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Abstract

We consider a steady-state heat conduction problem P, with mixed

boundary conditions for the Poisson equation in a bounded
multidimensional domain Q depending on a positive parameter o which
represents the heat transfer coefficient on a portion I of the boundary

of Q. We consider, for each « > 0, a cost function Jo and we formulate

boundary optimal control problems with restrictions over the heat flux q
on a complementary portion Iy of the boundary of Q. We obtain that

the optimality conditions are given by a complementary free boundary
problem in Iy in terms of the adjoint state. We prove that the optimal

control Qopq, and its corresponding system state uqopaa and adjoint

state Pgy,. for each a are strongly convergent to Qop> Uq0p and Pq,,
o

in I2(ry), HYQ), and HY(Q) respectively when a — ». We also
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prove that these limit functions are respectively the optimal control, the
system state and the adjoint state corresponding to another boundary
optimal control problem with restrictions for the same Poisson equation
with a different boundary condition on the portion I7. We use the

elliptic variational inequality theory in order to prove all the strong
convergences. In this paper, we generalize the convergence result
obtained in Belgacem et al. [3] by considering boundary optimal control
problems with restrictions on the heat flux q defined on I's and the

parameter o (which goes to infinity) is defined on T7y.

1. Introduction

We consider a bounded domain Q in R" whose regular boundary T
consists of the union of two disjoint portions Iy y Iy with meas(I7) > 0

and meas(ly) > 0. We denote with meas(I') the (n ~1)-dimensional

measure of I'. We consider the following two steady-state heat conduction
problems P and P, (for each parameter o > 0), respectively with mixed

boundary conditions:

. ou
Au=ginQ uly=>b, ~n I, = a (1
and
) ou ou
-Au = ginQ —ah: a(u - b) ——a—;L—I;-ZZ q, (2

where g is the internal energy in Q, b is the temperature on I for (1) and
the temperature of the external neighborhood of I for (2), g is the heat
flux on T, and o > O is the heat transfer coefficient of I} (Newton’s law
or Robin condition on T ). They satisfy the following assumptions:
1
geH=1%Q),qeQ=IL%Ty), be HZ(T). 3)
Problems (1) and (2) can be considered as the steady-state Stefan
problem for suitable data g, g and b [8, 17, 18, 20].
Let u, and gy be the unique solutions of the mixed elliptic problems
(1) and (2), respectively for each ¢ € @ and a > 0 whose variational

equalities are given by [9, 14] and [19]:
a(ug, v) = Ly(v), Vv e Vg, ug € K (4)
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and
Ao (Ugor V) = Lgq(v), YU e V, ugy €V, (5)

where
V=H"Q); Vy =fve V/v|,= 0} and K = vy + V,

for a given vy € V, vg |, = b, and
(& Wy = Lghdx; (@, M) = J; _aqndy, [, V)2 = Iruvdv, ©)
2 1
alu, v) = j Vu - Vudx; ay(u, v) = a(u, v) + afu, U)L2(r1)
o ,

Ly@) = (2, v)g = (g, V)gs Lgo(v) = Ly(v) + alb, v)p2(ry),
We consider ¢ as a control variable for the cost functionals
J: Q@ > Ry and J, : @ — R{ respectively given by
1 2 M, 2

J@) = g -zl + L1l Q

and
1 2 M, 2

To@) = $lige —2ally + L1, ®

where gd € H and M = const. > 0 are given.

We can formulate the following boundary optimal control problems
with restrictions [5, 8, 12, 15, 16]:

Find g, € Uy such that J(g,,) = min J(q) 9
quaﬂr
and
find q,p, € Uyg such that J,(qop, ) = min J,(q) (10)
¢ qeUgq

respectively, where U,y = {g € @ : ¢ > 0enTy} is the admissible control

set, a nonempty, closed and convex subset of @.

It is well known that the solution u,, is strongly convergent to Uq in

V for a given heat flux q defined on Iy as a — « [17, 18, 19]. The use of

the variational inequality theory in connection with optimization and
optimal control problems was done, for example in [1, 2, 4, 6, 9, 13] and
[16].
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In Section 2, we prove that the functional ¢ is coercive and Gateaux
differentiable on @ and J' is a Lipschitzian and strictly monotone
application on @. We also prove the existence and uniqueness of the
boundary optimal control with restriction g, for the problem (9) and we

give the corresponding optimality condition as a complementary free
boundary problem in terms of the optimal control g,, and the optimal

adjoint state Pq,, of the system.

Similarly, in Section 3, we prove that the functional J, is coercive
and Gateaux differentiable on @ and J{, is a Lipschitzian and strictly

monotone application on @, for each a > 0. We also prove the existence

and uniqueness of the boundary optimal controls with restrictions g,

for the problem (10) for each « >0 and we give the corresponding

optimality conditions as a complementary free boundary problem on T
in terms of the optimal control Qop, and the optimal adjoint state P, a

193
of the system.

In Section 4, we study the convergence when a — « of the boundary
optimal control problems with restrictions (10) corresponding to the state
system (2). We prove that the optimal state system Ugope & and the

o

optimal adjoint state Py, of problem (10) are strongly convergent in V
a

to the corresponding optimal state system Ug,, and optimal adjoint state

Pq,, for a boundary optimal control problem with restriction (9)

respectively when a — «. Finally, the strong convergence in Q of the
optimal controls g, of problem (10) to the optimal control gq,, of

problem (9) is also proved when o — .

In [3], it was considered a boundary optimal control problem with
I' = I and the Dirichlet control variable is the temperature b which is

defined in the same boundary, where the penalization parameter & = é

is given. In this case, the boundary optimal control is proportional to the
corresponding adjoint state. In the present paper, we generalize the
results obtained in [3] by considering a Neumann boundary optimal
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control with restrictions on the heat flux q on Iy and the parameter
a{z %) which goes to infinity is defined on a complementary boundary

portion Ij. In particular, our optimality conditions for optimal control

problems (9) and (10) are given by a free boundary problem for the
optimal control and its adjoint state on Iy, that is (30) and (49)

respectively, which are different to the proportionality between them
obtained in [3].

For distributed optimal control problems, the convergence o —
was proved in [9] by using a fixed theorem argument and in [10] by using
only the variational inequality theory.

2. Problem P and its Corresponding Boundary Optimal
Control Problem

Let C : @ - V| be the application such that
C(q) = uq - u’07 (11)

where u is the solution of the problem (4) for ¢ = 0 whose variational

equality is given by
alug, v) = Ly(v), Vv e Vg, ug € K 12)
with
Ly(v) = (g, v)g-

Let T1:@xQ - R and L:Q — R be defined by the following

expressions:

L(g) = (C(q), 24 —wo)y> Vq € Q-

We have that o is a bilinear, continuous and symmetric form on V and
coercive on Vjy, that is [14]:

A > 0 such that a(v, v) > A v [, Vv € Vp. (14)
Lemma 1. We have
(1) C is a linear and continuous application.

@) 11 is a bilinear, continuous, symmetric and coercive form over @,
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that is,
Mg, @)= M|q . vq € Q. (15)
(i11) L is linear and continuous on @.

(iv) JJ can be also written as
J(@) = 5TI@ @) - @)+ Lo - 24 I, va < @ 16)
(v) J is a coercive functional over @, that is
(L -t)J(ga) + tJ(q1) - J((A - t)qq +tqy)

_ i1 -1)

2 2
2 [”qu - uql ”H + M" gz —q “Q]

M1 -t
> —(?—) las - a1 I3, Va1, a2 € @, vt < [0, 1]. (17

(vi) There exists a unique optimal control Qop € @ such that

J(Qop) = q?li/nd J(q)- (18)

Proof (i)-(iii). It follows as [11] and [15]. In particular, we have
Uq = Up + 24, where ug is the unique solution of the variational equality

(12) and zq4 1is the unique solution of the following variational equality:
a(zq, v) = (g, U)Q, Vv eV, 24 € V.
Moreover, we have
Ueygy+eage = Cllgqy + Callq, + (1= ¢y ~co)ug, Vqy, g2 € Q, Vey, ¢p € R
(iv)-(v) It follows from the definition of <J, [T and L and a similar way
that [9].
(vi) It follows taking into account (i)-(v) [9, 14, 15].

We define the adjoint state pq corresponding to (1) for each q € @,

as the unique solution of the following mixed elliptic problem.

b
29| ,=0 (19)

—Apg = ug —2qIn QY pg | n="0 i

whose variational formulation is given by

a(pg, v) = (g — 24, V)y, Yv € Vj, pg € V. (20)
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Lemma 2. We have
(i) The adjoint state p, satisfies the following equalities:
(CM), uqg - 24)y = alpg, C(n)) = ~(pg, Ng-
(i) J is a Gateaux differentiable functional and J' is given by
(J'(a), n=q) = (uy —uq, ug —24)y + Mg, - a)g
=Illg.n-q)- Ln-q). Vg, n € Q.
(i1i) The Gateaux derivative of J can be written as
J'(q) = Mq - p,, Vq € Q.
(iv) The optimality condition for the problem (9) is given by
(Mqop — Pgops M= doplg = 0, VN € Ugg, Qop € Ugq-

119

1)

(22)

(23)

(24)

Proof (i). It follows from the definition of p, and taking into account

that

a(prp C)) = a(pq’ Uy — ugy) = a(pq’ un) - a(pq, up) = _(pq7 n)Q-

(i1) For ¢ > 0, we have

%[J(CI +tn - q)) - J(q)] = %(un —Ug. Uy — Ug)g + (g ~ Zg, Uy — Uy

+ Mg, n-q)g +%(ﬂ—q, n-a)g
and passing to the limit ¢ — 0%, we obtain (22).
(iii) From (i) and (i), we have that Vn € @:
(J'(@), n) = Tlg, n) - L(n)
= M(q, n)g +(CM), uqg - 2q)y = (Mg - pq, Mg,
therefore J'(q) = Mq - pg.
@v) It follows from (i1), [14] and [15].

Now, we obtain some useful estimations.

Lemma 3 (i). The application q € @ —> Ug € V s Lipschitzian, i.e.,

v
lug, —ug Iy < ‘Lf—””qz - qlg. Va1, 92 € @,

where vy is the trace operator.

(25)
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(1) For all q1, 99 € @, we have
1
1Pgy = Pay by < 2 legy — iy - (26

(ii1) The application q € @ — p, € Vy is strictly monotone. Moreover,

we have
2
lug, = ug Iy = (Pgy = Pgy» 92 — A1)g- Va1, 92 € Q. (27)
2 1 2 ] Q

v) J' is a Lipschitzian and strictly monotone application, that is

| J(qz) - J (@)l < [M . Y}?ZHZJ” 71 -4z llg. Va1, 92 € @ (28)
and
(J'(az2)-J(@1), a2 ~q1) = gy = ug, ”?; + M| gz - q “z)
2 Mlaz -q "2) Va1, q2 € Q. (29)

Proof (i). This results from the following inequalities:

2
v < alugy —ug, ugy —ug) = ~(ug, — g, g - @ )o

<llaz - a1 llgleg, — g llg <laz —ar lighvo Mllwg, — gl

k||1Lq2 - Uq,

where yg is the trace operator.

(11) This follows as [9].

(iii) If we take v = Dg; — Pg, € Vo 1n the variational equality (4) for
Uq

. and u,, respectively, then we obtain

*(p% “Pg» 92 01 )Q = a(qu = Pqy» Ugy — Uq,)
= a(pgy, g, — g, )~ alpgy, Ugy — Ug;)
= (ug, =24, Ug, —Uq )y — (g, ~ 24, Uqy — Uy v
= gy — g I Va1, a2 € Q.
(iv) By using (23), (25) and (26) for all q;, go € @, we have
| J(a2) - (@) g < Pgy — P llg + Mllaz — a1 lp

2
Y
< [M +L§LJH a2 -l
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and
(J'(az) - J'(@1). a2 — a1) = (-pg, + Mag - (-pg, + Ma1), g2 - q1)q
= (Pg, — Pgy> 92 —q1)g + M(a2 a1, 92 —aq1)g
= llugy — ug, IFr + Ml as - ailly = M| az - a1l
that is (28) and (29) respectively.
Theorem 4. Let q,, € Ugq be q,p is optimal control in Q if and only
if qop € Q@ satisfies the complementary conditions

Qop 2 0 on Iy, Mqop — pg, 20 on Ty, qop(Mq,y, - pqop) = 0 on Iy. (30)

Proof. From the optimality condition (24), taking n = 0 € U,y and

N = 2q,, € Uyq, we obtain

(Mqu - pqop; QO{))Q =0
next
(MQOp ~ Pqop r|)Q 2 (MQOp ~ Dqop> qu)Q =0,Vne Uy

theréfore,
Mq,p, ~ Pgop 2 00on Ty

and since g,, 2 0 on I';, we obtain

(Mqop — Pgop)qop = 00nTy
next, the thesis holds.

Conversely, Vn € U,y we have
(M-.op = Pgop» M= Qoplgp = Mdop — Pgops Mg ~ (Maop ~ Pgops doplg
= (Mgep ~ Pgops Mg 2 0
therefore, Qop is the optimal control in Q.

Corollary 5. If we take the boundary optimal control problem (9)

without restrictions (ie., Ugg = @), then we obtain that q,, = %pop.

This relation is of the type obtained in [3].
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3. Problem P, and its Corresponding Boundary Optimal

Control Problem

Let [T, :@xQ > R Ly, : @ »> R and C, : @ > V be defined by
Mo (g, n) = (Coq), Co))y + Mg, n)g, Vg, n € @
Ly (q) = (Colq), 2g —uoa )y Y9 € @
Co(q) = gy ~ugq. Vq € @, (31

where w4, is the unique solution of the variational equality (5), ug, is
the unique solution of (5) for ¢ = 0 whose variational equality is given by
Ay (o> V) = Logv), Vo e V, up, € V (32)

with
Lo, (v) = alb, U)L?(rl) + (g, U)H (33)

and a, is a bilinear, continuous, symmetric and coercive form on V; that
is

ag (v, ) 2 Ao V|5, YU e V, (34)
where A, = Ay min(l, a) > 0 for all o >0 and X; is the coerciveness

constant for the bilinear form a4 [19].

We can obtain analogous properties to Lemma 1, following [9], [14]
and [15] which proof is omitted.

Lemma 6. We have, for each o > 0, the following properties:

@) C, is alinear and continuous application.
@) 1, is a bilinear, continuous, symmetric and coercive form over @,

that is
Mula, ) = Mg va € Q. (35)

(i) L, is linear and continuous on Q.

(iv) J, can be also written as

74(@) = 5Tla@ 0) - La(@)+ 3 w0 —24 [} Va € @ (36)
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(v) J is a coercive functional over Q, that is

(1-t)Jo(qz) +tdo(q1) - I (A ~t)go +1tqy)
(1

-1 2 2
Mgy~ vally + Mlas a 2]

M1 -t 5
5 (2 L 15 a1, as € @ vt < [0, 1] 37)

(vi) There exists a unique optimal control dop, € Q such that

J = min J,(q). 38
«(@op,, ) nin «(@) (38)

We define the adjoint state p,, as the unique solution of the

following mixed elliptic problem corresponding to (2) or (5) for each
qge® and o > 0.

. Pgu Py
—qua = u’th - Z2q 1IN Q; _erlz (qua; 'aTerZ 0 (39)

whose variational formulation is given by
Ao (Pgos V) = (Ugy = 24, V), Y0 eV, pgy €V, (40)

where u,, is the unique solution of (5).

qa

Remark 1. We note the double dependence on the parameter o for
the optimal state system Ugyp, o and the optimal adjoint state Pq, o

Now, we will obtain some properties of the functional J, .
Lemma 7. For each fixed o > 0, we have
(i) The adjoint state p,, satisfies the following equalities:
(Ugo = 20> CaMy = a(Pgar CaM)) = ~(Pgos Mg, ¥4, 1 € Q.
(i1) The Gdateaux dertvative J|, is given by
(Jal@), M) = (uge = 24 Cay + M(q, n)g

=g (g, 1) - Ly(q), Yq, n € Q. (41)

(ii1) The Gateaux derivative of J, can be written as

Jo(q) = Mq - pyy, ¥q € Q. 42)
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(iv) The optimality condition for problem (10) is given by
(MQOpa ~ Pgopya> N~ 4op, )Q 20, Vne Uy, op, € Ugqa- (43)

Proof. (i) This results from the definition of py, and the following

equalities:
aa(pqow CaM) = ay (pqav Une — Uoo )

= Qg (pqou una) - a(x(pqa’ Uge ) = "'(pqo(v U)Q'

(11) We have
1
z’ [J(x(q + t(T] - Q)) - JQ(Q)]
_t
= E(uﬂa — Uge> U~ Uga ) + (Uga = 2d> Una — Uga g
Mt
+ Mg, n-q) + 5 (M -a n-a)g

and passing to the limit ¢ — 07, we obtain (41).
(ii1)-(iv) It follows in similar way that Lemma 2.
Lemma 8. For fixed o > 0, we have
(1) The application g € @ > w4, €V isa Lipschitzian operator, that
is
_ < lvoll _ W 44
“u'qgoc Uga ”V Y ” ga —qq "Q» q1, qs € @. (44)
08
(1) For all q1, 9y € @, we have
< 1
||pq2a ~ Pqja ”\ s K“uqza ~ Uqa ”1—1
(i11) The operator q € @ — Pga € V' is strictly monotone, that is
2
‘(pqza =~ Pgyos 42 ~ QI)(Q = ““’qza ~ Ugya ”H 20,VYqy. 9y € @ (45)

(iv) J, is a Lipschitzian and strictly monotone operator, that is

2
| Jelae) = Jolar) [, < M+M las —a1 lp. Va1, 92 € @  (46)
? 22 Q

o
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and
(Iilaz) - Tal@). a2 ~ @) = gy ~ gl + Mgz - a %
> Mgz - a1 “2} vq;, g2 € Q- (47
Proof (i). Its result from the following inequalities:
halltigea — Uga “%/ < g (tgyq — Ugar Uqua ~ Uga)
<lvo M az — a1 lglitgy — g llv
with yq the trace operator.
(i) Its follows from
ralPage — Pagelt < @o(Pgse = Paga- Pasa ~ Paye)
= (Ugya ~ Ugia» Pgorr ~ Payr )u
< ttgyn = tgre Il Page = Payacly-

(iii) We have that

'_(pqza ~ Pqa> 92 ~ 41 )Q = (uq2a — Ugyas Ca(QZ -4 ))H

2
= ”qua ~Ugqa "H >0, Vqp, g € Q- (48)

(iv) By using (i) and (ii), we have
| 74 (a2) - Tol@) lg < 1Pgpe — Pyl + Mllaz — a1 g

2
Y
$[M+H-£,‘i}“%—<h lo

o

therefore, J/, is a Lipschitzian application. On the other hand, we get

(I, (a2) - Jular). a2 —a1)

= (Dgg + Mas = (Pgo + M), 42 — 1)
2 P 2
= Jugoe — Ugally + Mlg2 — @ % = Mgz - a1 lig

and J}, is a strictly monotone application.
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Theorem 9. Let Qop, € Uy Qop, is optimal control in @ if and only
if Qop, € @ satisfies the complementary conditions

Qop, 2 O0onTly, Mgy, —pq, o 20o0nly,

0P
Qop, (Mqopa - pqopaa) =0onTy. (49
Proof. It follows in similar way to the one given in Theorem 4.

Corollary 10. If we take the boundary optimal control problem (10)
without restrictions (i.e., Uyq = @), then we obtain that g, o = % Popya

for each o > 0.

4. Convergence of the Problem P, and its Corresponding

Optimal Control as o — «©

1
Theorem 11. For all o >0,q9€ @, be H2([}), we have the

following limits:
) O}grgo”uqa ~uyly =0, Vg e @

() lim Jugg - uglly = 0
i) lim 1Pqe — Pglly =0, Vg € Q. (50)
Proof. (i) If we take v = uyy - Uq 1n the variational equality (5), for

g, a with o > 1, in similar way that [9] and [19], then we obtain

2
M ”“’qa —Uq ”V +(a - 1) (uqa ~Ugs Uga — uq)L2(r1)

IN

Ao (Uge —Ugs Ugy = Uq)

*a(uq: Uge — u'q) + (Q) Uge ~ u’q)H -(q, Ugo — u'q)Q

IA

Cy ” Ugy — Uq ”V

with C; a constant independent of a. Next, for large o, we have

2 _ Gy
”uqa —Uq ”V < ’f{
and

C 2
(o =) (ugy — Ug, Uga — Uq )Lz(rl) < (761)
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therefore, we deduce that there exists w, € V' such that

Ugg—wq Weakly in V
and

(gg = b, gy — b)p2 <£1—)?———)0 - ®
qo » Wao L"(l“l)—}\l(a_l) as o

next, w, € K and taking the limit in the variational equality (5) when
o —> o, we have
a(wg, v) = Lg(v), Vv e Vo, w, € K
and by uniqueness, we have w, = uq.
Therefore, wg, —> uq strongly in V as o — ® because of the
following inequality:
2
}‘lnuqa —Uq "V < Lq(uqa - uq) - a(uq’ Ugo — Uq )
For the case (ii), we take g = 0 in (i).
(iii) In this case, we take v = pg, — P, in the variational equality (40)
for g and a, following a similar method as before, we obtain
2
Xl"pqa — Pyq ”V + (OL -1) (pqa — Pgs> Pga ~— Pq )Lz(rl)
< aa(pqa — Pg> Pga — pq) £ C2"pqa — Pq "V
with Cy a constant independent of .. Next, for large o, we have

2 _ Gy
“pqa - pq ”V < 'E

and

(Co)?
(o -1) (pqa — DPqg> Pga — pq)Lz(rl) < ’fT

therefore, we deduce that there exists gq e V such that
Pga — &q weaklyinV

and

(Cz)z
_ - <—=" - 50 o —>
(5 qo. ~ Pq> Pqga pq)Lz(I‘l) o 1) as
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that is §, € Vj and taking the limit on the variational equality (40) for
Pga» We have

a(Ey, v) = (ug — 24, v), Vv e Vy, &, € V)
next, by uniqueness, we obtain £, = p,. Therefore, taking into account
the following inequality
MlPga = Pl < (Uge = 2d. Pao = Po)br — UPgs Pgo = Pg)-

we have that Pga = Pg strongly in V.

Now, we will prove that the optimal control g, of problem (10) and
its corresponding optimal adjoint states P and optimal system states
Ugyy o Bre convergent to the optimal control g,, of problem (9) and its

corresponding optimal adjoint state Pq,, and optimal system state gy,

respectively, when the parameter o (heat transfer coefficient on I7) goes
to infinity.
Theorem 12 (1). If Pq and Pq, o are the corresponding adjoint
op P
state of the problems (9) and (10) respectively, then
1 g,y o~ Payy ly = O (51)
i) If dop and Qop, are the solutions of the problems (9) and (10)
respectively, then
JT@[[QO})Q —Qp ”Q = 0. (52)

(i) If gy, and Ugy, o aTe the corresponding solutions of the prob.2m
o

P and problem P, respectively, then

N &

Proof. Since Qop, is the solution of the problem (10), we have the

following inequality:

1 2 M 2 1 2 M 2
Mgy~ 2al + 2 1aop, 1B < 3 lutge ~ 24l + 2ol a 2, va < &
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taking g = 0, we have

1 2 M 2 1 2
§”uqopaa ~zqllg + "2—||qopa ”Q < §||u0a - 2qlly = C3, Vo > 0,
where C3 is a constant independent of parameter a because ug, is
convergent when a — «. Therefore,
”qopa HQ < C4 and ”uqopaa"H < Cs, (54)
where C4 and Cj are constants independent of a.

Now, if we take v =u - Ug,, in the variational equality (5),

Qope ™

following [9] and [19], we obtain for o > 1:
2
kllluqopaa - Uq,, Iy + (e -1) (uqopaa Uy Ugyp o ™ gy, )Lz(l‘l)
S Qg (uqopaa h qup ’ u‘]opaa B LLqu) < C6"uQOpaa N u‘lop “V ’
where Cg = C4(qqp, &, Uy, I vo [) is independent of a. Next, we have

G

gy, o = tag, I < w (55)
and
(o)
(o = 1) (g, o = Uqy,» tag, o ~ Uay 2 < A
therefore, we deduce that
3In € V such that Uggp o = 1 weakly in V (56)

and because the following inequalities:
0< (n - u'Qop’ n- qup )Lz(rl)

< lim inf(u -Uu, , U -u 2 =0,
a—>® ( Qope,* Qop’ “dope* 9op )L ()

we obtain that n € K.
Next, if we take v = Pq,, o — Pg,, In the variational equality (40), we
OPg, op
get

2
}"l"pq(,paa - pQOp ”V + ((x - 1) (pqopaa - pqop ’ pqopaa - pqop )Lz(rl)

< 204 (qupaa - pqop s qupua - pqop) < C7"pqop(,_a - pqop ”V
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with C; = C;(Cj5, Py, ). Next, we obtain

e _ C7
”p‘hpua B p(Iop “V S -): (67)

and

(o 1)( 2y <
o - pQOpua - p‘?op’ pQOpaa - pQOp )L“(rl) - M

therefore, we deduce that

3¢ € V such that Pggp a = ¢ weakly in V (58)
o

and from the following inequalities:

0 < (§ - Pgy,» & ~ Pa,y )12(ry)

< llgl_)lgf(pqopaa - pqopf pqopaa - pqup )L2(rl) = 0)

we obtain § € V.
Now, we consider v € V and taking into account (56) and (58) from
the variational equality (40), we have
alE, v) = (m-2z4,v), Vve Vy, & eV (59)
Next from (54), we deduce that there exists f e @ such that

Qop, — f weakly in Q. Therefore, if we put v e V; in the variational
equality (5) and we pass to the limit o — o, we obtain
am, v) = (g, v)y ~(f, v)g, Vv e Vp,ne K.
Now
a(n,v) = Ls(v), Vv e Vo, ne K (60)

and from the uniqueness of the solution of the variational equality (4), we

have
n = uf. “61)

On the other hand, from (59), (61) and the uniqueness of the solution
of the variational equality (20), we get
€ = py.
Now
Jot(Qapa) < J(x(f*): Vf* € Uad
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next
1 2 My .2 1 2 My e
T = Sy - zally + 201 = S za by
< lim inf J;, (ggp, ) < lim inf Jo(f*) = lim J (f")
o —>0 oL—>0 oL—>0

= J(f*), Vf* (S Uad
and from the uniqueness of the optimal control problem (9), we obtain
that f = qop-
Therefore, n = u; = Ug,, and § = py = Pq,,-
Moreover, from (58) and the following computation:
2
7Llllpqwmm ~ Py, "V < ay (pqopaa = Pqyp> Pqgy o~ pqop)
= Qg (pqopaow p(lopaa - p‘Iop) - a(p%p , onpaa - pqop)
= (uqopaa ~2d> Pqg, o ™ Pagy ) - a'(pqop s Pgop, @ ™ Pagy, ).
we have (51).
From the optimality conditions (24) and (43), we deduce that
(M(qu —dop, )+ (pqopaa ~ Dq,, ), Qop, ~ qu)Q 20
now

2
M”qopa —Aop ”Q £ ”pqopaa ~ Pqqp "Q"qopa ~Gop ”Q

next

Yo
HQOpa - qu "Q = “ M " ”pquaa - pqop "V

and therefore, (52) holds.

From (25), we have

Iy

ol
Hu"?opOL B u‘?op ”V < y IIQOpa ~Qop "Q

and taking into account (52), we get (53).
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