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Abstract

We consider a steady-state heat conduction problem P. with mixed

boundary conditions for the Poisson equation in a bounded

multidimensional domain n depending on a positive parameter a which

represents the heat transfer coefficient on a portion 1-1 of the boundary

of 0. We consider, for each a > 0, a cost function Ja and we formulate

boundary optimal control problems with restrictions over the heat flux q

on a complementary portion í2 of the boundary of S2. We obtain that

the optimality conditions are given by a complementary free boundary

problem in F2 in terms of the adjoint state. We prove that the optimal

control gola and its corresponding system state
uqopa

a and adjoint

state
pgopaa

for each a are strongly convergent to qop„ ugop and pgop

in L2(r2), H1(S2), and H1(S2) respectively when a -> m. We also
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prove that these limit functions are respectively the optirnal control, the

system state and the adjoint state corresponding to another boundary

optimal control problem with restrictions for the same Poisson equation

with a different boundary condition on the portion 1'1. We use the

elliptic variational inequality theory in order to prove all the strong

convergences. In this paper, we generalize the convergente result

obtained in Belgacem et al. [3] by considering boundary optimal control

problems with restrictions on the heat flux q defined on F2 and the

parameter a (which goes to infinity) is defined on 1-1.

1. Introduction

We consider a bounded domain S2 in R° whose regular boundary F

consists of the union of two disjoint portions Fi y r2 with meas(I'1) > 0

and meas(F2) > 0. We denote with meas(F) the (n -1) -dimensional

measure of T. We consider the following two steady-state heat conduction

problems P and Pa (for each parameter a > 0), respectively with mixed

boundary conditions:

Au =ginS2 u1 ,1=b, -0u(r2=q
en

and

(1)

-Du = gin12 -u(r = a(u - b) - eu lr2= q, (2)
en 1 en

where g is the internal energy in S2, b is the temperature on Fi for (1) and

the temperature of the external neighborhood of F1 for (2), q is the heat

flux on r2 and a > 0 is the heat transfer coefficient of Fi (Newton's law

or Robin condition on I'1 ). They satisfy the following assumptions:

1

gEH=L2(S2),geQ=L2(r2),bEH2(F1). (3)

Problems (1) and (2) can be considered as the steady-state Stefan

problem for suitable data q, g and b [8, 17, 18, 20].

Let uq and uqa be the unique solutions of the mixed elliptic problems

(1) and (2), respectively for each q E Q and a > 0 whose variational

equalities are given by [9, 14] and [19]:

a(uq, u) = Lq(u), Vu E Vp, uq e K (4)
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and

, v) = Lga(v), du E V, Uqa e V, (5)

where

V = Hl(Q); Vo = {v E V/v 1r1= 0} and K = v0 + Vo

for a given u0 E V, u0 ir-1= b, and

uvdy,(g, h)H = $ ghdx; (q, 11)Q = J g11dy, (u, v)L2(r ) = J 6)1
r ri

a(u, u) = fo Vu -Vvdx; a,,, (u, u) = a(u, u)+a(u, v)L2(r-1)

Lq(u) = (g, v)H - (q, v)Q; Lga(v) = Lq(u) + a(b, v)L2(r1)•

We consider q as a control variable for the cost functionals

J : Q - Rp and Ja : Q -> Rp respectively given by

J(q) = 2¡¡uq -ZdlIH +M11g11Q (7)

and

Ja(q) = 2 Iluga - zd1IH + 2 II q IIQ, (8)

where zd e H and M = const. > 0 are given.

We can formulate the following boundary optimal control problems

with restrictions [5, 8, 12, 15, 16]:

and

Find q0 E Ua,d such that J(gop) = min J(q)
geUad

(9)

find q0 E Uad such that Ja(gopa) = min Ja(q)
gEUad

(10)

respectively, where Uad = {q c= Q : q >_ 0 en F2 } is the admissible control

set, a nonempty, closed and convex subset of Q.

It is well known that the solution uqa is strongly convergent to uq in

V for a given heat flux q defined on r'2 as a -> oo [17, 18, 19]. The use of

the variational inequality theory in connection with optimization and

optimal control problems was done, for example in [1, 2, 4, 6, 9, 13] and

[16].
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In Section 2, we prove that the functional J is coercive and Gáteaux

differentiable on Q and J' is a Lipschitzian and strictly monotone

application on Q. We also prove the existente and uniqueness of the

boundary optimal control with restriction qop for the problem (9) and we

give the corresponding optimality condition as a complementary free

boundary problem in tercos of the optimal control qop and the optimal

adjoint state pq0 of the system.

Similarly, in Section 3, we prove that the functional Ja is coercive

and Gáteaux differentiable on Q and Já is a Lipschitzian and strictly

monotone application on Q, for each a > 0. We also prove the existente

and uniqueness of the boundary optimal controls with restrictións g0pa

for the problem (10) for each a > 0 and we give the corresponding

optimality conditions as a complementary free boundary problem on F2

in tercos of the optimal control gopa and the optimal adjoint state pqo, za

of the system.

In Section 4, we study the convergente when a -* x of the boundary

optimal control problems with restrictions (10) corresponding to the state

system (2). We prove that the optimal state system uqP
oa

a and the

optimal adjoint state pgopaa of problem (10) are strongly convergent in V

to the corresponding optimal state system ug0p and optimal adjoint state

pg0P for a boundary optimal control problem with restriction (9)

respectively when a -+ o,-. Finally, the strong convergence in Q of the

optimal controls gopa of problem (10) to the optimal control qop of

problem (9) is also proved when a -* c.

In [3], it was considered a boundary optimal control problem with

1' = F1 and the Dirichlet control variable is the temperature b which is

defined in the same boundary, where the penalization parameter E = 1

is given. In this case, the boundary optimal control is proportional to the

corresponding adjoint state. In the present paper, we generalize the

results obtained in [3] by considering a Neumann boundary optimal
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controll with restrictions on the heat flux q on r2 and the parameter

a^= 1 J which goes to infinity is defined on a complementary boundary

portion FI. In particular, our optimality conditions for optimal control

problems (9) and (10) are given by a free boundary problem for the

optimal control and its adjoint state on U2, that is (30) and (49)

respectively, which are different to the proportionality between them

obtained in [3].

-^ coFor distributed optimal control problems, the convergente U.

was proved in [9] by using a fixed theorem argument and in [10] by using

only the variational inequality theory.

2. Problem P and its Corresponding Boundary Optimal

Control Problem

Let C : Q -* Vo be the application such that

C(q) = uq - uo, (11)

where uo is the solution of the problem (4) for q = 0 whose variational

equality is given by

a(u0, u ) = L0(v), dv c= Vo, uo e K (12)

with

Lo(v) = (g, v)H.

Let fI : Q x Q --* R and L : Q -> IR be defined by the following

expressions:

TI(q, u) = (C(q), C(1))H + M(q, ii)Q, Vq, il E Q (13)

L(q) = (C(q), Zd - up)H, Vq e Q.

We have that a is a bilinear, continuous and symmetric form on V and

coercive on Vo, that is [14]:

37v > 0 such that a(v, v) >_ ^,11 u 11v, Vv E Vo. (14)

Lemma 1. We have

(i) C is a linear and continuous application.

(ii) II is a bilinear, continuous, symmetric and coercive form over Q,
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II(q, q) ? M il q IIQ' Vq E Q. (15)

(iii) L is linear and continuous on Q.

(iv) J can be also written as

J(q) =

2
fl(q, q) - L(q ) + 2 11 u0 - zd II Ñ, dq e. Q. (16)

(v) J is a coercive functional oven Q, that is

(1 - t)J(q2) + tJ(q1) - J((1 - t)q2 + tq1)

= t(12
t)

[Il ug2 - Uq1 II H2 2+ MII q2 - q1 IIQ]
Mt(1 - t)

E Q b't e [0 1]- gI I g IIQ qdg , .,2 12 1, 2,

(vi) There exists a unique optinial control q0 E Q such that

J(q0) = min J(q).
geUad

(17)

(18)

Proof (i)-(iii). It follows as [11] and [15]. In particular, we have

Uq = u0 + zq, where u0 is the unique solution of the variational equality

(12) and zq is the unique solution of the following variational equality:

a(zq,u)=-(q,u)Q,VVEVO,zq EVO.

Moreover, we have

ucig1+c9g2 = c1ug1 + c2ug2 + (1 - cl - c2)u0, dq1, q2 E Q, Vc1, c2 E R.

(iv)-(v) It follows from the definition of J, Tl and L and a similar way

that [9].

(vi) It follows taking into account (i)-(v) [9, 14, 15].

We define the adjoint state Pq corresponding to (1) for each q e Q,

as the unique solution of the following mixed elliptic problem.

a
Apq = uq - zd in S2; Pq I r1= 0;

ng
r9= 0 (19)

whose variational formulation is given by

a(pq, u) = (uq - zd, v)H, dv E VO, Pq E VO. (20)
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Lemma 2 . We have

(i) The adjoint state pq satisfies the following equalities:

(Q11), uq - Zd)H = a(Pq , C(rt)) = -(Pq, i1)Q . (21)

(ii) J is a Gáteaux differentiable functional and J' is given by

(J'(q), Ti - q) = (u11 - uq, uq - zd)H + M(q, Tl - q)Q

= [1(q, Tl - q) - L(I - q), Vq, rl E Q. (22)

(iii) The Gáteaux derivative of J can be written as

J'(q) = Mq - pq, Vq E Q. (23)

(iv) The optimality condition for the problem (9) is given by

(Mgop - Pgop , rl - qop)Q -> 0, drl E Uad , qop E Ud • (24)

Proof (i). It follows from the definition of Pq and taking into account

that

a(Pq, C(11)) = a(pq, u, - u0) = a(pq, u,) - a(pq, u0) = -(Pq, rl)Q.

(ü) For t > 0, we have

[J(q + t(rl - q)) - J(q)] = 2 (u1 - uq, u,^ - uq)H + (uq - zd, u,^ - uq)H

+ M(q, TI - q)Q + Mt (rl - q, rl - q)Q

and passing to the limit t --> 0+, we obtain (22).

(iii) From (i) and (ii), we have that Vil e Q:

(J'(q), rl) = TT(q, rl) - L(T1)

= M(q, rl)Q + (C(r1), uq - Zd)H = (Mq - Pq, rl )Q ,

therefore J'(q) = Mq - pq.

(iv) It follows from (ü), [14] and [15].

Now, we obtain some useful estimations.

Lemma 3 (i). The application q e Q -3 uq e V is Lipschitzian, i.e.,

II ug2 - uq1 IIv < II II Ilg2 - qt IIQ, Vql, q2 E Q, (25)

where 70 is the trace operator.
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(ii) For a.ll ql, q2 E Q, we haue

II Pq2 - Pql II V < 1 Il uq2 - uq1 II H (26)

(iii) The application q E Q --> Pq E Vo is strictly monotone. Moreouer,

we have

= -(P42 - Pql , q2 - ql)Q, Vql, q2 E Q.II uq2 - uq1 l1
2
211

(iv) J' is a Lipschitzian and strictly monotone application, that is

(27)

2 "

II J'(q2) - J'(ql) IIQ M + II ro II II ql - q2 IQ, Vql , q2 E Q (28)
2

and

(J'(q2) - J '(q,), q2 - q1) = II uq2 - uql II H + MI¡ q2 - ql II Q

> Mil q2 - ql II2> Vql, q2 E Q. (29)

Proof (i). This results from the following inequalities:

?,Ml u42 - uq1 I1V `- a(1¿g2 - uql , uq2 uql) _ -(uq2 uq1 , q2 ql )Q

II q2 - ql IIQIIu42 uq1 IIQ < II q2 - ql IIQII Yo II II uq2 - uql IIV,
where yo is the trace operator.

(ii) This follows as [9].

(iii) If we take u = pql - p92 E Vo in the variational equality (4) for

uq1 and uq2 respectively, then we obtain

-(P42 - Pql , q2 - ql)Q = a(pg2 - pql , u42 - uql )

= a(Pg2 , uq2 - uq,) - a(pg1 , uq2 - uq1 )

uq2 - zd, uq2 - uql )H - (iugl - zd, uq - u

= l uq2 - uq1 11 21' Vql, q2 E Q.

(iv) By using (23), (25) and (26) for all ql, q2 E Q, we have

II J'(q2) - J'(ql) IIQ < IIPg2 - Pq1 IIQ + Mil q2 - ql IIQ
Z

M+ iLY0211 11 q2- q, IIQ
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and

(J'(q2) - J'(qi ), q2 - q1) = (-Pq2 + Mq2 - (-P41 + Mql ), q2 - q1 )Q

= (P41 - P42 , q2 - q1 )Q + M(q2 - ql, q2 - q1)Q

= II uq2 - uq, II H +MII q2 - ql
11 2 >- MII q2 - qi IIQ,

that is (28) and (29) respectively.

Theorem 4. Let qap E Uad be qap is optimal control in Q if and only

if qap E Q satisfies the complementary conditions

qop OonU2,Mgop-pgop >OonF2,g0p(Mg0p-Pq0p)=OonI'2.(30)

Proof. From the optimality condition (24), taking 11 = 0 (=- Uad and

11 = 2gop E Uad, we obtain

(Mgop - Pqop, qop)Q = 0

next

(Mgop - Pqop, T1)Q > (Mgop - Pqop, gop)Q = 0, V1 E Uad

therefore,

and since qap ? 0

Mgop - Pqop > 0 on "2

on F2, we obtain

(Mgop - Pgop)gop = 0 on I`2

next, the thesis holds.

Conversely, dr) E Uad we have

(M,op - Pqop, Tl - gop)Q = (Mgop - Pqop, 11)Q (Mgop - Pqop, qop)Q

= (Mgop - Pqop, 11)Q ? 0

therefore, qop is the optimal control in Q.

Corollary 5. If we take the boundary optimal control problem (9)

without restrictions (i.e., Uad = Q), then we obtain that qop
1

= M Pop.

This relation is of the type obtained in [3].
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3. Problem Pa and its Corresponding Boundary Optimal

Control Problem

Let ¡la : Q x Q --> 11g, La : Q - R and Ca : Q - V be defined by

11, (q, n) _ (Ca(q), Ca(Tl))H + M(q, 1])Q, Vq, fl e Q

La(q) = (Ca(q), - uoa)jj, Vq z Q

Ca (q) = uqa - upa , Vq e Q, (31)

where uqa is the unique solution of the variational equality (5), upa is

the unique solution of (5) for q = 0 whose variational equality is given by

aa(uoa, v ) = LOa(v ), V v e V, UOa E V (32)

with

L0a(v) = a(b, v)12(r- + (g, v)H (33)

and aa is a bilinear , continuous , symmetric and coercive form on V; that

is

aa(v, v) >_ hall v 111 , b'v E V, (34)

where ka = A.1 min(1, a) > 0 for all a > 0 and ^,1 is the coerciveness

constant for the bilinear form al [19].

We can obtain analogous properties to Lemma 1, following [9], [14]

and [15] which proof is omitted.

Lemma 6 . We have, for each a > 0, the following properties:

(i) Ca is a linear and continuous application.

(ii) '1a is a bilinear, continuous, symmetric and coercive forro over Q,

that is

^a(q, q)> Mil g 112, VgEQ• (35)

(iii) La is linear and continuous on Q.

(iv) Ja can be also written as

Ja(q) = 2 fla(q, q) - La(q) + 2 11 u0a - Zd 1,H, Vq c Q. (36)

1
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(v) Ja is a coercive functional over Q, that is

(1 - t)Ja (q2) + tJa (q1) - Ja ((1 - t) q 2 + tq1)

t(12 t ) [ ll ug2(X - ugia II H
2

+ Mil q2 - ql 1121

Mt(2 - t)
II q2 - q1 112 , dq1, q2 E Q, Vt c= [0, 1]. (37)

(vi) There exists a unique optimal control gopa E Q such that

Ja(gopa) = min J(q)•
gEUad

(38)

We define the adjoint state pqa as the unique solution of the

following mixed elliptic problem corresponding to (2) or (5) for each

qEQ and a > 0.

-Apga = uqa - zd in S2;
- ópna

I r1 = aPga ; Gana
Ir, = 0 (39)

whose variational formulation is given by

aa(Pg(x, u) = (uqa - zd, v), VU E V, pqa E V, (40)

where uqa is the unique solution of (5).

Remark 1. We note the double dependence on the parameter a for

the optimal state system
ugopna

and the optimal adjoint state pgopaa.

Now, we will obtain some properties of the functional Ja.

Lemma 7. For each fixed a > 0, we haue

(i) The adjoint state pqa satisfies the following equalities:

(uqa - za , Co- (11))H = aa (Pqa , Ca (ii)) = -(Pqa , i1)Q , Vq , il E Q.

(ii) The Gáteaux derivative Já is given by

(Ja(q), T1) _ (uqa - Zd, Ca(f1))H + M(q, fl)Q

= ITa(g, ^l) - La(q), Vq, f E Q. (41)

(iii) The Gáteaux derivative of Ja can be written as

Ja(q) = Mq - Pqa, Vq E Q. (42)
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(iv) The optimality condition for problem (10) is given by

(Mgopa - pgopaa , p - gopa )Q ? 0, Vil E Uad , gopa E Uad . (43)

Proof. (i) This results from the definition of pqa and the following

equalities:

aa (pqa , Ca (11)) = aa (pqa , Uga - u0a )

= aa (pqa , I.Glla) aa (pqa , 11,oa) - -(pqa, 11)Q

(ü) We have

í [Ja (q + t(rl - q)) - Ja (q)]

2 (urda - uqa , Ulla - uqa )H + (uqa - 2'd, urja - uqa )H

+M(q,q - q)Q+ 2 t(TI-q, q - q)Q

and passing to the limit t -> 0+, we obtain (41).

(iii)-(iv) It follows in similar way that Lemma 2.

Lemma S. For fixed a > 0, we have

(i) The application q c Q -> uqa e V ¡s a Lipschitzian operator, that

is

g2a - sigla 111,
Yo

q2 - ql ^¡Q, dq1, q2
a

(ü) For all q1, q2 E Q, we have

llpg9a - Pgla 1 1 lug9a - ug1a 1

E Q. (44)

H'

(iii) The operator q c Q -> pqa E V is strictly monotone, that is

-(Pg9a - Pgla, q2 - q1 )Q =
2

111,q20- - sigla ^^H >_ 0, dq1, q2 E Q.

(iv) Já is a Lipschitzian and strictly monotone operator, that is

11 Ja(g2) - Ja(gl) 1 Q

2
M+7o

^a i

(45)

11 q2 - q1 ^¡Q, dq1, q2 E Q (46)

1
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and

(Ja(g2) - Ja (g1), q2 - q1) _ 11ug2a ugia11H + Mil g2 q1
112

> Mil q2 - ql 112, Vq1, q2 E Q.

Proof (i). Its result from the following inequalities:

2 )
^.aIlug2a -sigla 11V aa

(u92a sigla, uq2a sigla

< 11 yo q2 - q1 iiQiiltg2a - ug1a l1 v

with yo the trace operator.

(ii) Its follows from

X a IiPg2a - Pgla iiV <_ aa (Pg2a - Pg1a , Pg2a - Pq1a)

= (ug9a - sigla, Pg2a - Pg1a )H

< II uq2a - ug1a 11 H 11 Pg2a - P91a II V

(47)

(iii) We have that

-(Pg2(X - Pgla, q2 - q1)Q = (ug2a - u41a, Ca(g2 - ql))H

llug2u ug1a 112 >_ 0, dql, q2 E Q. (48)11

(iv) By using (i) and (ii), we have

11 Ja (q2) - Ja (q1) II Q < IiP42a Pgla 11(? + Mil q2 q1 IIQ

M + U ^^2 II q2 - ql IIQ?,2
a

therefore, J^ is a Lipschitzian application. On the other hand, we get

(Ja(g2)-Ja(g1), q2 - qli

_ (Pg2a + Mq2 - (Pgla + Mq1), q2 - q1)Q

= Ilug2a - u41a II H + Mi q2 - ql 112 > Mil q2 - q1 ¡12

and Já is a strictly monotone application.
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Theorem 9. Let g0pa E Ucd, g0pa is optimal control in Q if and only

if gopa e Q satisfies the complementary conditions

g0pa ? O on r2 , Mgopa pgopa a > 0 on 1'2,

gopa (Mgopa - Pg0pa
a) = 0 on1'2. (49)

Proof. It follows in similar way to the one given in Theorem 4.

Corollary 10 . If we take the boundary optimal control problern (10)

without restrictions (1.e., Uad = Q), then we obtain that opa =
1

M Papera

for each a > 0.

4. Convergence of the Problem Pa and its Corresponding

Optimal Control as a --> o0

1

Theorem 11 . For all a > 0, q E Q, b c H2(1'1), we have the

following limits:

(i) h m Iluga - Uq IIV = 0, Vq E Q

(ii) a-nlluOa - UO IIV = 0

(iii) h m IlPga - Pq II v = 0, Vq e Q. (50)

Proof. (i) If we take u = uqa - uq in the variational equality (5), for

g, a with a > 1, in similar way that [9] and [19], then we obtain

^llluga - uq IIV + (a - 1)(uga - uq , uqa - uq
)L2(r1)

aa(uga uq, uq(x -uq)

_ -a(uq, uq(, - uq) + (q, uq(,, - uq )H - (q , uqa - uq )Q

< C1 Il uqa - uq lI V

with C1 a constant independent of a. Next , for large a, we have

Iluga -uglIV - ;^1

and

(a.-1)(u4a Uq , u9a
-uq _ < (C1)2

1 1 1' 1
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therefore , we deduce that there exists wq c V such that

uqa-wq weakly in V

and

(uqa - b, uqa - b)L2(r1) X1(a )L 1) 0 as a -> o0

next, wq e K and taking the limit in the variational equality (5) when

a - oo, we have

a(wq, u) = Lq(u), Vu E VO, Wq e K

and by uniqueness , we have wq = uq.

Therefore , uqa _+ Uq strongly in V as a - > oo because of the

following inequality:

lI uqa - uq II V <_ Lq (uqa - uq ) - a(uq, uqa - uq ).

For the case (ii), we take q = 0 in (i).

(iii) In this case , we take u = pqa - Pq in the variational equality (40)

for g and a, following a similar method as before, we obtain

k1IIPga - Pq IIp + (a - 1) (Pqa - Pq, Pqa - Pq)L2(r1)

<_ aa(Pga - Pq, Pqa - Pq) 5 C211Pga - Pq Mv

with C2 a constant independent of a. Next, for large a, we have

2 C2
IIPga - Pq IIV < ;^1

and

(C 2
(a -1) (Pga -Pq, Pqa -Pq)L2(I'1) < ^2 )

1

therefore, we deduce that there exists ^q E V such that

P,qa , ^q weakly in V

and

(C2 )2
(Pqa - Pq, Pqa - Pq )L2 (r1) - &1(a - 1) -a 0 as a - oo
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that is ^q E Vp and taking the limit on the variational equality (40) for

pqa , we have

a( q, u) = (uq - Zd, u), du E VO, 1 q E Vo

next , by uniqueness, we obtain ^q = Pq. Therefore , taking into account

the following inequality

^1 II Pqa P IIq V 5 (uqa - Zd, Pqa - Pq )H - a(Pq, Pqa - Pq ),

we have that pqa --> Pq strongly in V.

Now, we will prove that the optimal control gopa of problem (10) and

its corresponding optimal adjoint states pgopaa and optimal system states

ugopaa are convergent to the optimal control qop of problem (9) and its

corresponding optimal adjoint state pgol and optimal system state uq.

respectively, when the parameter a (heat transfer coefficient on F1) goes

to infinity.

Theorem 12 (i). If Pgop and pgopaa are the corresponding adjoint

state of the problems (9) and, (10) respectiuely, then

amIlPgopaa - Pgop IIV = 0. (51)

(ii) If qop and gopa are the solutions of the problems (9) and (10)

respectiuely, then

himo llgopa - qop II Q = 0. (52)

(iii) If ugol and ugor a are the corresponding solutions of the proba-?m
a

P and problem Pa respectiuely, then

lim I uqo a - uq1o , I I V = 0.
(53)

a->ac Pa

Proof. Since qop,, is the solution of the problem (10), we have the

following inequality:

1 M
2 Ilugopaa - zdIIH + 2 Ilgopa IIQ_ 2 Muga - zdIIH + 2 II q IIQ, Vq E Q,

1
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taking q = 0, we have

1 1

2 llugopaa zd II H + 2 Ilgopa IIQ - 2 Il uoa - zd II H - C3, da > o,

where C3 is a constant independent of parameter a because uoa is

convergent when a -> ce. Therefore,

Ilgopa IIQ < C4 and Il ugopaa IIH :- C5, (54)

where C4 and C5 are constants independent of a.

Now, if we take u = ugopaa - ugop in the variational equality (5),

following [9] and [19], we obtain for a > 1:

^1 IIugopaa
- ugop II V + (a - 1) (ugopaa - ugop' ugopaa - ugop )L2(r1)

S aa (ugopa
a - ugop , ugopa a

- ugop) <_ C6II ugopa a - ugop II v '

where C6 = C6(gop, g, ugop , II Yo II) is independent of a. Next, we have

Il ugopa a - ugop
11 2 < C6V -

2,1 (55)

and

C6 2
(a - 1)(ugopaa -

ugop' ugopaa
- ugop )L2(r1) %1

therefore, we deduce that

3ri E V such that uqo
p

a - 0 weakly in V (56)
a

and because the following inequalities:

0 < (r] - ugop ,
11 -ugop )L2(rl)

lim inf (uqopa a. - uqop , uqoPa
a(1 -> 00

- ugop
)L2(r1)

= 0,

we obtain that 11 E K.

Next, if we take U = Pgopaa - Pgop in the variational equality (40), we

get

^1 II P%,a - Pgop II v + (a - 1) (P%, ,a. - Pgop , Pgopa a - Pgop )L2 (r1)

S a,ao( (Pgopaa - Pgop Pgopaa - Pgop) C7II Pgopaa Pgop l 1 v
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with C7 = C7 (C5, pgop ). Next, we obtain

2 C7
II Pgopaa - Pgop (I V - ^,1

and

(C7 )2
(a - 1) (Pgopa a - Pgop ' Pgopa a - Pgop )L? (r1) < a 1

(57)

therefore, we deduce that

3^ E V such that pgopaa E, weakly in V (58)

and from the following inequalities:

0 <_ (1 - Pgop , ^ - Pgop )L2 (F1)

< lim inf (pgopaa
Pgop , Pgopa a - Pgop )L2 (r1) = 0,

a->co

we obtain ^ E Vo.

Now, we consider u e- Vo and taking into account (56) and (58) from

the variational equality (40), we have

a(^, u) = (u - zd, u), Vv E Vo, 1 E Vo. (59)

Next from (54), we deduce that there exists f e Q such that

gopa -, f weakly in Q. Therefore, if we put u E Vo in the variational

equality (5) and we pass to the limit a -> oo, we obtain

a(rl, u) = (g, u)H - (f, u)Q, V'u c Vo, il c K.

Now

a(rl, u) = Lf(u), Vu E Vo, Ti E K (60)

and from the uniqueness of the solution of the variational equality (4), we

have

Ti = Uf. '(61)

On the other hand, from (59), (61) and the uniqueness of the solution

of the variational equality (20), we get

^ = Pf.

Now

Ja (gopa ) <_ Ja (f * ), Vi* E Uad



CONVERGENCE OF BOUNDARY OPTIMAL CONTROL ... 131

next

111 -Zd IH2 + 2 II[IIQJ(f)= 2IIuf -ZdIIH + 2 11f IQ = 21

< lim inf Ja (qop,, ) <- lim inf Ja (f *) = lim Ja (f * )
a->^o a-* D a->-0

= J(f*), Vf * E Uad

and from the uniqueness of the optimal control problem (9), we obtain

that f = qp.

Therefore , fl = U¡ = ugop and = pf = pgop

Moreover, from (58) and the following computation:

qIPgopa a - Pgop II2 <_ aa (Pgopa a - Pgop ' Pgopa a - Pgop )

= aa (Pgopa a' Pgopa a - Pgop) - a(Pgop , Pgopaa - Pgop )

= (ugppa a - zd, Pgopa a - Pgop )H - a(Pgop , Pgopa a - Pgop )'

we have (51).

From the optimality conditions (24) and (43), we deduce that

(M(gop - qop, ) + (Pgopaa - Pgop )' qop,. - gop)Q ? 0

now

Mllgop,. -gopl1Q < I1Pgopaa -Pq0 IIQllgopa -gopIIQ
next

Ilgopa -qop IIQ <- II II IlPgopaa - Pgop IIv
and therefore , (52) holds.

From (25), we have

I I ugopa - ugop II V <- I I I I Ilgopa - qop II Q

and taking into account (52), we get (53).
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