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Abstract. We consider a steady-state heat conduction problem P, with mixed
boundary conditions for the Poisson equation depending on a positive parameter «,
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1. Introduction

We consider a bounded domain €2 in R" whose regular boundary T" consists of the union
of two disjoint portions I') and I'; with meas(I";) > 0 and meas(I";) > 0. We denote
with meas(I") the (n — 1)-dimensional Lebesgue measure of T".

We consider the following two steady-state heat conduction problems P and P, (for
each parameter @ > 0), respectively, with mixed boundary conditions:

d
-Au=g inf, ulr, = b, _x =q, (1)
an|r,
and
ou du
—Au = in 2, - = - b), —— =g, 2
u=g in o, a(u —b) an . q )

where g is the internal energy in 2, b is the temperature on I'y for (1) and the temperature
of the external neighborhood of ") for (2), q is the heat flux on I'; and & > 0 is the heat
transfer coefficient of I') (Newton’s law on I'}), that satisfy the following assumptions:

ge H=L*Q), qelXTy), beH*I). (3)

Problems (1) and (2) can be considered as the steady-state Stefan problem for suitable
data g, g and b [5], (8], [11], [17], (18], [20].

Let u; and u,, be the unique solutions of the mixed elliptic problems (1) and (2),
respectively, whose variational equalities are given by [14]

a(ug, v) = Lg(v), YveVy, ug€k, 4)
and

Ao (U gy, V) = Lgo(v), VveV, ugeV, (5)
where

V = H (D), Vo={veV/vlr, =0},

K=v+Vo, (gh)= (g.hn= fﬂ ghdsx, ©)
a(u,v) = / Vu - Vv dx, aq(u,v) =a(u,v) +a/ bvdy,
Q Iy

Le(v) = (g,v)y —f qudy, Leo(v) = Lg(v)+afr bvdy
)} 1

for a given vp € V, volr, = b.
We consider g as a control variable for the cost functionals J: H — R{ and
Jo: H — R respectively given by

. M
J(@) = lug = zall% + 7||g||%, Q)
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and

M .
Ja(8) = luga — zall}y + 7ngu%,, (8)

where z; € H is given and M = const. > 0.
Then we can formulate the following distributed optimal control problems [7], [9],
(10}, [15]:

Find gop € H suchthat J(gyp) = gg’r’l J(g) 9)
and

Find gy, € H suchthat Jy(gop,) = ?;11!{1 Ja(8), (10)
respectively.

The use of variational inequality theory in connection with optimal control problems
was done, for example, in [1]-[4], [6], [13] and [16]. In [12] an optimization problem
corresponding to (1) is studied in order to avoid a change phase process.

In Section 2 we prove that the functional J is coercive and Gateaux differentiable
on H, and J' is a Lipschitzian and strictly monotone application on H. We also prove
the existence and uniqueness of the distributed optimal control problem (9) and we
characterize this optimal energy g, as a fixed point on H of a suitable operator W over
its adjoint state p, for a large parameter M.

Similary, in Section 3 we prove that the functional J, is coercive and Giteaux
differentiable on H, and J, is a Lipschitzian and strictly monotone application on H for
alla > 0. We also prove the existence and uniqueness of the distributed optimal control
problem (10) and we characterize this optimal energy gop_ as a fixed point on H of a
suitable operator W, over its adjoint state p,, for a large parameter M.

In Section 4 we study the convergence when @ — oo of the optimal control problem
(10) corresponding to the state system (2). We prove that the optimal state system u,,, o
and the optimal adjoint system p, . of problem (10) are strongly convergent in V to
the corresponding u,,, and p,  for problem (9), respectively, when a — oc. Finally,
the strong convergence in H of the optimal control g, of problem (10) to the optimal
control gop of problem (9) is also proved when a — oo.

2. Problem P and Its Corresponding Optimal Control Problem

Let C: H — V) be the application such that
C(g) = ug — uo, (11)
where uy is the solution of problem (4) for g = 0 whose variational equality is given by
a(ug, v) = Lo(v), Vve Vy, uek, (12)
with

Lo(v) = —/ qudy.
I
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LetI1: H x H—> Rand L: H — R be defined by the following expressions:
(g, h) = (C(g), C(h)) + M(g, h), Vg,h e H, (13)
L(g) = (C(8), za — uo), Vg € H.

We have that a is a bilinear, continuous and symmetric form on V and coercive on
Vo, that is [14],

3. >0 suchthat a(v,v) > Alvli3, Yve vV, (14)

Lemma 2.1.

(i) C is a linear and continuous application.
(ii) T1 is linear, continuous, symmetric and coercive form on H, that is,

Mg, g) > Mlgly, VgeH. (15)

(iii) L is linear and continuous on H.
(iv) J can be also written as

J(g) = 3T1(g, k) — L(g) + lluo — zall}s> Vg e H. (16)
(v) There exists a unique optimal control g, € H such that

J (8op) = min J(g). 17
geH

(vi) The application g € H — uy € V is Lipschitzian, that is,
1
Nug, — ug, llv < x"gz — 8illu, Vg1, 8 € H. (18)

Proof. (i)—(iii) This follows as in [12] and [15].
(iv) From the definitions of J, IT and L, we have

M
J(8) = jllug +uo —uo — zall}y + Tllgllfq

M
= Lllug — uolly — (g — w0, za — o) + 1o — zall + 7||g||%,

= 1T1(g, h) — L(g) + }lluo — zall%.
(v) This is a result of (ii)—(iv) [14], [15].

(vi) If we take v = u, — u,, € Vp in the variational equality (4) for u,,, that is,
a(ugz’ Ug, — ugz) = (82, Ug — ugz) - /; q(ug1 - ugz)d}’,
2

and if we take v = u,, — ug, € Vp in the variational equality (4) for u, , that is,

aug,, ug, — Ug,) = (81, Ug, — Ug) —/r qug, —ug)dy,
2
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then we obtain

a(ug, — g, g, —Ug) = (82 — 81, Uy, — Ug,)
and taking into account that a is a coercive form we get

Mug, — ug, Iy < alug, —ug,, ug, —ug) < lig2 — gillnllug, — ug,llu,

and therefore (18). : O

We define the adjoint state p, corresponding to (1) or (4), for each g € H, as the
unique solution of the following mixed elliptic problem:

. )
—Ap, =ug—z4 1nL, Pelr, =0, id 1 =0, (19)
an |,
whose variational formulation is given by
a(pgs v) = (ug - Zda v)a Vv E VO’ pg G VO' (20)

Now we will obtain some useful properties of the functional J.

Lemma 2.2.

(i) J is a Gateaux differentiable functional and J' is given by

(J'(8), h) = (ug — 24, C(h)) + M(g, h) = TI(g, h) — L(g),
Vg, h e H. | (21)

(i)) The adjoint state p, satisfy the following equalities:
(Pg. ) = (ug — za, C(h)) = a(pg., C(h)). (22)
| (i) The Gateaux derivative of J can be written as
J'(g) = pg + Mg, Vg € H. (23)
(iv) The optimality condition for problem (9) is given by J'(gop) = 0 in H, that is,
Pop M8y =0 in H. (24)
Proof. (i) Fort > 0, we have

1 t
@ +t(f —8) = J(@]=Z(uy —ug uy —ug) + (ug — za, uy — hg)

M
+M(g,f—g)+7t(f—g,f—g),

and passing to the limit 1 — 0, we obtain (21).
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(ii) This results from the definition of p, and taking into account that
a(pg, C(h)) = a(pg, up — ug) = a(pg, ur) — a(pg, ug) = (pg, h).
(ii1), (iv) They follow from (21), (22) and [14] and [15].

Let the operator W: H — Vo C H be defined by

1
Wg) =—-—

Mpg, g€EH.

We will prove the following property:

Lemma 2.3. W is a Lipschitz operator over H, i.e.

1

IW(g2) — W(gD)llu < reIT]

"81—82"”9 V81,82€H,

and it is a contraction for all M- > 1/A2.

Proof.

a(Pg,s Pg, — Pg) = (Ug, — 2a, Pg, — Pg.)

and in a similar way we have

a(pgl’ Pg — pgz) = (ugl —2d, Pgy — pgz)-

Therefore we obtain

a(pgz — Pgi» Pg, — pgl) = (“gz — Ug,, Pg, — pgl)

and by using the coercivieness of the bilinear form a we have

M pe, — Pall} < a(pe, = Pors Par — Pau) < llug, — g 11l g, — Pg, I[H,

therefore

1
"pgz = pgllv < ‘k‘"ugz —ugllu.

Next, taking into account inequalities (18) and (27) we obtain

1
IW(g2) = WigDlla < 57 11Pe, = Pallu

= 137 e — tala
< I I
=M 81 — 82llH,

that is, (26).

If we take v = p,, — p,, in the variational equality (20) for g we obtain

(25)

(26)

27



Convergence of Distributed Optimal Controls Problems

Now we are in the condition for proving other properties of the functional J.

Lemma 2.4.

219

(i) The application g € H — p, € Vy is strictly monotone. Moreover, we have

(Pe: — Pe» 82— 8) = |lug, —ug |3, 20, Vg1, 8 € H.

(ii) J is coercive or H-elliptic, that is,

(1=0)J(g2) +1J(g1) —J((1 —1)g2 + 1g))

t(l1—1)
= 5 lllug, — uy 1% + Mligz — g1ll3]
Mt(1 —1)
2z ——lg —al%, Vgi,g2 € H, Vte[0,1].

(iii) J' is a Lipschitzian and strictly monotone application, that is,

4 4 l
NJ'(g2) —J'(gDlu < (M + F) g1 — g2llu
and

(J'(82) — J'(81), 82 — 81) = Nug, —ug % + Mgz — g1ll%
> Mlg.—gll%, Vg1, 82 € H.

Proof. (i) We have

(Pg, — Pgi» 82 — 81) = (Pg,. 82 — 81) — (Pg,» 82 — 81)

= (ug, —24,C(82 — 81)) — (ug, — 24, C(g2 — 81))

= (ugz — Uy, C(g2 - gl))

= llug, —ug I3 =0, Vg1, g€ H.
(ii) For all g,, g» € H, ¢t € [0, 1] we get

1-0J(g)+tEg)—J((1—1t)g+1g1)

M
=(1-1) [%uug2 ~ 2l + —2—Ilgzlliz]
M
+t l:%llugl —zall% + —2-||81 Iﬁf]

M
— [%nua_,)gzm, ~zally + S =g + tglui,]

1 2 2 2
=3[ =Ollug, — zally + ¢ Nug, — zally — (1 — Dug, +tug, — zally

+ (1 = Mgll4 + Mg 13 — MII(1 — Dga + tg1ll%]

(28)

(29)

(30)

3D
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t(l—1¢)
=3 [ug, — ug, % + Mlig2 — 21113 ]

o Mt(1 —1)
- 2
(ii1) By using (18), (23) and (27) we have

g2 — gill3.

1 (g2) — J'(@DH < Ipg, — Pl + Mlig2 — g1llu
1
< (M + ﬁ) g2 — gillu
and

(J'(82) = J'(81), 82 — 81) = (pg, + Mgy — (pg, + Mg)), 82 — 81)
= (Pg, ~ Pg1 82— 81+ M(g2— 81,82 — 81)
= llug, — ug Iy + Mllg2 — g1l = Mllg2 — gill};,
that is, (30) and (31), respectively. O
We present an iterative algorithm in order to obtain g.,. For each p we define the
following sequence (g,) given by {7], [10]
8 € H (given, arbitrarily), g,.1 = (1 — pM)g, — ppy,, vn>0, (32

which will converge to gop for a suitable p.

Lemma 2.5. If p is chosen satisfying the inequalities

2M

0 e E—————
=P =M1y

(33)

then the algorithm (32) is strongly convergent in H to the optimal control g, of (9)
independently of go, that is,

Jim g, — gopllw =0, forany go€ H. (34)

Proof. The operator T: H — H defined by

T(g) =(1—pM)g— ppg (35)
is a Lipschitz operator, that is,

IT(€) — T@)lIlu < Vy@lg:— gillu, V81,8 € H, (36)
where y (p) is given by

1\2
y(p)=1-2Mp + (M + 25) 02, 37N
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because

1T (g2) — T(gI} = llgz — pJ'(g2) — &1 + J' (g%
=lg2— &% —20(g2—81,J(82) — J'(&1)
+ 0210 (82) — (g}
< g2 — g1l — 20Mllg2 — g1l

1 2
+ p? (M + F) g2 — gill%,

1 2
- [1 —2Mp + (M+ p) pz] g2 — g1l

Therefore T will be a contraction if and only if 0 < y(p) < 1, that is, inequality (33).
Moreover, the p and y optimals are given by

M =1 L (38
Po =M+ 102 YT M+1/2) e

3. Problem P, and Its Corresponding Optimal Control Problem
Letly,: Hx H—> R,Ly,: H—> Rand C,: H — V be defined by

Mo (g, h) = (Co(g), Cu(h)) + M(g, h), Vg, he€H,
Ly(8) = (Ce(8), 2a — Uoa), Vg € H, ' (39)
Co(8) = Uga — UG, Vge H,

where u,, is the unique solution of the variational equality (5), uq. is the unique solution
of (5) for g = 0 whose variational equality is given by

aa(uo,,, v) = Loa(v), Yv € V, Upg € V, (40)
with
Loa(V) =a/ bv dy -—f qudy, 41
r r,

and g, is a bilinear, continuous, symmetric and coercive form on V, that is,
aa (v, V) = Agll0lly, Vv eV, (42)

where A, = A; min(l, @) > O for all @ > 0 and A; is the coerciveness constant for the
bilinear form q; [19].

We can obtain similar properties to Lemma 2.1, following [12], [14], [15] and [18],
the proof of which is omitted.
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Lemma 3.1.

(i) Cq is a linear and continuous application.
(ii) Ty is linear, continuous, symmetric and coercive on H, that is,

M.(g,8) = Mgy, VgeH. (43)

(iii) L, is linear and continuous on H.
(iv) J4 can be also written as

Ja(8) = 3T1a(g, h) — La(8) + 3 lltoa — zall;, Vg € H. (44)
(V) There exists a unique optimal control gop € H such that
Je(8op,) = min Jo(g). (45)
geH

(vi) The application g € H — ugyq € V is Lipschitzian, that is,
1
"ugza_uglaz"V = ‘A—'"82_81"H9 VgthG H. (46)
(1

We define the adjoint state pg. as the unique solution of the following mixed elliptic
problem corresponding to (2) or (5), foreach g € H and a > O:

. apga apga
—APga = uga — 24 1N Q, ——aT o = apgav an o = 0, (47)
whose variational formulation is given by
ae(Pga, V) = (Uga — 24, V), YveV, Pga € v, (48)

where u,, is the unique solution of (5).
Now we obtain some properties of the functional J,.

Lemma 3.2, Leta > 0.
(1) The Gateaux derivative J, is given by
(J3(8), h) = (uga — 24, Ca(h)) + M (g, h) = Tla(g, h) — La(g),
Vg,h € H. (49)

(ii) The adjoint state pg, satisfies the following equalities:

(Pgas h) = (Uge — 2o, Ca(h)) = ao(pga, Cu(h)), Vg,h € H. (50)
(iii) The Gateaux derivative of J, can be written as

Jo(8) = pge +Mg,  VgeH. (51)

(iv) The optimality condition for problem (10) is given by J,(8op,) = 0 in H, that
is,

Pgma +Mgop, =0 in H. (52)
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Proof. (i) We have

1
?[-’a(g +1(f — &) — Ju(8)]

t
= 'i(ufa —Uga, Ufa — uga) + (uga —Zd,Ufa — uga)

M
M@ -+ (8. f )

and passing to the limit ¢t — 0, we obtain (49).
(ii) This results from the definition of p,, and taking into account that

a(Pgar Co(h)) = a(pga, Un — uo) = a(Pga, Un) — a(Pga, o) = (Pga, h). O
Remark 1. We note the double dependence on the parameter o for the optimal state

system u,,, o and the adjoint state Pgo, -
Let the operator W,: H — V C H be defined by

1
Wo(g) = ~—psar Vg € H. (53)
We have the following property:

Lemma 3.3. W, is a Lipschitz operator over H, that is,

1
|We(g2) — Wo(8DIlH < Y]

”gl—gZ"l'lv Vgl9gze H9 (54)

and it is a contraction for all M > 1/)2.

Proof. Ifwetake v = pg,q — P, o in variational equality (48) for g, and g, respectively,
by substracting them and by using the coerciveness of a, we have

Aq "sza - Pgm"z =< aa(pgza — Pgia> Pgra — Pg,a)
= (ugza — Uga> Pgra — Pgla)H

= "ugza - ugla"H"sza - pgla”H’

therefore
1
| Pg2a — Pgrally < A'_"ugza - ugla"H- 55)
a
Next, taking into account inequalities (46) and (55) we obtain

1
1Wa(82) — Wa (@Dl = 21| P2a — Peiallv

=< mllugza —Ugallu

1
MM

a

that is, (54). a

=

g — g2llu,
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Now, we prove other properties of the functional J,.

Lemma 3.4.

(i) The operator g € H — p,, € V is strictly monotone, that is,

(sza - pgla, 82 — gl) = "ugza - ugla"%[ > O’ Vgl’ 82 €H.

(i) Jy is coercive or H-elliptic, that is,

(1 —1)Ja(g2) + tda(g1) — Jou((1 — )2 +181)

t(l —1)
= '—‘2_—["ugza - ugla"%[ + Mg — gl”%{]
Mt(l —1)
2——5——”82_g1"%1, Vgl,SZGH, VtG[O, l]°

(iii) J! is a Lipschitzian and strictly monotone operator, that is,
a P: y P

I I l
I/, (g2) — J, (g lln < (M + —) g1 — &20lu, Vg1, 82 € H,

’
and

(J2(82) — J12(81), 82 — 81) = lUgye — Ugially + Mllg2 — g111%

> Mlig: — a1lly, Vg1, g2 € H.

Proof. (i) We have

(sza = Pga> 82 — gl) = (ugza —Ugas Ca(gZ — &1))

= ”ugza - ug;a"%[ >0, Vg1, 8 € H.
(ii)Forall g,,g, € H,t € [0, 1] we obtain
(1 —1t)Jo(g2) +tJa(g1) — Ju((1 —t)g2 +181)

M
=(1-1) [%”ugza —zally + —2—Ilg2||§,]
M
+t [%"“gm ~-zll% + 7"81"%,]

M
- [%llu(l—r)gz+g.a -zl + -2—||(1 —Dg+ tgl"%[]

t(l -1

= ———llluga ~ Uugally + Mllg2 — g1ll%]
M1 —t)

> —2-—"82 - gl"%[-

(56)

(57

(58)

(59)
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(iii) By using (46) and (55) we have
17,(82) = Jo (@)l < | Pgra — Porellu + Mlig2 — g1l

1
< (M + —;) g2 — gilla»
A’a

then J, is a Lipschitzian application. On the other hand we get
(Jo(82) — Jo(81), 82 — 81) = (Pgya + M8 — (Pgia + Mgy), 82 — 81)
= luga — ugallly + Mlig2 — g1ll%

> Mg —gill%,

and J is a strictly monotone application. O

Now, we prove the following result of convergence when a — oc.

Lemma3.5. Foralla >0, q € L3(I';), b € H'/*(T"\), we have the following limits:
(i) limg oo fluge — uglly =0,vg € H,

(i) limg_ o0 luoe — uolly =0, (60)
(iii) limg oo | pga — Pellv =0, Vg € H.

Proof. (i) If we take v = uge — u, in the variational equality (5), for g, a, witha > 1
(because @ — o0), following [18] and [19] we obtain

Mlluge —uglly + @ —1) | (uga —ug)?dy < ao(uge — g, Uge — ug)
ry

< Cl"uga —ugllv, (61)

with C; a constant independent of a. Next for large @ we obtain

C 2
@ luga — gl <=, ® @=D [ Gga—upPdy <L 62
A'l LN A'l
and we deduce that there exists w, € V such that
. (€)? 1

— akly in V, b - b)ldy < 0,

(a) uge we Wweakly In (b) rl(ugat )'dy < N (@—1) g
as o — 00, (63)

that is, w, € K and taking the limit of the variational equality (5) as @ — oo we have
a(wg, v) = Lg(v), YveVy, w,e€Kk, (64)

and, by uniqueness, we have w, = u,.



226 C. M. Gariboldi and D. A. Tarzia
Therefore, u,, — u, strongly in V as @ — o0 because of the following inequality:
Mlluga — uglly < Lg(uga — g) — a(ga, Uga — Ug).

For case (ii) we take g = O in (i).

(iii) In this case we take v = p,o — p, in the variational equality (48) for g, o and
following a similar method as before we obtain

A-l"pga - pg"%/ + (a — 1)/ (Pge — pg)2 dy < ao(Pge — Pg» Pga — Pg)
r,

=< C2"pga - pg"V,

with C; a constant independent of « . Next, for large o, we have

C (C2)?
@ lpga — Pelly < f ®) @=1) | (pga~pg)dy <=, (65
ry
and we deduce that there exists &, € V such that
(@) pga — &, weaklyinV,
(C)? (66)

(b) (Pga — pg)2 - 0, as a — 00,

dy £ ———
r ’ENE@-
that is, &, € Vp and taking the limit on the variational equality (48) for p,, we have
a(Eg’ v) = (ug — 2d» v)’ vv € VO’ {;_g € V()’ (67)
and, by uniqueness, we obtain & = p,. Therefore, taking into account the following
inequality,

Allpge — Py "2 < (Uga — Zd» Pga — Pg) — A(Pg> Pga — Pg)>

we have that p,, — p, strongly in V. a

4, Convergence of Problem P, and Its Corresponding Optimal Control as
a — 00

In this section we prove that the optimal control g, of problem (10) and its corresponding
adjoint state p,,. o (48) are convergent to the optimal control go, of problem (9) and its
corresponding adjoint state p,  (20), respectively, when the parameter « (heat transfer
coefficient on I'{) goes to infinity.

Theorem 4.1. Let M > 1/A2. Then we have:

() If pg,, and p,,, o are the corresponding adjoint states of problems (9) and (10),
respectively, then

al—i>nolo "pgq,ua — Pgyp lv = 0. (68)
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(ii) If gop and gop, are the solutions of problems (9) and (10), respectively, then
alirrgo 8op, — 8opll = 0. (69)

(i) If ug,, and ug, o are the corresponding solutions of problems P and P,,
respectively, then

lim JJug,, o — gy llv =0. (70)

Proof. We prove some preliminary results for the three cases.
Since gop, is the solution of problem (10), we have the following inequality:

M M
Mgy o —2ally + = lgop, 14 < Slluge — zally + 7ug||2 , VgeH,

then, taking g = 0, we have

M
2 2 1 2
Mgy o — 2ally + > l8op, s < 3 lltt0e — zally < Cs, Yo > 0,

where C; is a constant independent of parameter « because ug, is convergent when
a — 00. Therefore

gop,lu = Ca and llug, ollu < Cs, (n)

where C4 and Cs are constants independent of «.
Now, if we take v = u,,, o — ug,, in the variational equality (5), following [18] we
obtain, fora > 1,

)"l"ugopaa - ug(,,J "%/ + ((! - 1) (ugopaa - ug‘,p)2 d}’
Ty

< aa(ugq,aa — Ugps Ugog @ ugop)

= C6"ugq,ua - ugq)"V’

where C = Ce(gop, 4. Ug,,) is independent of c. Next, we have

Cs
2
(@) llugy,a —ug,lly < _)‘—vl_,

72)
b) @~ 1) fr (g0 — gy dy <

(Ce)?
Al ’

and therefore we deduce that

IneV suwchthat ug, o — n weaklyinV, (73)
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and because of the following inequalities,

0< [ (n—up)2dy < liminf f (g a — g)2dy =0,
Iy

r, a—>0o0

we obtain that n € K.
Next, if we take v = p, o — p,,, in the variational equality (48) we get

Al Peg,a = Penlly + (@ = 1) | (Pgoy.a — Pg) d¥
I
= aﬂl(pgopa“ ~ Pgop> Pgow,@ — pgop)

_<. C7||pgopua - pgop”V’

with C; = C7(Cs, p,,,). Next, we obtain

C
@) 1| Pgoya = Peoplly < 1{
(74)
(Cy)?
b @-1) f (Ppse = Pady < =2,
r, 1
and therefore we deduce that
3 €V suchthat p, , — & weaklyinV (75)

and by the following inequality,
0 [ &= pudy <timinf [ (ppeyu— pa)dy =0
ry a—=>0 Jr,

we obtain & € V.
Now we consider v € Vj and, taking into acount (73) and (75), from the variational
equality (48) we have

a,v) = — z4,0), Yve Vo, &€V, (76)

Next, from (71) we deduce that there exists f € H such that g,, — f weakly in
H. Therefore if we put v € Vj in the variational equality (5) and we pass to the limit
a — 00, we obtain

a(n,v) = (f, v)—f qudy, YveVy, nek. an
I

Now, taking into account Lemma 3.3 and the facts that go,,, — f weakly in H and
Pgw,a — & weakly in V, we have
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Therefore from the uniqueness of fixed point we have

1

8Bop = ~ 37 Pew in H, (79)

and then we obtain that f = gop, n = ug, and & = p, .
Moreover, from (75) and the following computation,

Ay "Pg%a = Pg "%/ =< aa(Pg%a — Pgopr Pgop,@ — Pgop)
= aa(pg%a, Pgp, @ — qu,) - a(pgopv Pgoa — pgq))
= (ugopaa — 2d» Pgopaa - Pgop) - a(Pgopo pgopaa - pgop)

we have (68).
From Lemmas 2.3 and 3.3 it results that

1 1
"gop,, — 8oplle = Hllpgq, - Pgopaa”H =< ;!'"Pgop - pgopaa"V

and therefore (69) holds.
Now we have

2
Ay "ugopaa —ug,lly < Qe (Ugy o — Ugos Ugy a — Ugy)
= Ao (Ugy ar Ugp,a — Ugy) — aq(ug,, Ugopa — Ugy)

= Lgopﬂa(ugopua - ugop) - a(ugopo Ugpa — ugop)

—a/ b(ug, o« —b)dy
r

= a(ug% sUg a — ugop) - a(ugop, Ugy a — “gop)

and taking into account (69) and the fact that u gop, — Ugy Strongly in V when @ — o0
because of (18), we get (70). a
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