \in X\right\}
$$

We shall use the following properties of the generalized directional derivative and the generalized gradient, see [25, Proposition 3.23].
Proposition 2.3. Assume that $\varphi: X \rightarrow \mathbb{R}$ is a locally Lipschitz function. Then the following hold:
(i) for every $x \in X$, the function $X \ni v \mapsto \varphi^{0}(x ; v) \in \mathbb{R}$ is positively homogeneous, and subadditive, i.e.,

$$
\begin{aligned}
& \varphi^{0}(x ; \lambda v)=\lambda \varphi^{0}(x ; v) \text { for all } \lambda \geq 0, v \in X \\
& \varphi^{0}\left(x ; v_{1}+v_{2}\right) \leq \varphi^{0}\left(x ; v_{1}\right)+\varphi^{0}\left(x ; v_{2}\right) \text { for all } v_{1}, v_{2} \in X
\end{aligned}
$$

respectively.
(ii) for every $x \in X$, we have $\varphi^{0}(x ; v)=\max \{\langle\zeta, v\rangle \mid \zeta \in \partial \varphi(x)\}$.
(iii) the function $X \times X \ni(x, v) \mapsto \varphi^{0}(x ; v) \in \mathbb{R}$ is upper semicontinuous.
(iv) for every $x \in X$, the gradient $\partial \varphi(x)$ is a nonempty, convex, and weakly compact subset of $X^{*}$.
(v) the graph of the generalized gradient $\partial \varphi$ is closed in $X \times\left(\right.$ weak- $\left.X^{*}\right)$-topology.

Now, we are in a position to formulate the aforementioned problem. The mixed nonlinear boundary value problem is given by

$$
\begin{equation*}
-\Delta u=g \text { in } \Omega,\left.\quad u\right|_{\Gamma_{1}}=0, \quad-\left.\frac{\partial u}{\partial n}\right|_{\Gamma_{2}}=q, \quad-\left.\frac{\partial u}{\partial n}\right|_{\Gamma_{3}} \in \alpha \partial j(u) . \tag{7}
\end{equation*}
$$

Here, as in the problem (2), $\alpha$ is a positive constant while the function $j: \Gamma_{3} \times \mathbb{R} \rightarrow \mathbb{R}$, called a superpotential (nonconvex potential), is such that $j(x, \cdot)$ is locally Lipschitz for a.e. $x \in \Gamma_{3}$ and not necessary differentiable. Since in general $j(x, \cdot)$ is nonconvex, so the multivalued condition on $\Gamma_{3}$ in problem $(7)$ is described by a nonmonotone relation expressed by the generalized gradient of Clarke. Such multivalued relation in problem (7) is met in certain types of steady-state heat conduction problems (the behavior of a semipermeable membrane of finite thickness, a temperature control problems, etc.). Further, problem $(7)$ can be considered as a prototype of several boundary semipermeability models, see [24, 27, 28, 41], which are motivated by problems arising in hydraulics, fluid flow problems through porous media, and electrostatics, where the solution represents the pressure and the electric potentials. Note that the analogous problems with maximal monotone multivalued boundary relations (that is the case when $j(x, \cdot)$ is a convex function) were considered in [3, 9], see also references therein.

Under the above notation, the weak formulation to the elliptic problem (7) becomes the following boundary hemivariational inequality:

$$
\begin{equation*}
\text { find } \bar{u}_{\alpha} \in V_{0} \text { such that } a\left(\bar{u}_{\alpha}, v\right)+\alpha \int_{\Gamma_{3}} j^{0}\left(\bar{u}_{\alpha} ; v\right) d \gamma \geq L(v) \text { for all } v \in V_{0} \tag{8}
\end{equation*}
$$

Here and in what follows we often omit the variable $x$ and we simply write $j(r)$ instead of $j(x, r)$. Observe that if $j(x, \cdot)$ is a convex function for a.e. $x \in \Gamma_{3}$, then the problem (8) reduces to the variational inequality of second kind:

$$
\begin{gather*}
\text { find } \quad \bar{u}_{\alpha} \in V_{0} \quad \text { such that } \\
a\left(\bar{u}_{\alpha}, v-\bar{u}_{\alpha}\right)+\alpha \int_{\Gamma_{3}}\left(j(v)-j\left(\bar{u}_{\alpha}\right)\right) d \gamma \geq L\left(v-\bar{u}_{\alpha}\right) \text { for all } v \in V_{0} . \tag{9}
\end{gather*}
$$

Note that when $j(r)=\frac{1}{2}(r-b)^{2}$, problem (9) reduces to a variational inequality corresponding to problem (2).

The stationary heat conduction models with nonmonotone multivalued subdifferential interior and boundary semipermeability relations cannot be described by convex potentials. They use locally Lipschitz potentials and their weak formulations lead to hemivariational inequalities, see [27, Chapter 5.5.3] and [28].

In [11], for the problem (8), sufficient conditions were studied that guarantee the existence of a solution and the comparison properties and asymptotic behavior, as $\alpha \rightarrow$ $+\infty$, stated in Theorem 2.1 Moreover, continuous dependence of solutions was obtained. In order to provide an existence result for the following elliptic hemivariational inequality

$$
\begin{equation*}
\text { find } \bar{u} \in V_{0} \text { such that } a(\bar{u}, v)+\alpha \int_{\Gamma_{3}} j^{0}(\bar{u} ; v) d \gamma \geq h(v) \text { for all } v \in V_{0} \tag{10}
\end{equation*}
$$

with $h \in V_{0}^{*}$, in [11, the following hypotheses were considered.
$\underline{H(j)}: j: \Gamma_{3} \times \mathbb{R} \rightarrow \mathbb{R}$ is such that
(a) $j(\cdot, r)$ is measurable for all $r \in \mathbb{R}$,
(b) $j(x, \cdot)$ is locally Lipschitz for a.e. $x \in \Gamma_{3}$,
(c) there exist $c_{0}, c_{1} \geq 0$ such that $|\partial j(x, r)| \leq c_{0}+c_{1}|r|$ for all $r \in \mathbb{R}$, a.e. $x \in \Gamma_{3}$,
(d) $j^{0}(x, r ; b-r) \leq 0$ for all $r \in \mathbb{R}$, a.e. $x \in \Gamma_{3}$ with a constant $b \in \mathbb{R}$.

Note that the existence results for elliptic hemivariational inequalities can be found in several contributions, see [6, 17, 18, [23, 25, [26, 27, 31, 32, 33]. In comparison to other works, the new hypothesis is $H(j)(\mathrm{d})$. Under this condition, in [11], both existence of solution to problem (10) and a convergence result when $\alpha \rightarrow \infty$ have been proved. Moreover, if the hypothesis $H(j)(\mathrm{d})$ is replaced by the relaxed monotonicity condition (see 11 for details)

$$
j^{0}(x, r ; s-r)+j^{0}(x, s ; r-s) \leq m_{j}|r-s|^{2}
$$

for all $r, s \in \mathbb{R}$, a.e. $x \in \Gamma_{3}$ with $m_{j} \geq 0$, and the smallness condition

$$
m_{a}>\alpha m_{j}\|\gamma\|^{2}
$$

is assumed, then problem $\sqrt[10]{ }$ is uniquely solvable, see [26, Lemma 20] for the proof. However, this smallness condition is not suitable in the study of problem (10) since for a sufficiently large value of $\alpha$, it is not satisfied.

Theorem 2.4. If $H(j)$ holds, $h \in V_{0}^{*}$ and $\alpha>0$, then the hemivariational inequality (10) has a solution.

Proof. This results applying a surjectivity result in [25, Proposition 3.61] and partially follow arguments of [26] Lemma 20]. Here, we will give an idea of the proof, for details see [11, Theorem 4].
i) If we consider $A: V_{0} \rightarrow V_{0}^{*}$ such that $\langle A u, v\rangle=a(u, v), \forall u, v \in V_{0}$, we prove that the operator $A$ is a linear, bounded $\left(\|A(u)\|_{V_{0}^{*}} \leq\|u\|_{V_{0}}\right)$ and coercive $\left(\langle A v, v\rangle=\|v\|_{V_{0}}^{2}\right)$. Moreover, $A$ is a pseudomonotone operator.
ii) Next, we define $F: L^{2}\left(\Gamma_{3}\right) \rightarrow \mathbb{R}$ such that

$$
F(y)=\int_{\Gamma_{3}} j(x, y(x)) d \gamma, y \in L^{2}\left(\Gamma_{3}\right) .
$$

The functional $F$ enjoys the following properties (see [25]).
$\left.p_{1}\right) F$ is well defined and Lipschitz continuous on bounded subsets of $L^{2}\left(\Gamma_{3}\right)$, hence also locally Lipschitz,
$\left.p_{2}\right) F^{0}(y, z) \leq \int_{\Gamma_{3}} j(x, y(x), z(x)) d \gamma, y, z \in L^{2}\left(\Gamma_{3}\right)$.
$\left.p_{3}\right)\|\partial F(y)\|_{L^{2}\left(\Gamma_{3}\right)} \leq \overline{c_{1}}+\overline{c_{2}}\|y\|_{L^{2}\left(\Gamma_{3}\right)}, y \in L^{2}\left(\Gamma_{3}\right)$ with $\overline{c_{1}}, \overline{c_{2}} \geq 0$.
iii) Now, we define $B: V_{0} \rightarrow 2^{V_{0}^{*}}$ such that

$$
B(v)=\alpha \gamma^{*} \partial F(\gamma v), \forall v \in V_{0}
$$

where $\gamma^{*}: L^{2}(\Gamma) \rightarrow V_{0}^{*}$ denotes the adjoint of the trace $\gamma . B$ is pseudomonotone and bounded multivalued operator.
iv) We prove that $A+B$ is a bounded, pseudomonotone and coercive multivalued operator, hence also surjective.
v) Next, there exists $u \in V_{0}$ such that $(A+B) u \ni h$.
vi) We obtain that $u$ solves problem (8).

Note that, from Theorem4.5 it follows that for each $\alpha>0$, problem (8) has a solution $u_{\alpha} \in V_{0}$ while [6] Corollary 2.102] entails that problem (3) has a unique solution $u_{\infty} \in K$. Moreover, it is easy to observe that problem (3) can be equivalently formulated as follows

$$
\begin{equation*}
\text { find } u_{\infty} \in K \text { such that } a\left(u_{\infty}, v-u_{\infty}\right)=L\left(v-u_{\infty}\right) \text { for all } v \in K \tag{11}
\end{equation*}
$$

In what follows we need the hypothesis on the data.
$\left(H_{0}\right): ~ g \in H, g \leq 0$ in $\Omega, q \in Q, q \geq 0$ on $\Gamma_{2}$.
Theorem 2.5. If $H(j),\left(H_{0}\right)$ hold and $b \geq 0$, then
(a) $\bar{u}_{\alpha} \leq b$ in $\Omega$,
(b) $\bar{u}_{\alpha} \leq u_{\infty}$ in $\Omega$,
where $\bar{u}_{\alpha} \in V_{0}$ is a solution to problem (8) and $u_{\infty} \in K$ is the unique solution to problem (3).
Proof. a) Let $w=\bar{u}_{\alpha}-b$. Since $\left.w\right|_{\Gamma_{1}}=-b \leq 0$, then $\left.w^{+}\right|_{\Gamma_{1}}=0$. If we choose $v=-w^{+} \in$ $V_{0}$ in (8), by $\left(H_{0}\right)$ we have $L\left(w^{+}\right) \leq 0$, then

$$
a\left(w^{+}, w^{+}\right) \leq \alpha \int_{\Gamma_{3}} j^{0}\left(\bar{u}_{\alpha} ;-\left(\bar{u}_{\alpha}-b\right)^{+}\right) d \gamma .
$$

Next, by $H(j)(\mathrm{d})$ and the coerciveness of $a$, we deduce $m_{a}\left\|w^{+}\right\|_{V}^{2} \leq 0$. Hence $w^{+}=0$ in $\Omega$, and $\bar{u}_{\alpha} \leq b$ in $\Omega$.
b) If we denote $w=\bar{u}_{\alpha}-u_{\infty}$, we have that $\left.w\right|_{\Gamma_{1}}=0$. If we take $v=-w^{+} \in V_{0}$ in (8), by (a) we have that $\left.w\right|_{\Gamma_{3}}=\left.\left(\bar{u}_{\alpha}-b\right)\right|_{\Gamma_{3}} \leq 0$ and consequently $w^{+} \in K_{0}$. Taking $v=w^{+} \in K_{0}$ in (3), we have

$$
a\left(w^{+}, w^{+}\right) \leq \alpha \int_{\Gamma_{3}} j^{0}\left(\bar{u}_{\alpha} ;-w^{+}\right) d \gamma
$$

Since $u_{\infty}=b$ on $\Gamma_{3}$, by $H(j)(\mathrm{d})$ and the coerciveness of $a$, we deduce $m_{a}\left\|w^{+}\right\|_{V}^{2} \leq 0$. Therefore, $w^{+}=0$ in $\Omega$ and $u_{\alpha} \leq u_{\infty}$ in $\Omega$.

In what follows, we comment on the monotonicity property analogous to condition (iv) stated for problem (3) in Theorem 2.1.

Proposition 2.6. Assume that $H(j)$ and $\left(H_{0}\right)$ hold, and

$$
\begin{equation*}
j^{0}\left(x, r ;-(r-s)^{+}\right)+c j^{0}\left(x, s ;(r-s)^{+}\right) \leq 0 \tag{12}
\end{equation*}
$$

for all $c \geq 1$, all $r, s \in \mathbb{R}, r \leq b, s \leq b$ and a.e. $x \in \Gamma_{3}$. Let $\bar{u}_{\alpha_{i}} \in V_{0}$ denote the unique solution to the inequality (8) corresponding to $\alpha_{i}>0, i=1,2$. Then the following monotonicity property holds:

$$
\alpha_{1} \leq \alpha_{2} \quad \Longrightarrow \quad \bar{u}_{\alpha_{1}} \leq \bar{u}_{\alpha_{2}} \text { in } \Omega .
$$

Proof. Let $0<\alpha_{1} \leq \alpha_{2}$ and $w=\bar{u}_{\alpha_{1}}-\bar{u}_{\alpha_{2}}$ in $\Omega$. It is sufficient to prove that $w^{+}=0$ in $\Omega$. Since $\left.w\right|_{\Gamma_{1}}=0$, we have $w^{+} \in V_{0}$. We choose $v=-w^{+} \in V_{0}$ in problem (8) for $\alpha_{1}$, $v=w^{+} \in V_{0}$ in problem (8) for $\alpha_{2}$ and by adding, we have

$$
-a\left(w, w^{+}\right)+\alpha_{1} \int_{\Gamma_{3}} j^{0}\left(\bar{u}_{\alpha_{1}} ;-w^{+}\right) d \Gamma+\alpha_{2} \int_{\Gamma_{3}} j^{0}\left(\bar{u}_{\alpha_{2}} ; w^{+}\right) d \Gamma \geq 0
$$

which implies

$$
\begin{gathered}
a\left(w^{+}, w^{+}\right) \leq \int_{\Gamma_{3}}\left(\alpha_{1} j^{0}\left(\bar{u}_{\alpha_{1}} ;-w^{+}\right)+\alpha_{2} j^{0}\left(\bar{u}_{\alpha_{2}} ; w^{+}\right)\right) d \Gamma \\
=\alpha_{1} \int_{\Gamma_{3}}\left(j^{0}\left(\bar{u}_{\alpha_{1}} ;-w^{+}\right)+\frac{\alpha_{2}}{\alpha_{1}} j^{0}\left(\bar{u}_{\alpha_{2}} ; w^{+}\right)\right) d \Gamma \leq 0
\end{gathered}
$$

Using the coercivity of the form $a$, we deduce that $w^{+}=0$, which completes the proof.
Next, with the aim of studying the asymptotic behavior of solutions to problem (8) when $\alpha \rightarrow \infty$, it is necessary to consider the following additional hypothesis on the superpotential $j$.
$\underline{\left(H_{1}\right)}: \quad$ if $j^{0}(x, r ; b-r)=0$ for all $r \in \mathbb{R}$, a.e. $x \in \Gamma_{3}$, then $r=b$.
Theorem 2.7. Assume $H(j),\left(H_{0}\right)$ and $\left(H_{1}\right)$. Let $\left\{\bar{u}_{\alpha}\right\} \subset V_{0}$ be a sequence of solutions to problem (8) and $u_{\infty} \in K$ be the unique solution to problem (3). Then $\bar{u}_{\alpha} \rightarrow u_{\infty}$ in $V$, as $\alpha \rightarrow+\infty$.

Proof. We will give a sketch of the proof, see [11, Theorem 7] for details.
i) We prove that the sequence $\left\{\bar{u}_{\alpha}\right\}$ is bounded in $V, \forall \alpha>0$.
ii) Next, there exists $c_{1}>0$ (independent of $\alpha$ ) such that

$$
-\int_{\Gamma_{3}} j^{0}\left(\bar{u}_{\alpha}, u_{\infty}-\bar{u}_{\alpha}\right) d \gamma \leq \frac{c_{1}}{\alpha} .
$$

iii) We obtain that there exists $u^{*} \in V_{0}$ such that $\bar{u}_{\alpha} \rightharpoonup u^{*}$ weakly in $V$, as $\alpha \rightarrow \infty$.
iv) Next, we prove that $u^{*}$ satisfies: $a\left(u^{*}, w-u^{*}\right) \geq L\left(w-u^{*}\right), \forall w \in K$ and we have that $u^{*} \in K$.
v) We have that $u^{*}=u_{\infty}$.
vi) Finally, $\bar{u}_{\alpha} \rightarrow u_{\infty}$ strongly in $V$, as $\alpha \rightarrow+\infty$.

Now, we present a result on continuous dependence of solution to problem (8) on the internal energy $g$ and the heat flux $q$ for fixed $\alpha>0$. First, we give a previous result.

Lemma 2.8. Let $g_{n} \in H, q_{n} \in Q$ for $n \in \mathbb{N}$. Define $L_{n} \in V^{*}, n \in \mathbb{N}$, by

$$
L_{n}(v)=\int_{\Omega} g_{n} v d x-\int_{\Gamma_{2}} q_{n} v d \gamma \text { for } v \in V
$$

If $g_{n} \rightharpoonup g$ weakly in $H, q_{n} \rightharpoonup q$ weakly in $L^{2}\left(\Gamma_{2}\right)$, and $v_{n} \in V, v_{n} \rightharpoonup v$ weakly in $V$, then

$$
L_{n}\left(v_{n}\right) \rightarrow L(v), \text { as } n \rightarrow \infty,
$$

and there exists a constant $C>0$ independent of $n$ such that $\left\|L_{n}\right\|_{V^{*}} \leq C$ for all $n \in \mathbb{N}$.
Proof. The proof results from the compactness of the embedding $V$ into $H$ and of the trace operator from $V$ into $L^{2}(\Gamma)$.

The continuous dependence result reads as follows.
Theorem 2.9. Assume that $\alpha>0$ is fixed, $L$, $L_{n} \in V^{*}, n \in \mathbb{N}$ and $H(j)$ holds. Let $u_{n} \in V_{0}, n \in \mathbb{N}$, be a solution to problem (8) corresponding to $L_{n}$, and

$$
\begin{equation*}
\lim L_{n}\left(z_{n}\right)=L(z) \text { for any } z_{n} \rightharpoonup z \text { weakly in } V, \text { as } n \rightarrow \infty \tag{13}
\end{equation*}
$$

Then, there exists a subsequence of $\left\{u_{n}\right\}$ which converges weakly in $V$ to a solution of problem (8) corresponding to L. If, in addition, the following hypotheses hold:

$$
\begin{align*}
j^{0}(x, r ; s-r)+j^{0}(x, s ; r-s) & \leq m_{j}|r-s|^{2} \text { for all } r, s \in \mathbb{R}, \text { a.e. } x \in \Gamma_{3}  \tag{14}\\
& m_{a}>\alpha m_{j}\|\gamma\|^{2} \tag{15}
\end{align*}
$$

where $m_{j} \geq 0$, then problem (8) has a unique solution $u$ and $u_{n} \in V_{0}$ corresponding to $L$ and $L_{n}$, respectively, and the whole sequence $\left\{u_{n}\right\}$ converges to $u$ in $V$, as $n \rightarrow \infty$.

Proof. See [11, Theorem 9] for details.
Finally, we present three examples of functions which satisfy the hypotheses $H(j)$, $\left(H_{1}\right)$ and $\left.\mathbf{1 4}\right)$. Note that the first example is a nonconvex function and the second and third examples are convex fuctions. Moreover, the last example allows us to arrive to the Robin boundary condition.

Example 2.10. Let $j: \mathbb{R} \rightarrow \mathbb{R}$ be the function defined by

$$
j(r)= \begin{cases}(r-b)^{2} & \text { if } \quad r<b \\ 1-e^{-(r-b)} & \text { if } \quad r \geq b\end{cases}
$$

for $r \in \mathbb{R}$ with a constant $b \in \mathbb{R}$. This function is nonconvex, locally Lipschitz and its subdifferential is given by

$$
\partial j(r)= \begin{cases}2(r-b) & \text { if } \quad r<b \\ {[0,1]} & \text { if } \quad r=b \\ e^{-(r-b)} & \text { if } \quad r>b\end{cases}
$$

for all $r \in \mathbb{R}$. Hence, we have $|\partial j(r)| \leq 1+2|b|+2|r|$ for all $r \in \mathbb{R}$. Moreover, using Proposition 2.3(ii), one has

$$
j^{0}(r ; b-r)=\max \{\zeta(b-r) \mid \zeta \in \partial j(r)\}= \begin{cases}-2(b-r)^{2} & \text { if } \quad r<b \\ 0 & \text { if } \quad r=b \\ e^{-(r-b)}(b-r) & \text { if } \quad r>b\end{cases}
$$

for all $r \in \mathbb{R}$. Thus $H(j)$ is satisfied. By the above formula, we also infer that $\left(H_{1}\right)$ is satisfied and the condition holds with $m_{j}=1$.
Example 2.11 . We define $j: \mathbb{R} \rightarrow \mathbb{R}$ by

$$
j(r)=|r-b|=\left\{\begin{array}{lll}
-r+b & \text { if } & r \leq b \\
r-b & \text { if } & r>b
\end{array}\right.
$$

for $r \in \mathbb{R}$ with a constant $b \in \mathbb{R}$. Then, we have for all $r \in \mathbb{R}$

$$
\partial j(r)=\left\{\begin{array}{ll}
-1 & \text { if } \quad r<b, \\
{[-1,1]} & \text { if } \quad r=b, \\
1 & \text { if } \quad r>b
\end{array} \quad \text { and } \quad j^{0}(r ; b-r)=\left\{\begin{array}{lll}
b-r & \text { if } \quad r>b \\
0 & \text { if } \quad r=b \\
r-b & \text { if } \quad r<b
\end{array}\right.\right.
$$

for all $r \in \mathbb{R}$. Thus, $j^{0}(r ; b-r) \leq 0$ for all $r \in \mathbb{R}$. Also, we observe that if $j^{0}(r ; b-r)=0$ for all $r \in \mathbb{R}$, then $r=b$. In consequence, the properties $H(j)$ and $\left(H_{1}\right)$ are verified. Further, since $j$ is convex, it satisfies with $m_{j}=0$.
Example 2.12. Let $j: \mathbb{R} \rightarrow \mathbb{R}$ be the function defined by

$$
j(r)=\frac{1}{2}(r-b)^{2}
$$

for $r \in \mathbb{R}$ with $b \in \mathbb{R}$. Then

$$
j^{0}(r ; s)=(r-b) s \text { and } \partial j(r)=r-b
$$

for $r, s \in \mathbb{R}$. Moreover, we have $j^{0}(r ; b-r)=(r-b)(b-r)=-(b-r)^{2} \leq 0$ for all $r \in \mathbb{R}$. Also, for all $r \in \mathbb{R}$, if $j^{0}(r ; b-r)=0$, then $(r-b)(b-r)=-(b-r)^{2}=0$, which implies $r=b$. Hence, we deduce that $j$ satisfies properties $H(j),\left(H_{1}\right)$ and $j$ satisfies 14 with $m_{j}=0$.
3. Optimal control problems with variational equalities. In this section, we consider optimal control problems related with mixed elliptic problems of type considered in subsection 2.1. More precisely, we review the optimal control problems studied in [12, 13, 14, 15].
3.1. Optimal control problems on the internal energy. In [12, we consider a bounded domain $\Omega$ in $\mathbb{R}^{d}$ which regular boundary $\Gamma$ consists of the union of two disjoint portions $\Gamma_{i}, i=1,2$ with $\left|\Gamma_{i}\right|>0$, where $\left|\Gamma_{i}\right|$ denotes the ( $d-1$ )-dimensional Hausdorff measure of the portion $\Gamma_{i}$ on $\Gamma$. We formulate, in a similar way to problems (1) and (2), the following mixed elliptic problems:

$$
\begin{equation*}
-\Delta u=g \quad \text { in } \Omega,\left.\quad u\right|_{\Gamma_{1}}=b, \quad-\left.\frac{\partial u}{\partial n}\right|_{\Gamma_{2}}=q \tag{16}
\end{equation*}
$$

$$
\begin{equation*}
-\Delta u=g \quad \text { in } \Omega, \quad-\left.\frac{\partial u}{\partial n}\right|_{\Gamma_{1}}=\alpha(u-b), \quad-\left.\frac{\partial u}{\partial n}\right|_{\Gamma_{2}}=q \tag{17}
\end{equation*}
$$

where $g$ is the internal energy in $\Omega, b$ is the temperature on $\Gamma_{1}$ for 16 and the temperature of the external neighborhood of $\Gamma_{1}$ for (17), $q$ is the heat flux on $\Gamma_{2}$ and $\alpha>0$ is the heat transfer coefficient of $\Gamma_{1}$, that satisfy the following assumptions $g \in H, q \in Q$, $b \in H^{\frac{1}{2}}\left(\Gamma_{1}\right)$.

We denote by $u_{g}$ and $u_{\alpha g}$ the unique solutions of the mixed elliptic problems 16) and (17), respectively, for which variational equalities are given by 20

$$
\begin{gather*}
a\left(u_{g}, v\right)=L_{g}(v), \quad \forall v \in V_{0}, \quad u_{g} \in K  \tag{18}\\
a_{\alpha}\left(u_{\alpha g}, v\right)=L_{\alpha g}(v), \quad \forall v \in V, \quad u_{\alpha g} \in V \tag{19}
\end{gather*}
$$

where

$$
\begin{aligned}
& V=H^{1}(\Omega), \quad V_{0}=\left\{v \in V: v=0 \text { on } \Gamma_{1}\right\}, \quad K=v_{0}+V_{0} \\
& a(u, v)=\int_{\Omega} \nabla u \cdot \nabla v d x, \quad a_{\alpha}(u, v)=a(u, v)+\alpha \int_{\Gamma_{1}} u v d \gamma \\
& L_{g}(v)=(g, v)-\int_{\Gamma_{2}} q v d \gamma, \quad L_{\alpha g}(v)=L_{g}(v)+\alpha \int_{\Gamma_{1}} b v d \gamma
\end{aligned}
$$

for a given $v_{0} \in V,\left.v_{0}\right|_{\Gamma_{1}}=b$.
We consider the following distributed optimal control problems [22, 39] given by:

$$
\begin{equation*}
\text { find } \quad g^{*} \in H \quad \text { such that } J\left(g^{*}\right)=\min _{g \in H} J(g) \tag{20}
\end{equation*}
$$

with

$$
\begin{equation*}
J(g)=\frac{1}{2}\left\|u_{g}-z_{d}\right\|_{H}^{2}+\frac{M}{2}\|g\|_{H}^{2} \tag{21}
\end{equation*}
$$

where $u_{g}$ is the unique solution to the variational equality $18, z_{d} \in H$ given and $M$ a positive constant.

For each $\alpha>0$, we formulate the following distributed optimal control problem:

$$
\begin{equation*}
\text { find } \quad g_{\alpha}^{*} \in H \quad \text { such that } \quad J_{\alpha}\left(g_{\alpha}^{*}\right)=\min _{g \in H} J_{\alpha}(g) \tag{22}
\end{equation*}
$$

with

$$
\begin{equation*}
J_{\alpha}(g)=\frac{1}{2}\left\|u_{\alpha g}-z_{d}\right\|_{H}^{2}+\frac{M}{2}\|g\|_{H}^{2} \tag{23}
\end{equation*}
$$

where $u_{\alpha g}$ is a solution to the problem $\sqrt{19}, z_{d} \in H$ given and $M$ a positive constant.
In [12], following [22], we prove existence and uniqueness of optimal solution to the problem 20 and 22 , for each $\alpha>0$. For this purpose, we define the following mappings.

Let $C: H \rightarrow V_{0}$ be the mapping such that $C(g)=u_{g}-u_{0}$, where $u_{0}$ is the solution of problem (18) for $g=0$. Let $\Pi: H \times H \rightarrow \mathbb{R}$ and $L: H \rightarrow \mathbb{R}$ be defined by the following expressions:

$$
\begin{gathered}
\Pi(g, h)=(C(g), C(h))+M(g, h), \quad \forall g, h \in H \\
L(g)=\left(C(g), z_{d}-u_{0}\right), \quad \forall g \in H
\end{gathered}
$$

For each $\alpha>0$, we define $C_{\alpha}: H \rightarrow V_{0}$ such that $C_{\alpha}(g)=u_{\alpha g}-u_{\alpha 0}$, where $u_{\alpha 0}$ is the solution of problem (19) for $g=0$. Let $\Pi_{\alpha}: H \times H \rightarrow \mathbb{R}$ and $L_{\alpha}: H \rightarrow \mathbb{R}$ be defined by
the following expressions:

$$
\begin{gathered}
\Pi_{\alpha}(g, h)=\left(C_{\alpha}(g), C_{\alpha}(h)\right)+M(g, h), \quad \forall g, h \in H, \\
L_{\alpha}(g)=\left(C_{\alpha}(g), z_{d}-u_{\alpha 0}\right), \quad \forall g \in H
\end{gathered}
$$

We obtain the following results, whose proofs can be seen in [12].
Lemma 3.1. a) $C$ is a linear and continuous mapping, $\Pi$ is a bilinear, continuous, symmetric and coercive form on $H \times H$ and $L$ is linear and continuous on $H$.
b) The functional $J$ can be also written as

$$
J(g)=\frac{1}{2} \Pi(g, h)-L(g)+\frac{1}{2}\left\|u_{0}-z_{d}\right\|_{H}^{2}, \quad \forall g \in H .
$$

c) There exists a unique optimal control $g^{*} \in H$ such that

$$
\left.J\left(g^{*}\right)\right)=\min _{g \in H} J(g) .
$$

Lemma 3.2. For each $\alpha>0$, we have:
a) $C_{\alpha}$ is a linear and continuous mapping, $\Pi_{\alpha}$ is a bilinear, continuous, symmetric and coercive form on $H \times H$ and $L_{\alpha}$ is linear and continuous on $H$.
b) The functional $J_{\alpha}$ can be also written as

$$
J_{\alpha}(g)=\frac{1}{2} \Pi_{\alpha}(g, h)-L_{\alpha}(g)+\frac{1}{2}\left\|u_{\alpha 0}-z_{d}\right\|_{H}^{2}, \quad \forall g \in H .
$$

c) There exists a unique optimal control $g_{\alpha}^{*} \in H$ such that

$$
J_{\alpha}\left(g_{\alpha}^{*}\right)=\min _{g \in H} J_{\alpha}(g) .
$$

We define the adjoint state $p_{g}$ corresponding to (16) or 18 , for each $g \in H$, as the unique solution of the following mixed elliptic problem

$$
-\Delta p_{g}=u_{g}-z_{d} \text { in } \Omega,\left.\quad p_{g}\right|_{\Gamma_{1}}=0,\left.\quad \frac{\partial p_{g}}{\partial n}\right|_{\Gamma_{2}}=0
$$

whose variational formulation is given by

$$
\begin{equation*}
a\left(p_{g}, v\right)=\left(u_{g}-z_{d}, v\right), \quad \forall v \in V_{0}, \quad p_{g} \in V_{0} . \tag{24}
\end{equation*}
$$

For each $\alpha>0$, we define the adjoint state $p_{\alpha g}$ as the unique solution of the following mixed elliptic problem corresponding to (17) or (19), for each $g \in H$

$$
-\Delta p_{\alpha g}=u_{\alpha g}-z_{d} \text { in } \Omega, \quad-\left.\frac{\partial p_{\alpha g}}{\partial n}\right|_{\Gamma_{1}}=\alpha p_{\alpha g},\left.\quad \frac{\partial p_{\alpha g}}{\partial n}\right|_{\Gamma_{2}}=0
$$

which variational formulation is given by

$$
\begin{equation*}
a_{\alpha}\left(p_{\alpha g}, v\right)=\left(u_{\alpha g}-z_{d}, v\right), \quad \forall v \in V, \quad p_{\alpha g} \in V \tag{25}
\end{equation*}
$$

Next, we give the optimality conditions to the problems 20) and 22 .
Lemma 3.3. a) The optimality condition for problem (20) is given by $J^{\prime}\left(g^{*}\right)=0$ in $H$, that is,

$$
p_{g^{*}}+M g^{*}=0 \text { in } H
$$

b) For each $\alpha>0$, the optimality condition for problem (22) is given by $J_{\alpha}^{\prime}\left(g_{\alpha}^{*}\right)=0$ in $H$, that is,

$$
p_{\alpha g_{\alpha}^{*}}+M g_{\alpha}^{*}=0 \text { in } H .
$$

Proof. a) This results taking into account that $\forall g, h \in H$

$$
\left(J^{\prime}(g), h\right)=\left(u_{g}-z_{d}, C(h)\right)+M(g, h)=\Pi(g, h)-L(g)
$$

and

$$
\left(u_{g}-z_{d}, C(h)\right)=a\left(p_{g}, C(h)\right)=\left(p_{g}, h\right) .
$$

b) For each $\alpha>0$, we have that $\forall g, h \in H$

$$
\left\langle J_{\alpha}^{\prime}(g), h\right\rangle=\left(u_{\alpha g}-z_{d}, C_{\alpha}(h)\right)+M(g, h)=\Pi_{\alpha}(g, h)-L_{\alpha}(g),
$$

and

$$
\left(u_{\alpha g}-z_{\alpha}, C_{\alpha}(h)\right)=a_{\alpha}\left(p_{\alpha g}, C_{\alpha}(h)\right)=\left(p_{\alpha g}, h\right)
$$

Now, we consider the operator $W: H \rightarrow V_{0} \subset H$ defined by

$$
W(g)=-\frac{1}{M} p_{g}, \quad g \in H
$$

and for each $\alpha>0$, the operator $W_{\alpha}: H \rightarrow V_{0} \subset H$ defined by

$$
W_{\alpha}(g)=-\frac{1}{M} p_{\alpha g}, \quad g \in H
$$

We prove the following property.
Lemma 3.4. a) $W$ is a Lipschitz operator over $H$, i.e.

$$
\left\|W\left(g_{2}\right)-W\left(g_{1}\right)\right\|_{H} \leq \frac{1}{\lambda^{2} M}\left\|g_{1}-g_{2}\right\|_{H}, \quad \forall g_{1}, g_{2} \in H
$$

and it is a contraction for all $M>1 / \lambda^{2}$, where $\lambda$ is the coerciveness constant of the bilinear form a.
b) $W_{\alpha}$ is a Lipschitz operator over $H$, i.e.

$$
\left\|W_{\alpha}\left(g_{2}\right)-W_{\alpha}\left(g_{1}\right)\right\|_{H} \leq \frac{1}{\lambda_{\alpha}^{2} M}\left\|g_{1}-g_{2}\right\|_{H}, \quad \forall g_{1}, g_{2} \in H
$$

and it is a contraction for all $M>1 / \lambda_{\alpha}^{2}$, where $\lambda_{\alpha}$ is the coerciveness constant of the bilinear form $a_{\alpha}$.

Proof. a) By using the coerciveness of the bilinear form $a$ we have

$$
\lambda\left\|p_{g_{2}}-p_{g_{1}}\right\|_{V}^{2} \leq a\left(p_{g_{2}}-p_{g_{1}}, p_{g_{2}}-p_{g_{1}}\right) \leq\left\|u_{g_{2}}-u_{g_{1}}\right\|_{H}\left\|p_{g_{2}}-p_{g_{1}}\right\|_{H}
$$

therefore

$$
\left\|p_{g_{2}}-p_{g_{1}}\right\|_{v} \leq \frac{1}{\lambda}\left\|u_{g_{2}}-u_{g_{1}}\right\|_{H}
$$

and taking into account that the mapping $g \in H \rightarrow u_{g} \in V$ is Lipschitzian, that is,

$$
\left\|u_{g_{2}}-u_{g_{1}}\right\|_{V} \leq \frac{1}{\lambda}\left\|g_{2}-g_{1}\right\|_{H}, \quad \forall g_{1}, g_{2} \in H
$$

we obtain

$$
\left\|W\left(g_{2}\right)-W\left(g_{1}\right)\right\|_{H} \leq \frac{1}{\lambda^{2} M}\left\|g_{1}-g_{2}\right\|_{H}
$$

b) In a similar way that (a), by using the coerciveness of the bilinear form $a_{\alpha}$, we obtain that

$$
\left\|p_{\alpha g_{2}}-p_{\alpha g_{1}}\right\|_{v} \leq \frac{1}{\lambda}\left\|u_{\alpha g_{2}}-u_{\alpha g_{1}}\right\|_{H}
$$

and taking into account that $g \in H \rightarrow u_{\alpha g} \in V$ is a Lipschitzian application, we have

$$
\left\|W_{\alpha}\left(g_{2}\right)-W_{\alpha}\left(g_{1}\right)\right\|_{H} \leq \frac{1}{\lambda_{\alpha}^{2} M}\left\|g_{1}-g_{2}\right\|_{H}
$$

We have a convergence result for fixed data, when $\alpha$ goes to infinity.
Lemma 3.5. For all $\alpha>0, q \in Q$ and $b \in H^{\frac{1}{2}}\left(\Gamma_{1}\right)$, we have that:
a) $u_{\alpha g} \rightarrow u_{g}$ strongly in $V$ as $\alpha \rightarrow+\infty, \forall g \in H$.
b) $p_{\alpha g} \rightarrow p_{g}$ strongly in $V$ as $\alpha \rightarrow+\infty, \forall g \in H$.

Proof. An idea of the proof is as follows, for details see [12, Lemma 3.5].
a) We prove that:
i) The sequence $\left\{u_{\alpha g}\right\}$ is bounded in $V, \forall \alpha>0$.
ii) There exists $c_{1}>0$ (independent of $\alpha$ ) such that

$$
\int_{\Gamma_{1}}\left(u_{\alpha g}-b\right)^{2} d \gamma \leq \frac{\left(c_{1}\right)^{2}}{\lambda_{1}(\alpha-1)}
$$

iii) There exists $w_{g} \in V$ such that $u_{\alpha g} \rightharpoonup w_{g}$ weakly in $V$, as $\alpha \rightarrow \infty$.
iv) $w_{g} \in K$ satisfies $a\left(w_{g}, v\right)=L(v), \forall v \in V_{0}$.
v) By uniqueness, we have that $w_{g}=u_{g}$.
vi) $u_{\alpha g} \rightarrow u_{g}$ strongly in $V$, as $\alpha \rightarrow+\infty$.
b) We obtain that:
i) The sequence $\left\{p_{\alpha g}\right\}$ is bounded in $V, \forall \alpha>0$.
ii) There exists $c_{2}>0$ (independent of $\alpha$ ) such that

$$
\int_{\Gamma_{1}}\left(p_{\alpha g}-p_{g}\right)^{2} d \gamma \leq \frac{\left(c_{2}\right)^{2}}{\lambda_{1}(\alpha-1)}
$$

iii) There exists $\xi_{g} \in V$ such that $u_{\alpha g} \rightharpoonup \xi_{g}$ weakly in $V$, as $\alpha \rightarrow+\infty$.
iv) $\xi_{g} \in V_{0}$ satisfies $a\left(\xi_{g}, v\right)=\left(u_{g}-z_{d}, v\right), \forall v \in V_{0}$.
v) By uniqueness, $\xi_{g}=p_{g}$.
vi) $p_{\alpha g} \rightarrow p_{g}$ strongly in $V$, as $\alpha \rightarrow+\infty$.

In [12], we obtain the following convergence result for the optimal solutions $g_{\alpha}^{*}, u_{\alpha g_{\alpha}^{*}}$ and $p_{\alpha g_{\alpha}^{*}}$ of the optimal control problems 22 to the optimal solutions $g^{*}, u_{g^{*}}$ and $p_{g^{*}}$ of the problem 20, when the parameter $\alpha$ goes to infinity. This result is presented as follows.

Theorem 3.6. If $M>\frac{1}{\lambda_{1}}$, with $\lambda_{1}$ the coerciveness constant of $a_{1}$, we have that, when $\alpha \rightarrow+\infty$ :
a) If $g^{*}$ and $g_{\alpha}^{*}$ are the unique solutions of the optimal control problems (20) and (22), respectively, then $g_{\alpha}^{*} \rightarrow g^{*}$ strongly in $H$.
b) If $u_{g^{*}}$ and $u_{\alpha g_{\alpha}^{*}}$ are the system states corresponding to problems 18) and 19, respectively, then $u_{\alpha g_{\alpha}^{*}} \rightarrow u_{g^{*}}$ strongly in $V$.
c) If $p_{g^{*}}$ and $p_{\alpha g_{\alpha}^{*}}$ are the adjoint states corresponding to problems (18) and (19), respectively, then $p_{\alpha g_{\alpha}^{*}} \rightarrow p_{g^{*}}$ strongly in $V$.
Proof. We will give a scheme of the proof in three steps. For details see 12, Theorem 4.1].

Step 1. By using that $g_{\alpha}^{*}$ is the unique solution of problem 22), we obtain that there exist positive constants $c_{1}, c_{2}$ and $c_{3}$ such that

$$
\left\|g_{\alpha}^{*}\right\|_{H} \leq c_{1} ; \quad\left\|u_{\alpha g_{\alpha}^{*}}\right\|_{V} \leq c_{2} ; \quad \int_{\Gamma_{1}}\left(u_{\alpha g_{\alpha}^{*}}-u_{g^{*}}\right)^{2} d \gamma \leq \frac{c_{3}}{\lambda_{1}(\alpha-1)}
$$

Therefore, we deduce that there exist $f \in H$ and $\eta \in K$ such that $g_{\alpha}^{*} \rightharpoonup f$ weakly in $H$ and $u_{\alpha g_{\alpha}^{*}} \rightharpoonup \eta$ weakly in $V$, as $\alpha \rightarrow+\infty$. Next, taking $v=p_{\alpha g_{\alpha}^{*}}-p_{g^{*}} \in V$ in 25, we prove that there exist positive constants $c_{4}$ and $c_{5}$ such that

$$
\left\|p_{\alpha g_{\alpha}^{*}}\right\|_{V} \leq c_{4} ; \quad \int_{\Gamma_{1}}\left(p_{\alpha g_{\alpha}^{*}}-p_{g^{*}}\right)^{2} d \gamma \leq \frac{c_{5}}{\lambda_{1}(\alpha-1)}
$$

and there exists $\xi \in V_{0}$ such that $p_{\alpha g_{\alpha}^{*}} \rightharpoonup \xi$ weakly in $V$, as $\alpha \rightarrow+\infty$.
Step 2. Taking $v \in V_{0}$ in 25 and 19), respectively, and by passing to the limits, we obtain

$$
\begin{equation*}
a(\xi \cdot v)=\left(\eta-z_{d}, v\right), \quad \forall v \in V_{0}, \quad \xi \in V_{0} \tag{26}
\end{equation*}
$$

and

$$
\begin{equation*}
a(\eta \cdot v)=(f, v)-\int_{\Gamma_{2}} q v d \gamma, \quad \forall v \in V_{0}, \quad \eta \in K \tag{27}
\end{equation*}
$$

Now, by using Lemma 3.4 we have $f=-\frac{1}{M} \xi$ in $H$. From the uniqueness of fixed point we have $g^{*}=-\frac{1}{M} p_{g^{*}}$ in $H$ and therefore, $f=g^{*}, \eta=u_{g^{*}}$ and $\xi=p_{g^{*}}$.
STEP 3. The strong convergence are obtained by the previous weak convergence and the following inequalities:

$$
\begin{gathered}
\lambda_{1}\left\|p_{\alpha g_{\alpha}^{*}}-p_{g^{*}}\right\|_{V}^{2} \leq\left(u_{\alpha g_{\alpha}^{*}}-z_{d}, p_{\alpha g_{\alpha}^{*}}-p_{g^{*}}\right)-a\left(p_{g^{*}}, p_{\alpha g_{\alpha}^{*}}-p_{g^{*}}\right) \\
\left\|g_{\alpha}^{*}-g^{*}\right\|_{H} \leq \frac{1}{M}\left\|p_{\alpha g_{\alpha}^{*}}-p_{g^{*}}\right\|_{V} \\
\lambda_{1}\left\|u_{\alpha g_{\alpha}^{*}}-u_{g^{*}}\right\|_{V}^{2} \leq a\left(u_{\alpha g^{*}}-u_{g^{*}}, u_{\alpha g_{\alpha}^{*}}-u_{g^{*}}\right)
\end{gathered}
$$

In [13], we obtain a new proof of the convergence results obtained in [12] for the optimal solutions of the optimal control problems (22) to the optimal solutions of the problem 20, when $\alpha \rightarrow \infty$. This result is given as follows.
Theorem 3.7. We have that, when $\alpha \rightarrow+\infty$ :
a) If $g^{*}$ and $g_{\alpha}^{*}$ are the unique solutions of the optimal control problems (20) and (22), respectively, then $g_{\alpha}^{*} \rightarrow g^{*}$ strongly in $H$.
b) If $u_{g^{*}}$ and $u_{\alpha g_{\alpha}^{*}}$ are the system states corresponding to problems 18) and 19, respectively, then $u_{\alpha g_{\alpha}^{*}} \rightarrow u_{g^{*}}$ strongly in $V$.
c) If $p_{g^{*}}$ and $p_{\alpha g_{\alpha}^{*}}$ are the adjoint states corresponding to problems 18) and 19, respectively, then $p_{\alpha g_{\alpha}^{*}} \rightarrow p_{g^{*}}$ strongly in $V$.

Proof. This proof is different from the previous theorem in step 2, for details see 13 , Theorem 4.1]. That is, by variational equalities (26) and 27), from uniqueness of solution of the variational equalities $(19)$ and $(24)$, we have $\eta=u_{f}$ and $\xi=p_{f}$, respectively. Now, taking into account that $\forall h \in H$

$$
J(f)=J_{\alpha}(f) \leq \liminf _{\alpha \rightarrow \infty} J_{\alpha}\left(g_{\alpha}^{*}\right) \leq \liminf _{\alpha \rightarrow \infty} J_{\alpha}(h)=\lim _{\alpha \rightarrow \infty} J_{\alpha}(h)=J(h)
$$

and from the uniqueness of the optimal control, we obtain that $f=g^{*}$. Therefore $\eta=$ $u_{f}=u_{g^{*}}$ and $\xi=p_{f}=p_{g^{*}}$.
3.2. Optimal control problems on the heat flux. In [14, we consider the mixed elliptic problems 16 and 17 and we denote by $u_{q}$ and $u_{\alpha q}$ the unique solutions of the following variational equalities:

$$
\begin{gather*}
a\left(u_{q}, v\right)=L_{q}(v), \quad \forall v \in V_{0}, \quad u_{q} \in K,  \tag{28}\\
a_{\alpha}\left(u_{\alpha q}, v\right)=L_{q \alpha}(v), \quad \forall v \in V, \quad u_{\alpha q} \in V, \tag{29}
\end{gather*}
$$

where $V, V_{0}, K, a$ and $a_{\alpha}$ are given as in the previous subsection and

$$
L_{q}(v)=(g, v)-\int_{\Gamma_{2}} q v d \gamma, \quad L_{\alpha q}(v)=L_{q}(v)+\alpha \int_{\Gamma_{1}} b v d \gamma .
$$

We consider $U_{a d}=\left\{q \in Q: q \geq 0\right.$ on $\left.\Gamma_{2}\right\}$ and we formulate the following distributed optimal control problems [22, 39]:

$$
\begin{equation*}
\text { find } \quad q^{*} \in U_{a d} \quad \text { such that } \quad J_{2}\left(q^{*}\right)=\min _{q \in U_{a d}} J_{2}(q) \tag{30}
\end{equation*}
$$

with

$$
\begin{equation*}
J_{2}(q)=\frac{1}{2}\left\|u_{q}-z_{d}\right\|_{H}^{2}+\frac{M}{2}\|q\|_{Q}^{2} \tag{31}
\end{equation*}
$$

where $u_{q}$ is the unique solution to the variational equality $(28), z_{d} \in H$ is given and $M$ is a positive constant. For each $\alpha>0$, we formulate the following distributed optimal control problem:

$$
\begin{equation*}
\text { find } \quad q_{\alpha}^{*} \in U_{a d} \quad \text { such that } \quad J_{2 \alpha}\left(q_{\alpha}^{*}\right)=\min _{q \in U_{a d}} J_{2 \alpha}(q) \tag{32}
\end{equation*}
$$

with

$$
\begin{equation*}
J_{2 \alpha}(q)=\frac{1}{2}\left\|u_{\alpha q}-z_{d}\right\|_{H}^{2}+\frac{M}{2}\|q\|_{Q}^{2} \tag{33}
\end{equation*}
$$

where $u_{\alpha q}$ is a solution to the problem $29, z_{d} \in H$ given and $M$ a positive constant.
In [14], in a similar way to [12], we prove existence and uniqueness of optimal solutions to the problems (30) and (32).

LEmma 3.8. a) There exists a unique optimal control $q^{*} \in U_{\text {ad }}$ to the problem (30).
b) For each $\alpha>0$, there exists a unique optimal control $q_{\alpha}^{*} \in U_{a d}$ to the problem (32).

Proof. This results in a similar way to Lemma 3.1 and Lemma 3.2 For details see [14, Lemma 1 and Lemma 6].
Lemma 3.9. a) The optimality condition for the optimal control problem (30) is given by

$$
\begin{equation*}
\left(M q^{*}-p_{q^{*}}, \eta-q^{*}\right)_{Q} \geq 0, \quad \forall \eta \in U_{a d}, \quad q^{*} \in U_{a d} \tag{34}
\end{equation*}
$$

b) For each $\alpha>0$, the optimality condition for the optimal control problem (32) is given by

$$
\begin{equation*}
\left(M q_{\alpha}^{*}-p_{\alpha q_{\alpha}^{*}}, \eta-q^{*}\right)_{Q} \geq 0, \quad \forall \eta \in U_{a d}, \quad q_{\alpha}^{*} \in U_{a d} \tag{35}
\end{equation*}
$$

Proof. The inequalities (34) and (35) results following [20, 22] and taking into account that, the Gateaux derivative for $J_{2}$ is given by

$$
\begin{aligned}
\left(J_{2}^{\prime}(q), \eta-q\right) & =\left(u_{\eta}-u_{q}, u_{q}-z_{d}\right)+M(q, \eta-q)_{Q} \\
& =-\left(p_{q}, \eta-q\right)_{Q}+M(q, \eta-q)_{Q}, \quad \forall \eta, q \in Q
\end{aligned}
$$

and for each $\alpha>0$, the Gateaux derivative for $J_{2 \alpha}$ is given by

$$
\begin{aligned}
\left(J_{2 \alpha}^{\prime}(q), \eta-q\right) & =\left(u_{\alpha \eta}-u_{\alpha q}, u_{\alpha q}-z_{d}\right)+M(q, \eta-q)_{Q} \\
& =-\left(p_{\alpha q}, \eta-q\right)_{Q}+M(q, \eta-q)_{Q}, \quad \forall \eta, q \in Q
\end{aligned}
$$

Now, we give the following characterization of the optimal controls.
Theorem 3.10. a) Let $q^{*} \in U_{a d}$ be, $q^{*}$ is optimal control in $Q$ if and only if $q^{*} \in Q$ satisfies the complementary conditions

$$
q^{*} \geq 0 \text { on } \Gamma_{2}, \quad M q^{*}-p_{q^{*}} \geq 0 \text { on } \Gamma_{2}, \quad q^{*}\left(M q^{*}-p_{q^{*}}\right)=0 \text { on } \Gamma_{2} .
$$

b) For each $\alpha>0$, let $q_{\alpha}^{*} \in U_{a d}$ be, $q_{\alpha}^{*}$ is optimal control in $Q$ if and only if $q_{\alpha}^{*} \in Q$ satisfies the complementary conditions

$$
q_{\alpha}^{*} \geq 0 \text { on } \Gamma_{2}, \quad M q_{\alpha}^{*}-p_{\alpha q_{\alpha}^{*}} \geq 0 \text { on } \Gamma_{2}, \quad q_{\alpha}^{*}\left(M q_{\alpha}^{*}-p_{\alpha q_{\alpha}^{*}}\right)=0 \text { on } \Gamma_{2} .
$$

Proof. We present an idea of the proof, for more details see [14, Theorems 4 and 9 ].
a) If we take $\eta=0 \in U_{a d}$ and $\eta=2 q^{*} \in U_{a d}$ in (34), we obtain

$$
\left(M q^{*}-p_{q^{*}}, q^{*}\right)=0
$$

next

$$
\left(M q^{*}-p_{q^{*}}, \eta\right) \geq\left(M q^{*}-p_{q^{*}}, q^{*}\right)=0, \quad \forall \eta \in U_{a d}
$$

therefore $M q^{*}-p_{q^{*}} \geq 0$ on $\Gamma_{2}$ and since $q^{*} \geq 0$ on $\Gamma_{2}$, we have that

$$
\left(M q^{*}-p_{q^{*}}\right) q^{*}=0
$$

Conversely, $\forall \eta \in U_{a d}$ we have

$$
\left(M q^{*}-p_{q^{*}}, \eta-q^{*}\right)=\left(M q^{*}-p_{q^{*}}, \eta\right) \geq 0
$$

therefore $q^{*}$ is the optimal control in $Q$.
b) By taking $\eta=0 \in U_{a d}$ and $\eta=2 q_{\alpha}^{*} \in U_{a d}$ in (35) and following a similar way as in (a), we have (b).

Corollary 3.11. If we consider the boundary optimal control problems (30) and (32) without restrictions (i.e., $U_{a d}=Q$ ), we obtain that $q^{*}=\frac{1}{M} p_{q *}$ and $q_{\alpha}^{*}=\frac{1}{M} p_{\alpha q_{\alpha}^{*}}$, respectively, similar to [12].

In a similar way to the previous subsection, we can prove the following convergence results.
Lemma 3.12. For all $\alpha>0, g \in H$ and $b \in H^{\frac{1}{2}}\left(\Gamma_{1}\right)$, we have that:
a) $u_{\alpha q} \rightarrow u_{q}$ strongly in $V$ as $\alpha \rightarrow+\infty, \forall q \in Q$.
b) $p_{\alpha q} \rightarrow p_{q}$ strongly in $V$ as $\alpha \rightarrow+\infty, \forall q \in Q$.

Proof. An idea of the proof is as follows, for details see [14, Theorem 11].
a) We prove that:
i) If we take $v=u_{\alpha q}-u_{q}$ in with $\alpha>1$, then there exists $c_{1}>0$ (independent of $\alpha$ ) such that

$$
\lambda_{1}\left\|u_{\alpha q}-u_{q}\right\|_{V}^{2}+(\alpha-1) \int_{\Gamma_{1}}\left(u_{\alpha q}-u_{q}\right)^{2} d \gamma \leq c_{1}\left\|u_{\alpha q}-u_{q}\right\|_{V}
$$

where $\lambda_{1}$ is the coerciveness constant of $a_{1}$.
ii) Then, we deduce that there exists $w_{q} \in V$ such that $u_{\alpha q} \rightharpoonup w_{q}$ weakly in $V$, as $\alpha \rightarrow \infty$ and

$$
\int_{\Gamma_{1}}\left(u_{\alpha q}-b\right)^{2} d \gamma \leq \frac{\left(c_{1}\right)^{2}}{\lambda_{1}(\alpha-1)}
$$

iii) Moreover, $w_{q} \in K$ satisfies $a\left(w_{q}, v\right)=L(v), \forall v \in V_{0}$ and by uniqueness, we have that $w_{q}=u_{q}$;
iv) Finally, from the inequality

$$
\lambda_{1}\left\|u_{\alpha q}-u_{q}\right\|_{V}^{2} \leq L_{q}\left(u_{\alpha q}-u_{q}\right)-a\left(u_{q}, u_{\alpha q}-u_{q}\right)
$$

we obtain that $u_{\alpha q} \rightarrow u_{q}$ strongly in $V$, as $\alpha \rightarrow+\infty$.
b) This results in a similar way to (a).

Theorem 3.13. We have that, when $\alpha \rightarrow+\infty$ :
a) If $q^{*}$ and $q_{\alpha}^{*}$ are the unique solutions of the optimal control problems (30) and (32), respectively, then $q_{\alpha}^{*} \rightarrow q^{*}$ strongly in $Q$.
b) If $u_{q^{*}}$ and $u_{\alpha q_{\alpha}^{*}}$ are the system states corresponding to problems 18) and $\sqrt{19}$, respectively, then $u_{\alpha q_{\alpha}^{*}} \rightarrow u_{q^{*}}$ strongly in $V$.
c) If $p_{q^{*}}$ and $p_{\alpha q_{\alpha}^{*}}$ are the adjoint states corresponding to problems 18) and (19), respectively, then $p_{\alpha q_{\alpha}^{*}} \rightarrow p_{q^{*}}$ strongly in $V$.

Proof. We will give a scheme of the proof in three steps. For details see [14, Theorem 12].

Step 1. By using that $q_{\alpha}^{*}$ is the unique solution of problem (32), we obtain that there exist positive constants $c_{1}, c_{2}$ and $c_{3}$ such that

$$
\left\|q_{\alpha}^{*}\right\|_{Q} \leq c_{1} ; \quad\left\|u_{\alpha q_{\alpha}^{*}}\right\|_{V} \leq c_{2} ; \quad \int_{\Gamma_{1}}\left(u_{\alpha q_{\alpha}^{*}}-u_{q^{*}}\right)^{2} d \gamma \leq \frac{c_{3}}{\lambda_{1}(\alpha-1)}
$$

Therefore, we deduce that there exist $f \in Q$ and $\eta \in K$ such that $q_{\alpha}^{*} \rightharpoonup f$ weakly in $Q$ and $u_{\alpha q_{\alpha}^{*}} \rightharpoonup \eta$ weakly in $V$, as $\alpha \rightarrow+\infty$. Next, taking $v=p_{\alpha q_{\alpha}^{*}}-p_{q^{*}} \in V$ in 25, we prove that there exist positive constants $c_{4}$ and $c_{5}$ such that

$$
\left\|p_{\alpha q_{\alpha}^{*}}\right\|_{V} \leq c_{4} ; \quad \int_{\Gamma_{1}}\left(p_{\alpha q_{\alpha}^{*}}-p_{q^{*}}\right)^{2} d \gamma \leq \frac{c_{5}}{\lambda_{1}(\alpha-1)}
$$

and there exists $\xi \in V_{0}$ such that $p_{\alpha q_{\alpha}^{*}} \rightharpoonup \xi$ weakly in $V$, as $\alpha \rightarrow+\infty$.

Step 2. Taking $v \in V_{0}$ in (25) and (4), respectively, and by passing to the limits, we obtain

$$
\begin{equation*}
a(\xi \cdot v)=\left(\eta-z_{d}, v\right), \quad \forall v \in V_{0}, \quad \xi \in V_{0} \tag{36}
\end{equation*}
$$

and

$$
\begin{equation*}
a(\eta \cdot v)=(f, v)-\int_{\Gamma_{2}} q v d \gamma, \quad \forall v \in V_{0}, \quad \eta \in K \tag{37}
\end{equation*}
$$

Next, from the uniqueness of solution of the variational equality (19) and (24), we have $\eta=u_{f}$ and $\xi=p_{f}$, respectively. Now, taking into account that $\forall h \in Q$

$$
J_{2}(f)=J_{2 \alpha}(f) \leq \liminf _{\alpha \rightarrow \infty} J_{2 \alpha}\left(q_{\alpha}^{*}\right) \leq \liminf _{\alpha \rightarrow \infty} J_{2 \alpha}(h)=\lim _{\alpha \rightarrow \infty} J_{2 \alpha}(h)=J_{2}(h)
$$

and from the uniqueness of the optimal control, we obtain that $f=q^{*}$. Therefore $\eta=$ $u_{f}=u_{q^{*}}$ and $\xi=p_{f}=p_{q^{*}}$.
Step 3. The strong convergence is obtained by the previous weak convergence and the following inequalities

$$
\begin{gathered}
\lambda_{1}\left\|p_{\alpha q_{\alpha}^{*}}-p_{q^{*}}\right\|_{V}^{2} \leq\left(u_{\alpha q_{\alpha}^{*}}-z_{d}, p_{\alpha q_{\alpha}^{*}}-p_{q^{*}}\right)-a\left(p_{q^{*}}, p_{\alpha q_{\alpha}^{*}}-p_{q^{*}}\right) \\
\left\|q_{\alpha}^{*}-q^{*}\right\|_{Q} \leq \frac{1}{M}\left\|p_{\alpha q_{\alpha}^{*}}-p_{q^{*}}\right\|_{V} \\
\left\|u_{\alpha q_{\alpha}^{*}}-u_{q^{*}}\right\|_{V} \leq \frac{\|\gamma\|}{\lambda}\left\|q_{\alpha}^{*}-q^{*}\right\|_{Q}
\end{gathered}
$$

where $\gamma$ denote the trace operator.
3.3. Simultaneous optimal control problems on the internal energy and the heat flux. In [15], we consider the mixed elliptic problems (16) and 17) and we denote by $u_{g q}$ and $u_{\alpha g q}$ the unique solutions of the following variational equalities:

$$
\begin{gather*}
a\left(u_{g q}, v\right)=L_{g q}(v), \quad \forall v \in V_{0}, \quad u_{g q} \in K,  \tag{38}\\
a_{\alpha}\left(u_{\alpha g q}, v\right)=L_{\alpha g q}(v), \quad \forall v \in V, \quad u_{\alpha g q} \in V \tag{39}
\end{gather*}
$$

where $V, V_{0}, K, a$ and $a_{\alpha}$ are defined as in previous subsections and

$$
L_{g q}(v)=(g, v)-\int_{\Gamma_{2}} q v d \gamma, \quad L_{\alpha g q}(v)=L_{g q}(v)+\alpha \int_{\Gamma_{1}} b v d \gamma
$$

We consider $U_{a d}=\left\{q \in Q: q \geq 0\right.$ on $\left.\Gamma_{2}\right\}$ and we formulate the following simultaneous distributed-boundary optimal control problems [39]:

$$
\begin{equation*}
\text { find } \quad(\bar{g}, \bar{q}) \in H \times U_{a d} \quad \text { such that } \quad J_{3}(\bar{g}, \bar{q})=\min _{(g, q) \in H \times U_{a d}} J_{3}(g, q) \tag{40}
\end{equation*}
$$

with

$$
\begin{equation*}
J_{3}(g, q)=\frac{1}{2}\left\|u_{g q}-z_{d}\right\|_{H}^{2}+\frac{M_{1}}{2}\|g\|_{H}^{2}+\frac{M_{2}}{2}\|q\|_{Q}^{2} \tag{41}
\end{equation*}
$$

and, for each $\alpha>0$

$$
\begin{equation*}
\text { find } \quad\left(\bar{g}_{\alpha}, \bar{q}_{\alpha}\right) \in H \times U_{a d} \text { such that } J_{3 \alpha}\left(\bar{g}_{\alpha}, \bar{q}_{\alpha}\right)=\min _{(g, q) \in H \times U_{a d}} J_{3 \alpha}(g, q) \tag{42}
\end{equation*}
$$

with

$$
\begin{equation*}
J_{3 \alpha}(g, q)=\frac{1}{2}\left\|u_{\alpha g q}-z_{d}\right\|_{H}^{2}+\frac{M_{1}}{2}\|g\|_{H}^{2}+\frac{M_{2}}{2}\|q\|_{Q}^{2} \tag{43}
\end{equation*}
$$

where $u_{g q}$ is the unique solution to the variational equality (38), $u_{\alpha g q}$ is a solution to the problem (39), $z_{d} \in H$ is given and $M_{1}$ and $M_{2}$ are positive constants.

In [15], in a similar way to [12, 14, we prove existence and uniqueness results of optimal solutions to the problem (40) and 42).

Lemma 3.14. a) There exists a unique optimal control $(\bar{g}, \bar{q}) \in H \times U_{a d}$ to the problem (40) and the optimality condition is given by

$$
\begin{equation*}
\left(h-\bar{g}, p_{\bar{g} \bar{q}}+M_{1} \bar{g}\right)+\left(\eta-\bar{q}, M_{2} \bar{q}-p_{\bar{g} \bar{q}}\right)_{Q} \geq 0, \quad \forall(h, \eta) \in H \times U_{a d} . \tag{44}
\end{equation*}
$$

b) For each $\alpha>0$, there exists a unique optimal control $\left(\bar{g}_{\alpha}, \bar{q}_{\alpha}\right) \in H \times U_{a d}$ to the problem (42) and the optimality condition is given by $\forall(h, \eta) \in H \times U_{a d}$

$$
\begin{equation*}
\left(h-\bar{g}_{\alpha}, p_{\alpha \bar{g}_{\alpha} \bar{q}_{\alpha}}+M_{1} \bar{g}_{\alpha}\right)+\left(\eta-\bar{q}_{\alpha}, M_{2} \bar{q}_{\alpha}-p_{\alpha \bar{g}_{\alpha}} \bar{q}_{\alpha}\right)_{Q} \geq 0 \tag{45}
\end{equation*}
$$

Proof. The proof results in a similar way to Lemma 3.1, Lemma 3.2, Lemma 3.8 and Lemma 3.9 For details see [15, Theorem 1 and Theorem 2].

If we consider the simultaneous distributed and boundary optimal control problems (40) and 42 without restrictions, i.e. $U_{a d}=Q$, we can characterize their solutions by using the fixed point theory.

We consider the norm in $H \times Q$ defined by

$$
\|(g, q)\|_{H \times Q}^{2}=\|g\|_{H}^{2}+\|q\|_{Q}^{2} \quad \forall(g, q) \in H \times Q
$$

We define the operator $W: H \times Q \rightarrow H \times Q$ by

$$
\begin{equation*}
W(g, q)=\left(-\frac{1}{M_{1}} p_{g q}, \frac{1}{M_{2}} p_{g q}\right) \tag{46}
\end{equation*}
$$

and for each $\alpha>0$, the operator $W_{\alpha}: H \times Q \rightarrow H \times Q$ by the expression

$$
\begin{equation*}
W_{\alpha}(g, q)=\left(-\frac{1}{M_{1}} p_{\alpha g q}, \frac{1}{M_{2}} p_{\alpha g q}\right) \tag{47}
\end{equation*}
$$

and we can prove the following result.
Theorem 3.15. a) $W$ is a Lipschitz operator over $H \times Q$, that is, there exists a positive constant $C_{0}=C_{0}\left(\lambda, \gamma, M_{1}, M_{2}\right)$ such that, $\forall\left(g_{1}, q_{1}\right),\left(g_{2}, q_{2}\right) \in H \times Q$

$$
\begin{equation*}
\left\|W\left(g_{2}, q_{2}\right)-W\left(g_{1}, q_{1}\right)\right\|_{H \times Q} \leq C_{0}\left\|\left(g_{2}, q_{2}\right)-\left(g_{1}, q_{1}\right)\right\|_{H \times Q} \tag{48}
\end{equation*}
$$

and $W$ is a contraction operator if and only if data satisfy that

$$
\begin{equation*}
C_{0}=\frac{\sqrt{2}}{\lambda^{2}} \sqrt{\frac{1}{M_{1}^{2}}+\frac{\|\gamma\|^{2}}{M_{2}^{2}}}(1+\|\gamma\|)<1 \tag{49}
\end{equation*}
$$

b) $W_{\alpha}$ is a Lipschitz operator over $H \times Q$, that is, there exists a positive constant $C_{0 \alpha}=$ $C_{0 \alpha}\left(\lambda_{\alpha}, \gamma, M_{1}, M_{2}\right)$, such that

$$
\begin{equation*}
\left\|W_{\alpha}\left(g_{2}, q_{2}\right)-W_{\alpha}\left(g_{1}, q_{1}\right)\right\|_{H \times Q} \leq C_{0 \alpha}\left\|\left(g_{2}-g_{1}, q_{2}-q_{1}\right)\right\|_{H \times Q} \tag{50}
\end{equation*}
$$

and $W_{\alpha}$ is a contraction operator if and only if data satisfy that

$$
\begin{equation*}
C_{0 \alpha}=\frac{\sqrt{2}}{\lambda_{\alpha}^{2}} \sqrt{\frac{1}{M_{1}^{2}}+\frac{\|\gamma\|^{2}}{M_{2}^{2}}}(1+\|\gamma\|)<1 \tag{51}
\end{equation*}
$$

Proof. This results by estimates between the direct and adjoint states and the vector control variable. For details see [15. Theorem 4 and Theorem 6].
Corollary 3.16. a) If data satisfy inequality (49) then the unique solution $(\bar{g}, \bar{q}) \in H \times Q$ of optimal control problem 40) can be obtained as the unique fixed point of the operator $W$, that is

$$
W(\bar{g}, \bar{q})=\left(-\frac{1}{M_{1}} p_{\bar{g} \bar{q}}, \frac{1}{M_{2}} p_{\bar{g} \bar{q}}\right)=(\bar{g}, \bar{q}) .
$$

b) If data satisfy inequality $C_{0 \alpha}<1$, then the unique solution $\left(\bar{g}_{\alpha}, \bar{q}_{\alpha}\right) \in H \times Q$ of the vectorial optimal control problem (42) can be obtained as the unique fixed point of the operator $W_{\alpha}$, that is:

$$
W_{\alpha}\left(\bar{g}_{\alpha}, \bar{q}_{\alpha}\right)=\left(-\frac{1}{M_{1}} p_{\alpha \bar{g}_{\alpha} \bar{q}_{\alpha}}, \frac{1}{M_{2}} p_{\alpha \bar{g}_{\alpha} \bar{q}_{\alpha}}\right)=\left(\bar{g}_{\alpha}, \bar{q}_{\alpha}\right) .
$$

Now, we present the convergence results for the simultaneous distributed-boundary optimal control problems 40 and 42 .
Lemma 3.17. For each $\alpha>0,(g, q) \in H \times Q, b \in H^{1 / 2}\left(\Gamma_{1}\right)$, we have:
a) $u_{\alpha g q} \rightarrow u_{g q}$ strongly in $V$ as $\alpha \rightarrow+\infty$.
b) $p_{\alpha g q} \rightarrow p_{g q}$ strongly in $V$ as $\alpha \rightarrow+\infty$.

Proof. The proof is similar to that of Lemma 3.5 and Lemma 3.12. An idea of the proof is as follows, for details see [15, Lemma 1].
a) We prove that:
i) If we take $v=u_{\alpha g q}-u_{g q}$ in with $\alpha>1$, then there exists $c_{1}>0$ (independent of $\alpha$ ) such that

$$
\lambda_{1}\left\|u_{\alpha g q}-u_{g q}\right\|_{V}^{2}+(\alpha-1) \int_{\Gamma_{1}}\left(u_{\alpha g q}-u_{q}\right)^{2} d \gamma \leq c_{1}\left\|u_{\alpha g q}-u_{g q}\right\|_{V}
$$

where $\lambda_{1}$ is the coerciveness constant of $a_{1}$;
ii) Then, we deduce that there exists $w_{q} \in V$ such that $u_{\alpha g q} \rightharpoonup w_{g q}$ weakly in $V$, as $\alpha \rightarrow \infty$ and

$$
\int_{\Gamma_{1}}\left(u_{\alpha g q}-b\right)^{2} d \gamma \leq \frac{\left(c_{1}\right)^{2}}{\lambda_{1}(\alpha-1)}
$$

iii) Moreover, $w_{g q} \in K$ satisfies $a\left(w_{g q}, v\right)=L(v), \forall v \in V_{0}$ and by uniqueness, we have that $w_{g q}=u_{g q}$;
iv) Finally, from the inequality

$$
\lambda_{1}\left\|u_{\alpha g q}-u_{g q}\right\|_{V}^{2} \leq L_{g q}\left(u_{\alpha g q}-u_{g q}\right)-a\left(u_{g q}, u_{\alpha g q}-u_{g q}\right)
$$

we obtain that $u_{\alpha g q} \rightarrow u_{g q}$ strongly in $V$, as $\alpha \rightarrow+\infty$.
b) This results in a similar way to (a).

Theorem 3.18. We have that, when $\alpha \rightarrow+\infty$ :
a) If $(\bar{g}, \bar{q})$ and $\left(\bar{g}_{\alpha}, \bar{q}_{\alpha}\right)$ are the unique solutions of the optimal control problems 40) and (42), respectively, then $\left(\bar{g}_{\alpha}, \bar{q}_{\alpha}\right) \rightarrow(\bar{g}, \bar{q})$ strongly in $H \times Q$.
b) If $u_{\bar{g} \bar{q}}$ and $u_{\alpha \bar{q}_{\alpha} \bar{q}_{\alpha}}$ are the system states corresponding to problems 18) and 19, respectively, then $u_{\alpha \bar{g}_{\alpha} \bar{q}_{\alpha}} \rightarrow u_{\bar{g} \bar{q}}$ strongly in $V$.
c) If $p_{\bar{g} \bar{q}}$ and $p_{\alpha \bar{g}_{\alpha} \bar{q}_{\alpha}}$ are the adjoint states corresponding to problems 18) and 19), respectively, then $p_{\alpha \bar{g}_{\alpha} \bar{q}_{\alpha}} \rightarrow p_{\bar{g} \bar{q}}$ strongly in $V$.
Proof. We will give a scheme of the proof in three steps. For details see [15. Theorem 7]. Step 1. By using that $\left(\bar{g}_{\alpha}, \bar{q}_{\alpha}\right)$ is the unique solution of problem (42), we obtain that there exist positive constants $c_{1}, c_{2}, c_{3}$ and $c_{4}$ such that

$$
\left\|\bar{g}_{\alpha}\right\|_{H} \leq c_{1} ; \quad\left\|\bar{q}_{\alpha}\right\|_{Q} \leq c_{2} ; \quad\left\|u_{\alpha \bar{g}_{\alpha} \bar{q}_{\alpha}}\right\|_{V} \leq c_{3} ; \quad\left\|p_{\alpha \bar{g}_{\alpha} \bar{q}_{\alpha}}\right\|_{V} \leq c_{4} .
$$

Therefore, we deduce that there exist $h \in H, f \in Q, \eta \in K$ and $\xi \in V_{0}$ such that $\bar{g}_{\alpha} \rightharpoonup h$ weakly in $H, \bar{q}_{\alpha} \rightharpoonup f$ weakly in $Q, u_{\alpha \bar{g}_{\alpha} \bar{q}_{\alpha}} \rightharpoonup \eta$ weakly in $V$ and $p_{\alpha \bar{g}_{\alpha} \bar{q}_{\alpha}} \rightharpoonup \xi$ weakly in $V$, as $\alpha \rightarrow+\infty$.
Step 2. Taking $v \in V_{0}$ in and passing to the limits, we obtain

$$
\begin{equation*}
a(\eta \cdot v)=(h, v)-\int_{\Gamma_{2}} f v d \gamma, \quad \forall v \in V_{0}, \quad \eta \in K \tag{52}
\end{equation*}
$$

Next, by uniqueness of solution of the variational equality (18), we have $\eta=u_{h f}$. For $v \in V_{0}$ in 25 and passing to the limits, we have

$$
\begin{equation*}
a(\xi . v)=\left(u_{h f}-z_{d}, v\right), \quad \forall v \in V_{0}, \quad \xi \in V_{0} . \tag{53}
\end{equation*}
$$

and by the uniqueness of solution of the variational equality (24), we have $\xi=p_{h f}$. Now, taking into account that $\forall\left(h^{\prime}, f^{\prime}\right) \in H \times Q$

$$
\begin{aligned}
J_{3}(h, f) & \leq \liminf _{\alpha \rightarrow \infty} J_{3 \alpha}\left(\bar{g}_{\alpha}, \bar{q}_{\alpha}\right) \leq \liminf _{\alpha \rightarrow \infty} J_{3 \alpha}\left(h^{\prime}, f^{\prime}\right) \\
& =\lim _{\alpha \rightarrow \infty} J_{3 \alpha}\left(h^{\prime}, f^{\prime}\right)=J_{3}\left(h^{\prime}, f^{\prime}\right)
\end{aligned}
$$

and from the uniqueness of the optimal control, we obtain that $h=\bar{g}$ and $f=\bar{q}$. Therefore $u_{h f}=u_{\bar{g} \bar{q}}$ and $p_{h f}=p_{\bar{g} \bar{q}}$.

Step 3. The strong convergence is obtained by the previous weak convergence and the following inequalities

$$
\left\|\bar{g}_{\alpha}-\bar{g}\right\|_{H} \leq \frac{1}{M_{1}}\left\|p_{\alpha \bar{g}_{\alpha} \bar{q}_{\alpha}}-p_{\bar{g} \bar{q}}\right\|_{V}, \quad\left\|\bar{q}_{\alpha}-\bar{q}\right\|_{Q} \leq \frac{\|\gamma\|}{M_{2}}\left\|p_{\alpha \bar{g}_{\alpha} \bar{q}_{\alpha}}-p_{\bar{g} \bar{q}}\right\|_{V}
$$

For $\alpha>1$

$$
\begin{aligned}
\lambda_{1}\left\|u_{\alpha \bar{g}_{\alpha} \bar{q}_{\alpha}}-u_{\bar{g} \bar{q}}\right\|_{V}^{2} & \leq\left(g, u_{\alpha \bar{g}_{\alpha} \bar{q}_{\alpha}}-u_{\bar{g} \bar{q}}\right)_{H}-\left(q, u_{\alpha \bar{g}_{\alpha} \bar{q}_{\alpha}}-u_{\bar{g} \bar{q}}\right)_{Q} \\
& -a\left(u_{\bar{g} \bar{q}}, u_{\alpha \bar{g}_{\alpha} \bar{q}_{\alpha}}-u_{\bar{g} \bar{q}}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
& \lambda_{1}\left\|p_{\alpha \bar{g}_{\alpha} \bar{q}_{\alpha}}-p_{\bar{g} \bar{q}}\right\|_{V}^{2} \leq\left(u_{\alpha \bar{\alpha}_{\alpha} \bar{q}_{\alpha}}-z_{d}, p_{\alpha \bar{g}_{\alpha} \bar{q}_{\alpha}}-p_{\bar{g} \bar{q}}\right)_{H} \\
& -a\left(p_{\bar{g} \bar{q}}, p_{\alpha \bar{q}_{\alpha} \bar{q}_{\alpha}}-p_{\bar{g} \bar{q}}\right)-\alpha\left(p_{\bar{g} \bar{q}}, p_{\alpha \bar{g}_{\alpha} \bar{q}_{\alpha}}-p_{\bar{g} \bar{q}}\right)_{L^{2}\left(\Gamma_{1}\right)}
\end{aligned}
$$

where $\lambda_{1}$ is the coerciveness constant of bilinear form $a_{1}$.
4. Optimal control problems with hemivariational inequalities. In this section, we consider optimal control problems related with mixed elliptic problems governed by variational and hemivariational inequalities considered in subsection 2.2 More precisely, we will review the optimal control problems studied in [4, 16.
4.1. Optimal control problems on the internal energy. We consider distributed optimal control problems of the type studied in [12, 22, 39] given by:

$$
\begin{equation*}
\text { find } \quad g^{*} \in H \quad \text { such that } \quad I\left(g^{*}\right)=\min _{g \in H} I(g) \tag{54}
\end{equation*}
$$

with

$$
\begin{equation*}
I(g)=\frac{1}{2}\left\|u_{\infty g}-z_{d}\right\|_{H}^{2}+\frac{M}{2}\|g\|_{H}^{2} \tag{55}
\end{equation*}
$$

where $u_{\infty g}$ is the unique solution to the variational equality (3), $z_{d} \in H$ given and $M$ a positive constant.

For each $\alpha>0$, we formulate the following distributed optimal control problem

$$
\begin{equation*}
\text { find } \quad g_{\alpha}^{*} \in H \quad \text { such that } \quad I_{\alpha}\left(g_{\alpha}^{*}\right)=\min _{g \in H} I_{\alpha}(g) \tag{56}
\end{equation*}
$$

with

$$
\begin{equation*}
I_{\alpha}(g)=\frac{1}{2}\left\|\bar{u}_{\alpha g}-z_{d}\right\|_{H}^{2}+\frac{M}{2}\|g\|_{H}^{2} \tag{57}
\end{equation*}
$$

where $\bar{u}_{\alpha g}$ is a solution to the hemivariational inequality (8), $z_{d} \in H$ given and $M$ a positive constant.

In [16], for each $\alpha>0$, we obtain an existence result of optimal solutions to the optimal control problem 56. Moreover, asymptotic behavior of optimal controls and system states of the problem (56), when the parameter $\alpha$ goes to infinity, was studied.

Now, we pass to a result on existence of solution to the optimal control problem (56) in which the system is governed by the hemivariational inequality (8).

Theorem 4.1. For each $\alpha>0$, if $H(j)$ holds, then the distributed optimal control problems (56) has a solution.
Proof. We give a sketch of the proof. For details, see [16, Theorem 2].
i) For each $\alpha>0$ and $g \in H$, we have

$$
m=\inf \left\{I_{\alpha}(g), g \in H, \bar{u}_{\alpha g} \in T_{\alpha}^{1}(g)\right\} \geq 0
$$

with $T_{\alpha}^{1}(g)$ the set of solutions of (8).
ii) If $g_{n}^{\alpha} \in H$ is a minimizing sequence, then there exist positive constants $k_{1}$ and $k_{2}$ such that

$$
\left\|g_{n}^{\alpha}\right\|_{H} \leq k_{1} \quad \text { and } \quad\left\|\bar{u}_{\alpha g_{n}^{\alpha}}\right\|_{V_{0}} \leq k_{2}
$$

iii) Therefore, there exist $f \in H$ and $\eta_{\alpha} \in V_{0}$ such that

$$
\bar{u}_{\alpha g_{n}^{\alpha}} \rightharpoonup \eta_{\alpha} \text { weakly in } V_{0} \quad \text { and } \quad g_{n}^{\alpha} \rightharpoonup f \text { weakly in } H .
$$

iv) Next, we have that $\eta_{\alpha} \in V_{0}$ satisfies

$$
a\left(\eta_{\alpha}, v\right)+\alpha \int_{\Gamma_{3}} j^{0}\left(\eta_{\alpha} ; v\right) d \gamma \geq \int_{\Omega} f v d x-\int_{\Gamma_{2}} q v d \gamma \text { for all } v \in V_{0}
$$

and therefore $\eta_{\alpha}=\bar{u}_{\alpha f}$, where $\bar{u}_{\alpha f}$ is a solution of the problem (8) for data $f \in H$ and $q \in Q$.
v) Finally, we have that $m \geq I_{\alpha}(f)$ and therefore, $\left(f, \bar{u}_{\alpha f}\right)$ is an optimal pair to optimal control problem (56).

In what follows, we present the asymptotic behavior of the optimal solutions to problem (56), when $\alpha \rightarrow+\infty$.

Theorem 4.2. Assume $H(j)$ and $\left(H_{1}\right)$. If $\left(g_{\alpha}, \bar{u}_{\alpha g_{\alpha}}\right)$ is an optimal solution to problem (56) and $\left(g^{*}, u_{\infty g^{*}}\right)$ is the unique solution to problem (54), then $g_{\alpha} \rightarrow g^{*}$ strongly in $H$ and $\bar{u}_{\alpha g_{\alpha}} \rightarrow u_{\infty g^{*}}$ strongly in $V$, when $\alpha \rightarrow+\infty$.

Proof. We will make a sketch of the proof in three steps. For details see [16, Theorem 3].
Step 1. For all $\alpha>0$, we prove that the sequence ( $g_{\alpha}, \bar{u}_{\alpha g_{\alpha}}$ ) is bounded in $H \times H$, that is

$$
\left\|g_{\alpha}\right\|_{H} \leq k_{1} \quad\left\|\bar{u}_{\alpha g_{\alpha}}\right\|_{V} \leq k_{2}
$$

for positive constants $k_{1}$ and $k_{2}$. Next, we have that, there exists $k_{3}>0$ (independent of $\alpha$ ) such that

$$
-\int_{\Gamma_{3}} j^{0}\left(\bar{u}_{\alpha g_{\alpha}}, u_{\infty g^{*}}-\bar{u}_{\alpha g_{\alpha}}\right) d \gamma \leq \frac{k_{3}}{\alpha} .
$$

Therefore, we obtain that, there exist $\eta \in V$ and $h \in H$ such that, as $\alpha \rightarrow+\infty$

$$
\bar{u}_{\alpha g_{\alpha}} \rightharpoonup \eta \text { weakly in } V \quad \text { and } \quad g_{\alpha} \rightharpoonup h \text { weakly in } H .
$$

Step 2. Since $V_{0}$ is sequentially weakly closed in $V, \eta \in V_{0}$ and

$$
\eta \in V_{0} \quad \text { satisfies } L(w-\eta) \leq a(\eta, w-\eta) \text { for all } w \in K
$$

Next, we obtain that $\eta \in K$ and

$$
\eta \in K \text { satisfies } a(\eta, v)=L(v) \text { for all } v \in K_{0}
$$

i.e., $\eta \in K$ is a solution to problem (3) and by the uniqueness of solution to problem (3), we have $\eta=u_{\infty h}$. From the uniqueness of the optimal control problem (65), we obtain $h=g^{*}$. Therefore, when $\alpha \rightarrow+\infty$

$$
g_{\alpha} \rightharpoonup g^{*} \text { weakly in } H \text { and } \bar{u}_{\alpha g_{\alpha}} \rightharpoonup u_{\infty g^{*}} \text { weakly in } V \text {. }
$$

Step 3. We have that

$$
m_{a}\left\|u_{\infty g^{*}}-\bar{u}_{\alpha g_{\alpha}}\right\|_{V}^{2} \leq a\left(u_{\infty g^{*}}, u_{\infty g^{*}}-\bar{u}_{\alpha g_{\alpha}}\right)+L\left(\bar{u}_{\alpha g_{\alpha}}-u_{\infty g^{*}}\right) .
$$

Next, from the weak continuity of $a\left(u_{\infty g^{*}}, \cdot\right)$, the compactness of the trace operator and $\bar{u}_{\alpha g_{\alpha}} \rightarrow u_{\infty g^{*}}$ strongly in $H$,

$$
\bar{u}_{\alpha g_{\alpha}} \rightarrow u_{\infty g^{*}} \text { strongly in } V, \quad \text { when } \quad \alpha \rightarrow+\infty .
$$

Finally, as $g_{\alpha} \rightharpoonup g^{*}$ weakly in $H$ and $\left\|g_{\alpha}\right\|_{H} \rightarrow\left\|g^{*}\right\|_{H}$, we deduce that

$$
g_{\alpha} \rightarrow g^{*} \text { strongly in } H \quad \text { when } \quad \alpha \rightarrow+\infty
$$

4.2. Optimal control problems on the heat flux. We consider the boundary optimal control problems studied in [4, which are given by

$$
\begin{equation*}
\text { find } \quad q^{*} \in Q \quad \text { such that } \quad I_{2}\left(q^{*}\right)=\min _{q \in Q} I_{2}(q) \tag{58}
\end{equation*}
$$

with

$$
\begin{equation*}
I_{2}(q)=\frac{1}{2}\left\|u_{\infty q}-z_{d}\right\|_{H}^{2}+\frac{M}{2}\|q\|_{Q}^{2} \tag{59}
\end{equation*}
$$

and, for each $\alpha>0$, the problem

$$
\begin{equation*}
\text { find } \quad q_{\alpha}^{*} \in Q \quad \text { such that } \quad I_{2 \alpha}\left(q_{\alpha}^{*}\right)=\min _{q \in Q} I_{2 \alpha}(q) \tag{60}
\end{equation*}
$$

with

$$
\begin{equation*}
I_{2 \alpha}(q)=\frac{1}{2}\left\|\bar{u}_{\alpha q}-z_{d}\right\|_{H}^{2}+\frac{M}{2}\|q\|_{Q}^{2} \tag{61}
\end{equation*}
$$

where $u_{\infty q}$ is the unique solution to the variational equality (3), $\bar{u}_{\alpha q}$ is a solution to the hemivariational inequality (8), $z_{d} \in H$ given and $M$ a positive constant.

It is know, by [14], that there exists a unique optimal solution $q^{*} \in Q$ of the boundary optimal control problem 58]. In 4], existence of solution to the optimal control problem (60), which is governed by the hemivariational inequality (8), has been proved. This result is presented as follows.
Theorem 4.3. For each $\alpha>0$, if $H(j)$ holds, then the boundary optimal control problems (60) has a solution.

Proof. We denote, for each $\alpha>0$ and each $q \in Q$, by $T_{\alpha}^{2}(q)$ the set of solutions of (8) and we have that

$$
\begin{equation*}
m=\inf \left\{I_{2 \alpha}(q), q \in Q, \bar{u}_{\alpha q} \in T_{\alpha}^{2}(q)\right\} \geq 0 \tag{62}
\end{equation*}
$$

Next, for each $\alpha>0$, we consider $q_{n}^{\alpha} \in Q$ a minimizing sequence to 62 and we prove that there exist $\xi_{\alpha} \in Q$ and $\eta_{\alpha} \in V_{0}$ such that, when $n \rightarrow \infty$

$$
\bar{u}_{\alpha q_{n}^{\alpha}} \rightharpoonup \eta_{\alpha} \text { weakly in } V_{0} \quad \text { and } \quad q_{n}^{\alpha} \rightharpoonup \xi_{\alpha} \text { weakly in } Q .
$$

After that, we obtain that $\eta_{\alpha}=\bar{u}_{\alpha \xi_{\alpha}}$ where $\bar{u}_{\alpha \xi_{\alpha}}$ is a solution of the hemivariational inequality (8) for data $\xi_{\alpha} \in Q$ and $g \in H$. Finally, we prove that

$$
m \geq I_{2 \alpha}\left(\xi_{\alpha}\right)
$$

and therefore $\xi_{\alpha}$ is an optimal solution to optimal control problem 60).
In 4], following [16], has been studied the asymptotic behavior of optimal solutions of the problems (60) when the parameter $\alpha$ goes to infinity. This result is presented as follows.

Theorem 4.4. Assume $H(j)$ and $\left(H_{1}\right)$. If $q_{\alpha}^{*}$ is an optimal solution to problem (60) and $q^{*}$ is the unique solution to problem (58), then $q_{\alpha}^{*} \rightarrow q^{*}$ strongly in $Q$ and $\bar{u}_{\alpha q_{\alpha}^{*}} \rightarrow u_{\infty q^{*}}$ strongly in $V$, when $\alpha \rightarrow+\infty$.

Proof. We give the scheme of the proof in three steps. For details see [4, Theorem 3.2].
STEP 1. Since $q_{\alpha}^{*}$ is an optimal solution to problem 60), we deduce that there exist positive constants $k_{1}$ and $k_{2}$ such that

$$
\left\|q_{\alpha}^{*}\right\|_{Q} \leq k_{1}, \quad\left\|\bar{u}_{\alpha q_{\alpha}^{*}}\right\|_{V} \leq k_{2} .
$$

Moreover, there exists a positive constant $k_{3}$ such that

$$
-\int_{\Gamma_{3}} j^{0}\left(\bar{u}_{\alpha q_{\alpha}^{*}} ; u_{\infty q^{*}}-\bar{u}_{\alpha q_{\alpha}^{*}}\right) d \gamma \leq \frac{k_{3}}{\alpha} .
$$

Therefore, there exist $\eta \in V$ and $\xi \in Q$ such that

$$
\begin{equation*}
\bar{u}_{\alpha q_{\alpha}^{*}} \rightharpoonup \eta \text { weakly in } V, \text { as } \alpha \rightarrow+\infty \tag{63}
\end{equation*}
$$

$$
\begin{equation*}
q_{\alpha}^{*} \rightharpoonup \xi \text { weakly in } Q, \text { as } \alpha \rightarrow+\infty \tag{64}
\end{equation*}
$$

Step 2. We obtain that

$$
\eta \in K \text { satisfies } a(\eta, v)=L(v) \text { for all } v \in K_{0}
$$

i.e., $\eta \in K$ is a solution to problem (3) and by the uniqueness of solution to problem (3), we have $\eta=u_{\infty \xi}$ and hence $\bar{u}_{\alpha q_{\alpha}^{*}} \rightharpoonup u_{\infty \xi}$ weakly in $V$, as $\alpha \rightarrow+\infty$. Next, $\forall q \in Q$

$$
I_{2}(\xi) \leq \liminf _{\alpha \rightarrow+\infty} I_{2 \alpha}\left(q_{\alpha}^{*}\right) \leq \liminf _{\alpha \rightarrow \infty} I_{2 \alpha}(q)=\lim _{\alpha \rightarrow \infty} I_{2 \alpha}(q)=I_{2}(q)
$$

and from the uniqueness of the optimal control problem (58), we obtain that $\xi=q^{*}$, therefore $u_{\infty \xi}=u_{\infty q^{*}}$. Therefore, when $\alpha \rightarrow+\infty$

$$
q_{\alpha}^{*} \rightharpoonup q^{*} \text { weakly in } Q \text { and } \bar{u}_{\alpha q_{\alpha}^{*}} \rightharpoonup u_{\infty q^{*}} \text { weakly in } V .
$$

Step 3. By $H(j)(\mathrm{d})$ and the coerciveness of the form $a$, we obtain

$$
m_{a}\left\|u_{\infty q^{*}}-\bar{u}_{\alpha q_{\alpha}^{*}}\right\|_{V}^{2} \leq a\left(u_{\infty q^{*}}, u_{\infty q^{*}}-\bar{u}_{\alpha q_{\alpha}^{*}}\right)+L\left(\bar{u}_{\alpha q_{\alpha}^{*}}-u_{\infty q^{*}}\right)
$$

Next, we have that $\bar{u}_{\alpha q_{\alpha}^{*}} \rightarrow u_{\infty q^{*}}$ strongly in $V$ as $\alpha \rightarrow \infty$. Now, from $\bar{u}_{\alpha q_{\alpha}^{*}} \rightarrow u_{\infty q^{*}}$ strongly in $H$ and as $q_{\alpha}^{*} \rightharpoonup q^{*}$ weakly in $Q$ we obtain

$$
I_{2}\left(q^{*}\right) \leq \liminf _{\alpha \rightarrow \infty} I_{2 \alpha}\left(q_{\alpha}^{*}\right)
$$

On the other hand, from the definition of $q_{\alpha}^{*}$ and taking into account that $\bar{u}_{\alpha q^{*}} \rightarrow u_{\infty q^{*}}$ strongly in $H$, we obtain

$$
\limsup _{\alpha \rightarrow \infty} I_{2 \alpha}\left(q_{\alpha}^{*}\right) \leq \limsup _{\alpha \rightarrow \infty} I_{2 \alpha}\left(q^{*}\right)=I_{2}\left(q^{*}\right)
$$

and therefore

$$
\lim _{\alpha \rightarrow \infty}\left(\frac{1}{2}\left\|\bar{u}_{\alpha q_{\alpha}^{*}}-z_{d}\right\|_{H}^{2}+\frac{M}{2}\left\|q_{\alpha}^{*}\right\|_{Q}^{2}\right)=\frac{1}{2}\left\|u_{\infty q^{*}}-z_{d}\right\|_{H}^{2}+\frac{M}{2}\left\|q^{*}\right\|_{Q}^{2}
$$

Finally, when $\alpha \rightarrow+\infty$, we have $\left\|q_{\alpha}^{*}\right\|_{Q}^{2} \rightarrow\left\|q^{*}\right\|_{Q}^{2}$ and as $q_{\alpha}^{*} \rightharpoonup q^{*}$ weakly in $Q$, we deduce that $q_{\alpha}^{*} \rightarrow q^{*}$ strongly in $Q$.
4.3. Simultaneous optimal control problems on the internal energy and the heat flux. We consider the simultaneous distributed and Neumann boundary optimal control problems studied in [4]. These problems are given by

$$
\begin{equation*}
\text { find } \quad(\bar{g}, \bar{q}) \in H \times Q \quad \text { such that } \quad I_{3}(\bar{g}, \bar{q})=\min _{(g, q) \in H \times Q} I_{3}(g, q) \tag{65}
\end{equation*}
$$

with

$$
\begin{equation*}
I_{3}(g, q)=\frac{1}{2}\left\|u_{\infty g q}-z_{d}\right\|_{H}^{2}+\frac{M_{1}}{2}\|g\|_{H}^{2}+\frac{M_{2}}{2}\|q\|_{Q}^{2} \tag{66}
\end{equation*}
$$

where $u_{\infty g q}$ is the unique solution to the variational equality (3), $z_{d} \in H$ given and $M_{1}$ and $M_{2}$ are given positive constants. For each $\alpha>0$, the following simultaneous distributed and Neumann boundary optimal control problem

$$
\begin{equation*}
\text { find } \quad\left(\bar{g}_{\alpha}, \bar{q}_{\alpha}\right) \in H \times Q \quad \text { such that } \quad I_{3 \alpha}\left(\bar{g}_{\alpha}, \bar{q}_{\alpha}\right)=\min _{(g, q) \in H \times Q} I_{3 \alpha}(g, q) \tag{67}
\end{equation*}
$$

with

$$
\begin{equation*}
I_{3 \alpha}(g, q)=\frac{1}{2}\left\|\bar{u}_{\alpha g q}-z_{d}\right\|_{H}^{2}+\frac{M_{1}}{2}\|g\|_{H}^{2}+\frac{M_{2}}{2}\|q\|_{Q}^{2} \tag{68}
\end{equation*}
$$

where $\bar{u}_{\alpha g q}$ is a solution to the hemivariational inequality (8), $z_{d} \in H$ is given and $M_{1}$ and $M_{2}$ are positive constants.

It is known, by [15], that there exists a unique optimal pair $(\bar{g}, \bar{q}) \in H \times Q$ of the simultaneous distributed-boundary optimal control problem 65). In similar way to [16], in [4] a result on existence of solution to the simultaneous optimal control problem (67) which is governed by the hemivariational inequality (8) has been proved. This result and an idea of its proof are presented as follows.

Theorem 4.5. For each $\alpha>0$, if $H(j)$ holds, then the simultaneous distributed-boundary optimal control problem (67) governed by the hemivariational inequality (8) has a solution.

Proof. i) For each $\alpha>0$ and $(g, q) \in H \times Q$, we have

$$
m=\inf \left\{I_{3 \alpha}(g, q),(g, q) \in H \times Q, \bar{u}_{\alpha g q} \in T_{\alpha}^{3}(g, q)\right\} \geq 0
$$

with $T_{\alpha}^{3}(g, q)$ the set of solutions of (8).
ii) Next, if $\left(g_{n}^{\alpha}, q_{n}^{\alpha}\right) \in H \times Q$ is a minimizing sequence, there exist positive constants $k_{1}, k_{2}$ and $k_{3}$ such that, as $n \rightarrow \infty$

$$
\left\|g_{n}^{\alpha}\right\|_{H} \leq k_{1}, \quad\left\|q_{n}^{\alpha}\right\|_{Q} \leq k_{2} \quad \text { and } \quad\left\|\bar{u}_{\alpha g_{n}^{\alpha} q_{n}^{\alpha}}\right\|_{V_{0}} \leq k_{3} .
$$

iii) Therefore, there exist $f_{\alpha} \in H, \xi_{\alpha} \in Q$ and $\eta_{\alpha} \in V_{0}$ such that

$$
\begin{gathered}
q_{n}^{\alpha} \rightharpoonup \xi_{\alpha} \text { weakly in } Q, \quad g_{n}^{\alpha} \rightharpoonup f_{\alpha} \text { weakly in } H \\
\bar{u}_{\alpha g_{n}^{\alpha} q_{n}^{\alpha}} \rightharpoonup \eta_{\alpha} \text { weakly in } V_{0} .
\end{gathered}
$$

iv) Next, we prove that $\eta_{\alpha} \in V_{0}$ satisfies

$$
a\left(\eta_{\alpha}, v\right)+\alpha \int_{\Gamma_{3}} j^{0}\left(\eta_{\alpha} ; v\right) d \gamma \geq \int_{\Omega} f_{\alpha} v d x-\int_{\Gamma_{2}} \xi_{\alpha} v d \gamma \forall v \in V_{0}
$$

and therefore $\eta_{\alpha}=\bar{u}_{\alpha f_{\alpha} \xi_{\alpha}}$, where $\bar{u}_{\alpha f_{\alpha} \xi_{\alpha}}$ is a solution of the (8) for data $f_{\alpha} \in H$ and $\xi_{\alpha} \in Q$.
v) Finally, we have $m \geq I_{3 \alpha}\left(f_{\alpha}, \xi_{\alpha}\right)$ and therefore, $\left(f_{\alpha}, \xi_{\alpha}\right)$ is an optimal pair for optimal control problem (67).

The asymptotic behavior of the optimal solutions to problem when $\alpha$ goes to infinity, studied in [4], is presented as follows.
Theorem 4.6. Assume $H(j)$ and $\left(H_{1}\right)$. If $\left(\bar{g}_{\alpha}, \bar{q}_{\alpha}\right)$ is an optimal solution to simultaneous distributed and Neumann boundary optimal control problem (67) and $(\bar{g}, \bar{q})$ is the unique solution to simultaneous optimal control problem (65), then $\left(\bar{g}_{\alpha}, \bar{q}_{\alpha}\right) \rightarrow(\bar{g}, \bar{q})$ in $H \times Q$ strongly and $\bar{u}_{\alpha \bar{g}_{\alpha} \bar{q}_{\alpha}} \rightarrow u_{\infty \bar{g} \bar{q}}$ in V strongly, when $\alpha \rightarrow \infty$.
Proof. We give a sketch of the proof. For details see [4, Theorem 5.1].
STEP 1. For all $\alpha>0$, the sequence $\left(g_{\alpha}, q_{\alpha}\right)$ is bounded in $H \times Q$ and $\bar{u}_{\alpha g_{\alpha} q_{\alpha}}$ is bounded in $H$, that is

$$
\left\|g_{\alpha}\right\|_{H} \leq k_{1}, \quad\left\|q_{\alpha}\right\|_{Q} \leq k_{2}, \quad\left\|\bar{u}_{\alpha g_{\alpha} q_{\alpha}}\right\|_{V} \leq k_{3}
$$

for positive constants $k_{1}, k_{2}$ and $k_{3}$. Moreover, there exists $k_{4}>0$ (independent of $\alpha$ ) such that

$$
-\int_{\Gamma_{3}} j^{0}\left(\bar{u}_{\alpha g_{\alpha} q_{\alpha}}, u_{\infty \bar{g} \bar{q}}-\bar{u}_{\alpha g_{\alpha} q_{\alpha}}\right) d \gamma \leq \frac{k_{4}}{\alpha} .
$$

Next, we prove that there exist $\eta \in V, h \in H$ and $p \in Q$ such that, as $\alpha \rightarrow+\infty$

$$
\begin{gathered}
\bar{u}_{\alpha g_{\alpha} q_{\alpha}} \rightharpoonup \eta \text { weakly in } V \\
g_{\alpha} \rightharpoonup h \text { weakly in } H \quad \text { and } \quad q_{\alpha} \rightharpoonup p \text { weakly in } Q .
\end{gathered}
$$

Step 2. Since $V_{0}$ is sequentially weakly closed in $V, \eta \in V_{0}$ satisfies

$$
L(w-\eta) \leq a(\eta, w-\eta) \text { for all } w \in K
$$

Next, we obtain that $\eta \in K$ and

$$
\eta \in K \text { satisfies } a(\eta, v)=L(v) \text { for all } v \in K_{0}
$$

i.e., $\eta \in K$ is a solution to problem (3) and by the uniqueness of solution to problem (3), we have that $\eta=u_{h p}$. From the uniqueness of the optimal control problem (65), we obtain

$$
h=\bar{g} \quad \text { and } \quad p=\bar{q} .
$$

Therefore, when $\alpha \rightarrow+\infty$

$$
\begin{gathered}
g_{\alpha} \rightharpoonup \bar{g} \text { weakly in } H, \quad q_{\alpha} \rightharpoonup \bar{q} \text { weakly in } Q \\
\bar{u}_{\alpha g_{\alpha} q_{\alpha}} \rightharpoonup u_{\infty \bar{g} \bar{q}} \text { weakly in } V .
\end{gathered}
$$

Step 3. We have

$$
m_{a}\left\|u_{\infty \bar{g} \bar{q}}-\bar{u}_{\alpha g_{\alpha} q_{\alpha}}\right\|_{V}^{2} \leq a\left(u_{\infty \bar{g} \bar{q}}, u_{\infty \bar{g} \bar{q}}-\bar{u}_{\alpha g_{\alpha} q_{\alpha}}\right)+L\left(\bar{u}_{\alpha g_{\alpha} q_{\alpha}}-u_{\infty \bar{g} \bar{q}}\right) .
$$

Next, from the weak continuity of $a\left(\bar{u}_{\bar{g}}, \cdot\right)$, the compactness of the trace operator and $\bar{u}_{\alpha g_{\alpha} q_{\alpha}} \rightarrow u_{\infty \bar{g} \bar{q}}$ strongly in $H$,

$$
\bar{u}_{\alpha g_{\alpha} q_{\alpha}} \rightarrow u_{\infty \bar{g} \bar{q}} \text { strongly in } V, \quad \text { when } \quad \alpha \rightarrow+\infty .
$$

Finally, as $g_{\alpha} \rightharpoonup \bar{g}$ weakly in $H, q_{\alpha} \rightharpoonup \bar{q}$ weakly in $Q$

$$
\left\|g_{\alpha}\right\|_{H} \rightarrow\|\bar{g}\|_{H} \quad \text { and } \quad\left\|q_{\alpha}\right\|_{Q} \rightarrow\|\bar{q}\|_{Q}
$$

we deduce that, as $\alpha \rightarrow+\infty$

$$
g_{\alpha} \rightarrow \bar{g} \text { strongly in } H \quad \text { and } \quad q_{\alpha} \rightarrow \bar{q} \text { strongly in } Q .
$$

Acknowledgments. The authors would like to thank two anonymous referees for their constructive comments, which improved the readability of the manuscript. This paper has been partially sponsored by the European Union's Horizon 2020 Research and Innovation Programme under the Marie Sklodowska-Curie grant agreement 823731 CONMECH and Universidad Austral, Rosario, Argentina for the second author, and by the Project PPI No. 18/C555 from SECyT-UNRC, Río Cuarto, Argentina for the first author.

## References

[1] A. Azzam and E. Kreyszig, On solutions of elliptic equations satisfying mixed boundary conditions, SIAM J. Math. Anal. 13 (1982), 254-262.
[2] C. Bacuta, J. H. Bramble and J. E. Pasciak, Using finite element tools in proving shift theorems for elliptic boundary value problems, Numer. Linear Algebra Appl. 10 (2003), 33-64.
[3] V. Barbu, Boundary control problems with non linear state equation, SIAM J. Control Optim. 20 (1982), 125-143.
[4] C. M. Bollo, C. M. Gariboldi and D. A. Tarzia, Simultaneous distributed and Neumann boundary optimal control problems for elliptic hemivariational inequalities, Journal of Nonlinear and Variational Analysis 6 (2022), 535-549.
[5] F. H. Clarke, Optimization and nonsmooth analysis, Wiley, Interscience, New York, 1983.
[6] S. Carl, V. K. Le and D. Motreanu, Nonsmooth Variational Problems and Their Inequalities, Springer, New York, 2007.
[7] Z. Denkowski, S. Migórski and N. S. Papageorgiu, An Introduction to Nonlinear Analysis: Theory, Kluwer Academic/Plenum, Boston, 2003.
[8] Z. Denkowski, S. Migórski and N. S. Papageorgiu, An introduction to nonlinear analysis: applications, Kluwer, Boston, 2003.
[9] G. Duvaut and J. L. Lions, Les inéquations en mécanique et en physique, Dunod, Paris, 1972.
[10] G. G. Garguichevich and D. A. Tarzia, The steady-state two-fase Stefan problem with an internal energy and some related problems, Atti Sem. Mat. Fis. Univ. Modena 39 (1991), 615-634.
[11] C. M. Gariboldi, S. Migórski, D. A. Tarzia and A. Ochal, Existence, comparison, and convergence results for a class of elliptic hemivariational inequalities, Applied Mathematics and Optimization 84 (Suppl 2) (2021), S1453-S1475.
[12] C. M. Gariboldi and D. A. Tarzia, Convergence of distributed optimal controls on the internal energy in mixed elliptic problems when the heat transfer coefficient goes to infinity, Appl. Math. Optim. 47 (2003), 213-230.
[13] C. M. Gariboldi and D. A. Tarzia, A new proof .of the convergence of distributed optimal controls on the internal energy in mixed elliptic problems, MAT-Serie A 7 (2004), 31-42.
[14] C. M. Gariboldi and D. A. Tarzia, Convergence of boundary optimal control problems with restrictions in mixed elliptic Stefan-like problems, Adv. in Diff. Eq. and Control Processes 1 (2008), 113-132.
[15] C. M. Gariboldi and D. A. Tarzia, Existence, uniqueness and convergence of simultaneous distributed-boundary optimal control problems, Control and Cybernetics 44 (2015), 5-17.
[16] C. M. Gariboldi and D. A. Tarzia, Distributed optimal control problems for a class of elliptic hemivariational inequalities with a parameter and its asymptotic behavior, Communications in Nonlinear Science and Numerical Simulation 104 (2022), art. 106027, 1-9.
[17] L. Gasiński, Z. Liu and S. Migórski, A. Ochal and Z. Peng, Hemivariational inequality approach to evolutionary constrained problems on star-shaped sets, J. Optim. Theory Appl. 164 (2015), 514-533 .
[18] L. Gasiński, S. Migórski and A. Ochal, Existence results for evolutionary inclusions and variational-hemivariational inequalities, Applicable Analysis 94 (2015), 1670-1694.
[19] P. Grisvard, Elliptic Problems in Nonsmooth Domains, Pitman, London, (1985).
[20] D. Kinderlehrer and G. Stampacchia, An Introduction to Variational Inequalities and Their Applications, SIAM, Philadelphia, 2000.
[21] L. Lanzani, L. Capagna and R. M. Brown, The mixed problem in $L^{p}$ for some two-dimensional Lipschitz domain, Math. Ann. 342 (2008), 91-124.
[22] J. L. Lions, Contrôle optimal de systèmes gouvernés par des équations aux dérivées partielles, Dunod, Paris, 1968.
[23] S. Migórski and A. Ochal, A unified approach to dynamic contact problems in viscoelasticity, J. Elasticity 83 (2006), 247-275.
[24] S. Migórski and A. Ochal, Boundary hemivariational inequality of parabolic type, Nonlinear Analysis, 57 (2004), 579-596.
[25] S. Migórski, A. Ochal and M. Sofonea, Nonlinear Inclusions and Hemivariational Inequalities. Models and Analyses of Contact Problems, Springer, New York, 2013.
[26] S. Migórski, A. Ochal and M. Sofonea, A class of variational-hemivariational inequalities in reflexive Banach spaces, J. Elasticity, 127 (2017), 151-178.
[27] Z. Naniewics and P. D. Panagiotopoulos, Mathematical theory of hemivariational inequalities and applications, Dekker, New York, (1995).
[28] P. D. Panagiotopoulos, Nonconvex problems of semipermeable media and related topics, Z. Angew. Math. Mech. 65 (1985), 29-36.
[29] P. D. Panagiotopoulos, Hemivariational Inequalities, Springer, Berlin, 2003.
[30] J. F. Rodrigues, Obstacle problems in mathematical physics, Northe-Holland, Amsterdam, 1987.
[31] M. Shillor, M. Sofonea and J. J. Telega, Models and Analysis of Quasistatic Contact, Springer, Berlin, 2004.
[32] M. Sofonea and A. Matei, Mathematical Models in Contact Mechanics, Cambridge Univ. Press, Cambridge, 2012.
[33] M. Sofonea and S. Migórski, Variational-Hemivariational Inequalities with Applications, CRC Press, Boca Raton, 2018.
[34] E. D. Tabacman and D. A. Tarzia, Sufficient and/ or necessary condition for the heat transfer coefficient on $\Gamma_{1}$ and the heat flux on $\Gamma_{2}$ to obtain a steady-state two-phase Stefan problem, J. Differential Equations 77 (1989), 16-37.
[35] D. A. Tarzia, Sur le problème de Stefan à deux phases, C. R. Acad. Sci. Paris Sér. A 288 (1979), 941-944.
[36] D. A. Tarzia, Aplicación de métodos variacionales en el caso estacionario del problema de Stefan a dos fases, Mathematicae Notae 27 (1979/80), 145-156.
[37] D. A. Tarzia, Una familia de problemas que converge hacia el caso estacionario del problema de Stefan a dos fases, Mathematicae Notae 27 (1979/80), 157-165.
[38] D. A. Tarzia, An inequality for the constant heat flux to obtain a steady-state two-phase Stefan problem, Eng. Anal. 5 (1998), 177-181.
[39] F. Trölstzsch, Optimal Control of Partial Differential Equations: Theory, Methods and Applications, American Math. Soc., Providence, 2010.
[40] E. Zeidler, Nonlinear Functional Analysis and Applications. II A/B, Springer, New York, 1990.
[41] B. Zeng, Z. Liu and S. Migórski, On convergence of solutions to variational-hemivariational inequalities, Z. Angew. Math. Phys. 69 (87) (2018), 1-20.


[^0]:    2020 Mathematics Subject Classification: Primary 35J05; Secondary 35J65, 35J87, 35R35, 49J45, 49J20.
    Key words and phrases: elliptic variational equality, eliptic hemivariational inequality, asymptotic behavior, Clarke generalized gradient, mixed elliptic problem, convergence.
    The paper is in final form and no version of it will be published elsewhere.

