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Abstract
In this paper we study a class of elliptic boundary hemivariational inequalities which
originates in the steady-state heat conduction problemwith nonmonotone multivalued
subdifferential boundary condition on a portion of the boundary described by the
Clarke generalized gradient of a locally Lipschitz function. First, we prove a new
existence result for the inequality employing the theory of pseudomonotone operators.
Next, we give a result on comparison of solutions, and provide sufficient conditions
that guarantee the asymptotic behavior of solution, when the heat transfer coefficient
tends to infinity. Further, we show a result on the continuous dependence of solution
on the internal energy and heat flux. Finally, some examples of convex and nonconvex
potentials illustrate our hypotheses.
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generalized gradient · Mixed problem · Convergence · Nonlinear elliptic equation
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1 Introduction

We consider a bounded domain � in R
d whose regular boundary � consists of the

union of three disjoint portions �i , i = 1, 2, 3 with |�i | > 0, where |�i | denotes the
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(d − 1)-dimensional Hausdorff measure of the portion �i on �. The outward normal
vector on the boundary is denoted by n. We formulate the following two steady-state
heat conduction problems with mixed boundary conditions:

−�u = g in �, u
∣
∣
�1

= 0, −∂u

∂n

∣
∣
�2

= q, u
∣
∣
�3

= b, (1)

−�u = g in �, u
∣
∣
�1

= 0, −∂u

∂n

∣
∣
�2

= q, −∂u

∂n

∣
∣
�3

= α(u − b), (2)

where u is the temperature in �, g is the internal energy in �, b is the temperature
on �3 for (1) and the temperature of the external neighborhood of �3 for (2), q is the
heat flux on �2 and α > 0 is the heat transfer coefficient on �3, which satisfy the

hypothesis: g ∈ L2(�), q ∈ L2(�2) and b ∈ H
1
2 (�3).

Throughout the paper we use the following notation

V = H1(�), V0 = {v ∈ V | v = 0 on �1},
K = {v ∈ V | v = 0 on �1, v = b on �3},
K0 = {v ∈ V | v = 0 on �1 ∪ �3},
a(u, v) =

∫

�

∇u ∇v dx, aα(u, v) = a(u, v) + α

∫

�3

γ u γ v d�,

L(v) =
∫

�

gv dx −
∫

�2

q γ v d�, Lα(v) = L(v) + α

∫

�3

b γ v d�,

where γ : V → L2(�) denotes the trace operator on �. In what follows, we write u
for the trace of a function u ∈ V on the boundary. In a standard way, we obtain the
following variational formulations of (1) and (2), respectively:

find u∞ ∈ K such that a(u∞, v) = L(v) for all v ∈ K0, (3)

find uα ∈ V0 such that aα(uα, v) = Lα(v) for all v ∈ V0. (4)

The standard norms on V and V0 are denoted by

‖v‖V =
(

‖v‖2L2(�)
+ ‖∇v‖2L2(�;Rd )

)1/2
for v ∈ V ,

‖v‖V0 = ‖∇v‖L2(�;Rd ) for v ∈ V0.

It is well known by the Poincaré inequality, see [5, Proposition 2.94], that on V0 the
above twonorms are equivalent.Note that the forma is bilinear, symmetric, continuous
and coercive with constant ma > 0, i.e.

a(v, v) = ‖v‖2V0
≥ ma‖v‖2V for all v ∈ V0. (5)

It is well known that the regularity of solution to the mixed elliptic problems (1)
and (2) is problematic in the neighborhood of a part of the boundary, see for example
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the monograph [12]. Regularity results for elliptic problems with mixed boundary
conditions can be found in [1,2,14]. Moreover, sufficient hypothesis on the data in
order to have H2 regularity for elliptic variational inequalities is given in [23]. We
remark that, under additional hypotheses on the data g, q and b, problems (1) and
(2) can be considered as steady-state two phase Stefan problems, see, for example,
[10,26,28,30].

Problems (3) and (4) have been extensively studied in several papers such as [10,26–
29]. Some properties of monotonicity and convergence, when the parameter α goes to
infinity, obtained in the aforementioned works, are recalled in the following result.

Theorem 1 If the data satisfy b = const . > 0, g ∈ L2(�) and q ∈ L2(�2) with the
properties q ≥ 0 on �2 and g ≤ 0 in �, then

(i) u∞ ≤ b in �,
(ii) uα ≤ b in �,
(iii) uα ≤ u∞ in �,
(iv) if α1 ≤ α2, then uα1 ≤ uα2 in �,
(v) uα → u∞ in V , as α → ∞.

The main goal of this paper is to study a generalization of problem (2) for which we
provide sufficient conditions that guarantee the comparison properties and asymptotic
behavior, as α → ∞, stated in Theorem 1. Moreover, for a more general problem, we
also show a result on the continuous dependence of solution on the data g and q.

The mixed nonlinear boundary value problem for the elliptic equation under con-
sideration reads as follows.

− �u = g in �, u
∣
∣
�1

= 0, −∂u

∂n

∣
∣
�2

= q, −∂u

∂n

∣
∣
�3

∈ α ∂ j(u). (6)

Hereα is a positive constantwhile the function j : �3×R → R, called a superpotential
(nonconvex potential), is such that j(x, ·) is locally Lipschitz for a.e. x ∈ �3 and not
necessarily differentiable. Since in general j(x, ·) is nonconvex, so the multivalued
condition on �3 in problem (6) is described by a nonmonotone relation expressed by
the generalized gradient of Clarke. Such multivalued relation in problem (6) is met
in certain types of steady-state heat conduction problems (the behavior of a semiper-
meable membrane of finite thickness, a temperature control problems, etc.). Further,
problem (6) can be considered as a prototype of several boundary semipermeability
models, see [15,19,20,32], which are motivated by problems arising in hydraulics,
fluid flow problems through porous media, and electrostatics, where a solution repre-
sents the pressure and the electric potentials. Note that the analogous problems with
maximal monotone multivalued boundary relations (that is the case when j(x, ·) is a
convex function) were considered in [3,9], see also references therein.

Under the above notation, the weak formulation of the elliptic problem (6) becomes
the following boundary hemivariational inequality:

find u ∈ V0 such that a(u, v) + α

∫

�3

j0(u; v) d� ≥ L(v) for all v ∈ V0. (7)
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Here and inwhat followswe often omit the variable x andwe simplywrite j(r) instead
of j(x, r). Observe that if j(x, ·) is a convex function for a.e. x ∈ �3, then problem (7)
reduces to the variational inequality of second kind:

find u ∈ V0 such that a(u, v − u) + α

∫

�3

( j(v) − j(u)) d�

≥ L(v − u) for all v ∈ V0. (8)

Note that when j(r) = 1
2 (r − b)2, problem (8) reduces to a variational inequality

corresponding to problem (2). Several other examples of convex potentials can be
found in various diffusion problems. For instance, the following convex functions:

j(r) = |r |, j(r) =
{

β(r − c)5 if r ≥ c,

0 if r < c,
and j(r) =

{

βr9/4 if r ≥ 0,

0 if r < 0,

with suitable constants β > 0 and c ∈ R, appear in models which describe a free
boundary problem with the Tresca condition, see [4], the Stefan-Boltzman heat radia-
tion law, and the natural convection, respectively, see [3,13], and the references therein
for further applications and extensions. On the other hand, the stationary heat con-
duction models with nonmonotone multivalued subdifferential interior and boundary
semipermeability relations can not be described by convex potentials. They use locally
Lipschitz potentials and their weak formulations lead to hemivariational inequalities,
see [19, Chapter 5.5.3] and [20].

We mention that the theory of hemivariational and variational inequalities has been
proposed in the 1980s by Panagiotopoulos, see [19,21,22], as variational formulations
of important classes of inequality problems in mechanics. In the last few years, new
kinds of variational, hemivariational, and variational-hemivariational inequalities have
been investigated, see recent monographs [5,17,25], and the theory has emerged today
as a new and interesting branch of applied mathematics.

The rest of the paper is structured as follows. In Sect. 2 we provide a new existence
result for problem (7). In Sect. 3 we establish two comparison properties for solutions
to problem (7). The result on convergence of solutions of problem (7) to the solu-
tion of problem (3), when the parameter α goes to infinity, is provided in Sect. 4. In
Sect. 5 we study the continuous dependence of a solution to problem (7) on the inter-
nal energy g and the heat flux q. The proofs are based on arguments of compactness,
lower semicontinuity, monotonicity, various estimates, the theory of elliptic hemi-
variational inequalities and nonsmooth analysis [6–9,11,17,22,24,25,31]. Finally, in
Sect. 6 we deliver several examples of convex and nonconvex potentials which satisfy
the hypotheses on the function j required in this paper.

2 Preliminaries

In this section first recall standard notation and preliminary concepts, and then provide
a new result on existence of solution to the elliptic hemivariational inequality (7).
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Let (X , ‖ · ‖X ) be a Banach space, X∗ be its dual, and 〈·, ·〉 denote the duality
between X∗ and X . For a real valued function defined on X , we have the following
definitions, see [6, Sect. 2.1] and [7,17].

Definition 2 A function ϕ : X → R is said to be locally Lipschitz, if for every x ∈ X
there exist Ux a neighborhood of x and a constant Lx > 0 such that

|ϕ(y) − ϕ(z)| ≤ Lx‖y − z‖X for all y, z ∈ Ux .

For such a function the generalized (Clarke) directional derivative of j at the point
x ∈ X in the direction v ∈ X is defined by

ϕ0(x; v) = lim sup
y→x, λ→0+

ϕ(y + λv) − ϕ(y)

λ
.

The generalized gradient (subdifferential) of ϕ at x is a subset of the dual space X∗
given by

∂ϕ(x) = {ζ ∈ X∗ | ϕ0(x; v) ≥ 〈ζ, v〉 for all v ∈ X}.

We shall use the following properties of the generalized directional derivative and
the generalized gradient, see [17, Proposition 3.23].

Proposition 3 Assume that ϕ : X → R is a locally Lipschitz function. Then the fol-
lowing hold:

(i) for every x ∈ X, the function X 
 v �→ ϕ0(x; v) ∈ R is positively homogeneous,
and subadditive, i.e.,

ϕ0(x; λv) = λϕ0(x; v) for all λ ≥ 0, v ∈ X ,

ϕ0(x; v1 + v2) ≤ ϕ0(x; v1) + ϕ0(x; v2) for all v1, v2 ∈ X ,

respectively.
(ii) for every x ∈ X, we have ϕ0(x; v) = max{〈ζ, v〉 | ζ ∈ ∂ϕ(x)}.
(iii) the function X × X 
 (x, v) �→ ϕ0(x; v) ∈ R is upper semicontinuous.
(iv) for every x ∈ X, the gradient ∂ϕ(x) is a nonempty, convex, and weakly ∗ compact

subset of X∗.
(v) the graph of the generalized gradient ∂ϕ is closed in X ×(weak ∗–X∗)–topology.

Now, we pass to a result on existence of solution to the elliptic hemivariational
inequality:

find u ∈ V0 such that a(u, v) + α

∫

�3

j0(u; v) d� ≥ f (v) for all v ∈ V0. (9)

We admit the following standing hypothesis.
H( j): j : �3 × R → R is such that
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(a) j(·, r) is measurable for all r ∈ R,
(b) j(x, ·) is locally Lipschitz for a.e. x ∈ �3,
(c) there exist c0, c1 ≥ 0 such that |∂ j(x, r)| ≤ c0 + c1|r | for all r ∈ R, a.e. x ∈ �3,
(d) j0(x, r; b − r) ≤ 0 for all r ∈ R, a.e. x ∈ �3 with a constant b ∈ R.

Here the constant b in H( j)(d) is the same as in the boundary condition on �3 (see
(1) or (2)).

Note that the existence results for elliptic hemivariational inequalities can be found
in several contributions, see [5,16–19]. In comparison to other works, the new hypoth-
esis is H( j)(d). Under this condition we will show both existence of a solution to
problem (9) and a convergence result when α → ∞. We underline that, if the hypoth-
esis H( j)(d) is replaced by the relaxed monotonicity condition (see Remark 10 for
details)

j0(x, r; s − r) + j0(x, s; r − s) ≤ m j |r − s|2

for all r , s ∈ R, a.e. x ∈ �3 with m j ≥ 0, and the following smallness condition

ma > α m j‖γ ‖2

is assumed, then problem (9) is uniquely solvable, see [18, Lemma 20] for the proof.
However, this smallness condition is not suitable in the study of problem (9) since for
a sufficiently large value of α, it is not satisfied.

In the following result we apply a surjectivity result in [17, Proposition 3.61] and
partially follow arguments of [18, Lemma 20]. For completeness we provide the proof.

Theorem 4 If H( j) holds, f ∈ V ∗
0 and α > 0, then the hemivariational inequality (9)

has a solution.

Proof Let 〈·, ·〉 stand for the duality pairing between V ∗
0 and V0. Let A : V0 → V ∗

0 be
defined by

〈Au, v〉 = a(u, v) for u, v ∈ V0.

It is obvious that the operator A is linear, bounded and coercive, i.e., 〈Av, v〉 ≥ ‖v‖2V0

for all v ∈ V0. Moreover, let J : L2(�3) → R be given by

J (w) =
∫

�3

j(x, w(x)) d� for all w ∈ L2(�3).

From H( j)(a)–(c), by [17, Corollary 4.15], we infer that the functional J enjoys the
following properties:

(p1) J is well defined and Lipschitz continuous on bounded subsets of L2(�3), hence
also locally Lipschitz,

(p2) J 0(w; z) ≤
∫

�3

j0(x, w(x); z(x)) d� for all w, z ∈ L2(�3),
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(p3) ‖∂ J (w)‖L2(�3)
≤ c0 + c1 ‖w‖L2(�3)

for all w ∈ L2(�3) with c0, c1 ≥ 0.

We introduce the operator B : V0 → 2V ∗
0 defined by

Bv = α γ ∗∂ J (γ v) for all v ∈ V0,

where γ ∗ : L2(�) → V ∗
0 denotes the adjoint to the trace γ .

We show that B is pseudomonotone and bounded from V0 to 2V ∗
0 , see [17, Defini-

tion 3.57]. By Proposition 3 (iv), it follows that the values of ∂ J are nonempty, convex
and weakly compact subsets of L2(�3). Hence, the set Bv is nonempty, closed and
convex in V ∗

0 for all v ∈ V0. The operator B is bounded which is a consequence of
the following estimate

‖Bv‖V ∗
0

≤ α ‖γ ∗‖ ‖∂ J (γ v)‖L2(�3)
≤ α ‖γ ∗‖ (c0 + c1‖γ ‖‖v‖V0) for all v ∈ V0,

where ‖γ ‖ denotes the norm of the trace operator. In order to establish pseudomono-
tonicity of the operator B, we take into account [17, Proposition 3.58(ii)], and prove
that B is generalized pseudomonotone.

Let vn , v ∈ V0, vn → v weakly in V0, v∗
n , v∗ ∈ V ∗

0 , v∗
n → v∗ weakly in V ∗

0 ,
v∗

n ∈ Bvn and lim sup 〈v∗
n , vn − v〉 ≤ 0. We show that

v∗ ∈ Bv and 〈v∗
n , vn〉 → 〈v∗, v〉.

From condition v∗
n ∈ Bvn , it follows v∗

n = α γ ∗ηn with ηn ∈ ∂ J (γ vn). By the
estimate (p3), it is clear that {ηn} remains in a bounded subset of L2(�3). Thus, at
least for a subsequence, denoted in the sameway, wemay suppose that ηn → ηweakly
in L2(�3) with η ∈ L2(�3). Using the compactness of the trace operator, we have
γ vn → γ v in L2(�3) Now, we employ the strong-weak closedness of the graph of
∂ J , see Proposition 3 (v), to obtain η ∈ ∂ J (γ v). On the other hand, by v∗

n = α γ ∗ηn ,
it follows v∗ = α γ ∗η. Hence, we get v∗ ∈ α γ ∗∂ J (γ v) = Bv. Now, it is obvious
that

〈v∗
n , vn〉 = α〈ηn, γ vn〉L2(�3)

−→ α〈η, γ v〉L2(�3)
= 〈αγ ∗η, v〉 = 〈v∗, v〉.

This completes the proof that B is generalized pseudomonotone.Hence, the operator B
is also pseudomonotone.

Subsequently, we note that A : V0 → V ∗
0 is pseudomonotone, see [17, Theo-

rem3.69], since it is linear, bounded and nonnegative. Therefore, A is pseudomonotone
and bounded as a multivalued operator from V0 to 2V ∗

0 , see [17, Sect. 3.4]. Since the
sum of multivalued pseudomonotone operators remains pseudomonotone, see [17,
Proposition 3.59 (ii)], we infer that A + B is bounded and pseudomonotone.

Next, we prove that the operator A + B is coercive. In view of the coercivity of A,
it is enough to show that

〈Bv, v〉 ≥ −d0 − d1‖v‖V0 for all v ∈ V0 (10)
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with d0, d1 ≥ 0. First, from hypothesis H( j)(d), by Proposition 3 (i)–(ii), we have

j0(x, r;−r) = j0(x, r; b − r − b) ≤ j0(x, r; b − r) + j0(x, r;−b)

≤ j0(x, r;−b) ≤ |∂ j(x, r)| | − b| ≤ |b|(c0 + c1|r |)

for all r ∈ R, a.e. x ∈ �3. Next, let v ∈ V0, v∗ ∈ Bv. Thus, v∗ = α γ ∗η with
η ∈ ∂ J (γ v). Hence, by the definition of the generalized gradient and the property
(p2), we obtain

α 〈η,−γ v〉L2(�3)
≤ α J 0(γ v;−γ v) ≤ α

∫

�3

j0(γ v;−γ v) d�

≤ α |b|
∫

�3

(c0 + c1|γ v(x)|) d� ≤ d0 + d1‖v‖V0

with d0, d1 ≥ 0. Using the latter and the equality

α 〈η, γ v〉L2(�3)
= 〈αγ ∗η, v〉 = 〈v∗, v〉,

we deduce

〈v∗, v〉 ≥ −d0 − d1‖v‖V0 for all v ∈ V0

which proves (10). In consequence, we have

〈(A + B)v, v〉 ≥ ‖v‖2V0
− d1‖v‖V0 − d0.

We conclude that the multivalued operator A + B is bounded, pseudomonotone, and
coercive, hence surjective, see [17, Proposition 3.61]. We infer that there exists u ∈ V0
such that (A + B)u 
 f .

In the final step of the proof, we observe that any solution u ∈ V0 to the inclusion
(A + B)u 
 f is a solution to problem (9). Indeed, we have

Au + α γ ∗η = f with η ∈ ∂ J (γ u)

and hence

〈Au, v〉 + α〈η, γ v〉L2(�3)
= 〈 f , v〉

for all v ∈ V0. Combining the latter with the definition of the generalized gradient and
the property (p2), we obtain

〈 f , v〉 = 〈Au, v〉 + α 〈η, γ v〉L2(�3)
≤ 〈Au, v〉 + α J 0(γ u; γ v)

≤ a(u, v) + α

∫

�3

j0(γ u; γ v) d�
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for all v ∈ V0. This means that u ∈ V0 solves problem (9). This completes the proof.
��

3 Comparison Results

In this section we study the following two problems under the standing hypothesis
H( j) on the superpotential.

For every α > 0, we consider the hemivariational inequality of the form

find u ∈ V0 such that a(u, v) + α

∫

�3

j0(u; v) d� ≥ L(v) for all v ∈ V0 (11)

and the weak form of the elliptic equation

find u∞ ∈ K such that a(u∞, v) = L(v) for all v ∈ K0. (12)

Recall that

K = {v ∈ V | v = 0 on �1, v = b on �3}, K0 = {v ∈ V | v = 0 on �1 ∪ �3}.

It follows from Theorem 4 that for each α > 0, problem (11) has a solution uα ∈ V0
while [5, Corollary 2.102] entails that problem (12) has a unique solution u∞ ∈ K .
Moreover, it is easy to observe that problem (12) can be equivalently formulated as
follows

find u∞ ∈ K such that a(u∞, v − u∞) = L(v − u∞) for all v ∈ K . (13)

In what follows we need the hypothesis on the data.
(H0): g ∈ L2(�), g ≤ 0 in �, q ∈ L2(�2), q ≥ 0 on �2.

Theorem 5 If H( j), (H0) hold and b ≥ 0, then

(a) uα ≤ b in �,
(b) uα ≤ u∞ in �,

where uα ∈ V0 is a solution to problem (11) and u∞ ∈ K is the unique solution to
problem (12).

Proof (a) Let w = uα − b. We shall prove that w+ = 0, where r+ = max{0, r} for
r ∈ R. Since w

∣
∣
�1

= −b ≤ 0, we have w+∣
∣
�1

= 0. We choose v = −w+ ∈ V0
in problem (11) to get

a(uα,−w+) + α

∫

�3

j0(uα;−w+) d� ≥ L(−w+).

By the linearity of the form a, we easily obtain

a(uα,−w+) = −a(w+, w+),
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while (H0) implies L(w+) ≤ 0. Hence

−a(w+, w+) + α

∫

�3

j0(uα;−w+) d� ≥ L(−w+) ≥ 0,

and

a(w+, w+) ≤ α

∫

�3

j0(uα;−(uα − b)+) d�.

Subsequently, H( j)(d) entails

j0(x, r;−(r − b)+) ≤ 0 for all r ∈ R, a.e. x ∈ �3. (14)

Indeed, if r ≤ b, then (r − b)+ = 0 and j0(x, r;−(r − b)+) = j0(x, r; 0) =
0 ≤ 0. If r > b, we would have (r − b)+ = r − b and j0(x, r;−(r − b)+) =
j0(x, r; b − r) ≤ 0. Using the coercivity condition (5) of the form a and (14), we
deduce ma‖w+‖2V ≤ 0. Hence w+ = 0 in �, and finally uα ≤ b in �.

(b) We denote w = uα − u∞. It is enough to show that w+ = 0 in �. We observe
that w

∣
∣
�1

= 0. This allows to choose v = −w+ ∈ V0 in problem (11) to obtain

a(uα − u∞,−w+) + a(u∞,−w+) + α

∫

�3

j0(uα;−w+) d� ≥ L(−w+).

Exploiting the relation a(uα − u∞,−w+) = −a(w+, w+), we have

− a(w+, w+) + a(u∞,−w+) + α

∫

�3

j0(uα;−w+) d� ≥ L(−w+). (15)

Next, part (a) of the proof shows that

w
∣
∣
�3

= (uα − b)
∣
∣
�3

≤ 0

and w+∣
∣
�3

= 0, and consequently w+ ∈ K0. Since u∞ ∈ K solves (12), taking

v = w+ ∈ K0 in equality (12), and using the result in (15), it follows that

a(w+, w+) ≤ α

∫

�3

j0(uα;−w+) d�.

Since u∞ = b on �3, by (14), we get

j0(x, uα;−(uα − u∞)+) = j0(x, uα;−(uα − b)+) ≤ 0 a.e. on �3.

Again, by the coercivity of the form a, we have ma‖w+‖2V ≤ 0. Therefore,
w+ = 0 in �, and finally uα ≤ u∞ in �. This completes the proof.

��
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Note that properties (a) and (b) of Theorem 5 obtained for the hemivariational
inequality (11) have been provided for linear elliptic problem (3) in properties (ii) and
(iii) of Theorem 1.

In what follows, we comment on the monotonicity property analogous to condi-
tion (iv) stated for problem (3) in Theorem 1.

Proposition 6 Assume that H( j) and (H0) hold, and

j0(x, r;−(r − s)+) + c j0(x, s; (r − s)+) ≤ 0 (16)

for all c ≥ 1, all r , s ∈ R, a.e. x ∈ �3. Let uαi ∈ V0 denote the unique solution to the
inequality (11) corresponding to αi > 0, i = 1, 2. Then the following monotonicity
property holds:

α1 ≤ α2 �⇒ uα1 ≤ uα2 in �.

Proof Let 0 < α1 ≤ α2 and w = uα1 − uα2 in �. It is sufficient to prove that w+ = 0
in �. Since w

∣
∣
�1

= 0, we have w+ ∈ V0. We choose v = −w+ ∈ V0 in problem (11)

for α1, and v = w+ ∈ V0 in problem (11) for α2 to get

a(uα1 ,−w+) + α1

∫

�3

j0(uα1;−w+) d� ≥ L(−w+),

a(uα2 , w
+) + α2

∫

�3

j0(uα2;w+) d� ≥ L(w+).

By adding the last two inequalities, we have

−a(w,w+) + α1

∫

�3

j0(uα1;−w+) d� + α2

∫

�3

j0(uα2;w+) d� ≥ 0

which implies

a(w+, w+) ≤
∫

�3

(

α1 j0(uα1;−w+) + α2 j0(uα2;w+)
)

d�

= α1

∫

�3

(

j0(uα1;−w+) + α2

α1
j0(uα2;w+)

)

d� ≤ 0.

Using the coercivity of the form a, we deduce that w+ = 0, which completes the
proof. ��

It is easy to check that the following two simple examples satisfy H( j) and the
condition (16):

j(r) =
{

b − r for r < b,

0 for r ≥ b,
and j(r) =

{

(b − r)2 + 1 for r < b,

1 for r ≥ b.
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Note also that hypothesis (16) implies that the function j(x, ·) is convex for a.e. x ∈ �3.
In fact, if r > s, then (r − s)+ = r − s and (16) gives

j0(x, r; s − r) + c j0(x, s; r − s) ≤ 0 for all c ≥ 1.

In particular, taking c = 1 we obtain the condition equivalent to the relaxed mono-
tonicity condition with m j = 0, which means that j(x, ·) is convex (see Remark 10).

We conclude that the monotonicity property of Proposition 6 holds for convex
potentials, i.e., for variational inequalities. The proof of the monotonicity property for
hemivariational inequalities remains an open problem.

4 Asymptotic Behavior of Solutions

In this section we investigate the asymptotic behavior of solutions to problem (11)
when α → ∞. To this end, we need the following additional hypothesis on the
superpotential j .
(H1): if j0(x, r; b − r) = 0 for all r ∈ R, a.e. x ∈ �3, then r = b.

Theorem 7 Assume H( j), (H0) and (H1). Let {uα} ⊂ V0 be a sequence of solutions
to problem (11) and u∞ ∈ K be the unique solution to problem (12). Then uα → u∞
in V , as α → ∞.

Proof First, we prove the estimate on the sequence {uα} in V . We choose v = u∞ −
uα ∈ V0 as a test function in problem (11) to obtain

a(uα, u∞ − uα) + α

∫

�3

j0(uα; u∞ − uα) d� ≥ L(u∞ − uα).

From the equality a(uα, u∞ − uα) = −a(u∞ − uα, u∞ − uα) + a(u∞, u∞ − uα),
we get

a(v, v) − α

∫

�3

j0(uα; v) d� ≤ a(u∞, v) − L(v). (17)

We observe that j0(x, uα; v) = j0(x, uα; b − uα) on �3, and by H( j)(d), we have
j0(x, uα; v) ≤ 0 on �3. Hence

a(v, v) ≤ a(u∞, v) − L(v).

By the boundedness and coercivity of a, we infer

ma‖v‖2V ≤ (M‖u∞‖V + ‖L‖V ∗) ‖v‖V

with M > 0, and subsequently

‖uα‖V ≤ ‖v‖V + ‖u∞‖V ≤ 1

ma
(M‖u∞‖V + ‖L‖V ∗) + ‖u∞‖V =: C, (18)
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where C > 0 is independent of α. Hence, since a(v, v) ≥ 0, from (17), we have

−α

∫

�3

j0(uα; v) d� ≤ (M‖u∞‖V + ‖L‖V ∗ ) ‖v‖V ≤ 1

ma
(M‖u∞‖V + ‖L‖V ∗ )2 =: C1,

where C1 > 0 is independent of α. Thus

−
∫

�3

j0(uα; v) d� ≤ C1

α
. (19)

It follows from (18) that {uα} remains in a bounded subset of V . Thus, there exists
u∗ ∈ V such that, by passing to a subsequence if necessary, we have

uα → u∗ weakly in V , as α → ∞. (20)

Next, we show that u∗ = u∞. We observe that u∗ ∈ V0 because {uα} ⊂ V0 and V0
is sequentially weakly closed in V . Let w ∈ K and v = w − uα ∈ V0. From (11), we
have

L(w − uα) ≤ a(uα,w − uα) + α

∫

�3

j0(uα;w − uα) d�.

Since w = b on �3, by H( j)(d), we have

α

∫

�3

j0(uα;w − uα) d� = α

∫

�3

j0(uα; b − uα) d� ≤ 0

which implies

L(w − uα) ≤ a(uα,w − uα). (21)

Next, we use the weak lower semicontinuity of the functional V 
 v �→ a(v, v) ∈ R

and from (21), we deduce

u∗ ∈ V0 satisfies L(w − u∗) ≤ a(u∗, w − u∗) for all w ∈ K . (22)

Subsequently, we show that u∗ ∈ K . In fact, from (20), by the compactness of
the trace operator, we have uα

∣
∣
�3

→ u∗∣∣
�3

in L2(�3), as α → ∞. Passing to a sub-
sequence if necessary, we may suppose that uα(x) → u∗(x) for a.e. x ∈ �3 and
there exists h ∈ L2(�3) such that |uα(x)| ≤ h(x) a.e. x ∈ �3. Using the upper
semicontinuity of the function R × R 
 (r , s) �→ j0(x, r; s) ∈ R for a.e. x ∈ �3,
see Proposition 3(iii), we get

lim sup j0(x, uα(x); u∞(x) − uα(x)) ≤ j0(x, u∗(x); u∞(x) − u∗(x)) a.e. x ∈ �3.
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Next, taking into account the estimate

| j0(x, uα(x); u∞(x) − uα(x))| ≤ (c0 + c1|uα(x)|) |b − uα(x)| ≤ k(x) a.e. x ∈ �3

with k ∈ L1(�3) given by k(x) = (c0 + c1h(x))(|b| + h(x)), by the dominated
convergence theorem, see [8, Theorem 2.2.33], we obtain

lim sup
∫

�3

j0(uα; u∞ − uα) d� ≤
∫

�3

j0(u∗; u∞ − u∗) d�.

Consequently, from H( j)(d) and (19), we have

0 ≤ −
∫

�3

j0(u∗; b − u∗) d� ≤ lim inf

(

−
∫

�3

j0(uα; u∞ − uα) d�

)

≤ 0

which gives
∫

�3
j0(u∗; b−u∗) d� = 0. Again by H( j)(d), we get j0(x, u∗; b−u∗) =

0 a.e. x ∈ �3. Using (H1), we have u∗(x) = b for a.e. x ∈ �3, which together with
(22) implies

u∗ ∈ K satisfies L(w − u∗) ≤ a(u∗, w − u∗) for all w ∈ K .

Next, we prove that u∗ = u∞. To this end, let v := w − u∗ ∈ K0 with arbitrary
w ∈ K . Hence, L(v) ≤ a(u∗, v) for all v ∈ K0. Recalling that v ∈ K0 implies
−v ∈ K0, we obtain a(u∗, v) ≤ L(v) for all v ∈ K0. Hence, we conclude that

u∗ ∈ K satisfies a(u∗, v) = L(v) for all v ∈ K0,

i.e., u∗ ∈ K is a solution to problem (12). By the uniqueness of solution to problem
(12), we have u∗ = u∞ and hence uα → u∞ weakly in V , as α → ∞. From the
uniqueness of solution to (12), we also infer that the whole sequence {uα} converges
weakly in V to u∞.

Finally, we prove the strong convergence uα → u∞ in V , as α → ∞. Choosing
v = u∞ − uα ∈ V0 in problem (11), we obtain

a(uα, u∞ − uα) + α

∫

�3

j0(uα; u∞ − uα) d� ≥ L(u∞ − uα).

Hence

a(u∞ − uα, u∞ − uα) ≤ a(u∞, u∞ − uα) + L(uα − u∞)

+α

∫

�3

j0(uα; u∞ − uα) d�.

Since u∞ = b on �3, by H( j)(d) and the coercivity of the form a, we have

ma ‖u∞ − uα‖2V ≤ a(u∞, u∞ − uα) + L(uα − u∞).
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Employing the weak continuity of both a(u∞, ·) and L , we conclude that uα → u∞
in V , as α → ∞. This completes the proof. ��

5 Continuous Dependence Result

In this section we provide the result on continuous dependence of solution to prob-
lem (11) on the internal energy g and the heat flux q for fixed α > 0.

First, from the compactness of the embeddingV into L2(�) and of the trace operator
from V into L2(�), we obtain the following convergence result.

Lemma 8 Let gn ∈ L2(�), qn ∈ L2(�2) for n ∈ N. Define Ln ∈ V ∗, n ∈ N, by

Ln(v) =
∫

�

gnv dx −
∫

�2

qnv d� for v ∈ V .

If gn → g weakly in L2(�), qn → q weakly in L2(�2), and vn ∈ V , vn → v weakly
in V , then

Ln(vn) → L(v), as n → ∞,

and there exists a constant C > 0 independent of n such that ‖Ln‖V ∗ ≤ C for all
n ∈ N.

The continuous dependence result reads as follows.

Theorem 9 Assume that α > 0 is fixed, L, Ln ∈ V ∗, n ∈ N and H( j) holds. Let
un ∈ V0, n ∈ N, be a solution to problem (11) corresponding to Ln, and

lim Ln(zn) = L(z) for any zn → z weakly in V , as n → ∞. (23)

Then, there exists a subsequence of {un} which converges weakly in V to a solution of
problem (11) corresponding to L. If, in addition, the following hypotheses hold

j0(x, r; s − r) + j0(x, s; r − s) ≤ m j |r − s|2 for all r , s ∈ R, a.e. x ∈ �3, (24)

ma > α m j‖γ ‖2, (25)

where m j ≥ 0, then problem (11) has the unique solution u and un ∈ V0 corresponding
to L and Ln, respectively, and the whole sequence {un} converges to u in V , as n → ∞.

Proof Let un ∈ V0 be a solution to problem (11) corresponding to Ln , and u∞ ∈ K
be the solution to problem (12). We have

a(un, u∞ − un) + α

∫

�3

j0(un; u∞ − un) d� ≥ Ln(u∞ − un).

123



Applied Mathematics & Optimization

Hence

a(u∞ − un, u∞ − un) ≤ a(u∞, u∞ − un) + Ln(un − u∞)

+α

∫

�3

j0(un; b − un) d�.

From hypothesis H( j)(d), since the form a is bounded and coercive, we get

ma‖u∞ − un‖2V ≤ a(u∞, u∞ − un) + Ln(un − u∞)

≤ M‖u∞‖V ‖u∞ − un‖V + ‖Ln‖V ∗‖u∞ − un‖V ,

and subsequently

‖un‖V ≤ ‖u∞ − un‖V + ‖u∞‖V ≤ 1

ma
(M‖u∞‖V + k1) + ‖u∞‖V ≤ k2

for all n ∈ N with k1, k2 > 0 independent of n. Hence, {un} is uniformly bounded in
V and also in V0. From the reflexivity of V0, there exist ξ ∈ V0 and a subsequence of
{un}, denoted in the same way, such that

un → ξ weakly in V0, as n → ∞.

We show that ξ ∈ V0 satisfies (11). We know that un ∈ V0 and

a(un, v) + α

∫

�3

j0(un; v) d� ≥ Ln(v) for all v ∈ V0.

Taking the upper limit, we use the weak continuity of a(·, v) and (23) to get

a(ξ, v) + α lim sup
∫

�3

j0(un; v) d� ≥ lim Ln(v) = L(v) for all v ∈ V0. (26)

By the compactness of the trace operator from V into L2(�3), we have un
∣
∣
�3

→ ξ
∣
∣
�3

in L2(�3), as n → ∞, and at least for a subsequence, un(x) → ξ(x) for a.e. x ∈ �3
and |un(x)| ≤ η(x) a.e. x ∈ �3, where η ∈ L2(�3). Since the function R × R 

(r , s) �→ j0(x, r; s) ∈ R a.e. on �3 is upper semicontinuous, see Proposition 3(iii),
we obtain

lim sup j0(x, un(x); v(x)) ≤ j0(x, ξ(x); v(x)) a.e. x ∈ �3.

Recalling the estimate

| j0(x, un(x); v(x))| ≤ (c0 + c1|un(x)|) |v(x)| ≤ k(x) a.e. x ∈ �3
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where k ∈ L1(�3), k(x) = (c0 + c1η(x))|v(x)|, we apply the dominated convergence
theorem, see [8, Theorem 2.2.33] to get

lim sup
∫

�3

j0(un; v) d� ≤
∫

�3

lim sup j0(un; v) d� ≤
∫

�3

j0(ξ ; v) d�.

Using the latter in (26) entails

a(ξ, v) + α

∫

�3

j0(ξ ; v) d� ≥ L(v) for all v ∈ V0, (27)

which means that ξ ∈ V0 is a solution to problem (11), and completes the first part of
the proof.

Next, in addition, we assume (24) and (25). The existence of solution to (11) follows
from the first part of the theorem. To prove uniqueness, let u1, u2 ∈ V0 solve (11).
Then taking as test functions u2 −u1 ∈ V0 for u1 and u1 −u2 ∈ V0 for u2, and adding
corresponding inequalities, we obtain

a(u1 − u2, u2 − u1) + α

∫

�3

(

j0(u1; u2 − u1) + j0(u2; u1 − u2)
)

d� ≥ 0.

From the coercivity of the form a and (24), we have

ma ‖u1 − u2‖2V ≤ α m j

∫

�3

|u1(x) − u2(x)|2 d� ≤ α m j‖γ ‖2 ‖u1 − u2‖2V .

Since (ma −α m j‖γ ‖2) ‖u1 −u2‖2V ≤ 0, and by the smallness condition (25), we get
u1 = u2. Hence, we deduce that solutions u, un ∈ V0 to (11) are unique, and by (27),
we immediately have ξ = u.

Finally, we show the strong convergence of {un} to u in V . We choose suitable test
functions from V0 in (11) and (27) to obtain

a(un, u − un) + α

∫

�3

j0(un; u − un) d� ≥ Ln(u − un)

a(u, un − u) + α

∫

�3

j0(u; un − u) d� ≥ L(un − u).

Adding the two inequalities, we have

a(un − u, u − un) + α

∫

�3

(

j0(un; u − un) + j0(u; un − u)
)

d�

≥ Ln(u − un) + L(un − u).

Using the coercivity of the form a and (24), we get

ma ‖un − u‖2V ≤ α m j‖γ ‖2 ‖un − u‖2V + Ln(un − u) + L(u − un)
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which entails

(ma − α m j‖γ ‖2) ‖un − u‖2V ≤ Ln(un − u) + L(u − un).

From hypotheses (23) and (25), we deduce that ‖un − u‖V → 0, as n → ∞. Since
u ∈ V0 is unique, we infer that the whole sequence {un} converges in V to u. This
proof is complete. ��
Remark 10 It is known that for a locally Lipschitz function j : R → R, the condition
(24) is equivalent to the so-called relaxedmonotonicity condition of the subdifferential

(η1 − η2)(r1 − r2) ≥ −m j |r1 − r2|2 (28)

for all ri ∈ R, ηi ∈ ∂ j(ri ), i = 1, 2. The latter was extensively used in the literature,
see [17] and the references therein. Condition (24) can be verified by proving that the
function

R 
 r �→ j(r) + m j

2
|r |2 ∈ R

is convex. An example of a nonconvex function which satisfies the condition (24) is
given in Example 11. Note that if j : R → R is convex, then (24) and (28) hold with
m j = 0. In fact, by convexity,

j0(r; s − r) ≤ j(s) − j(r) and j0(s; r − s) ≤ j(r) − j(s)

for all r , s ∈ R which imply j0(r; s − r) + j0(s; r − s) ≤ 0. Therefore, for a convex
function j : R → R, condition (24) or, equivalently, (28) reduces to monotonicity of
the (convex) subdifferential, i.e., m j = 0.

6 Examples

The following examples provide nonconvex and convex functions which satisfies the
hypotheses H( j), (H1) and (24).

Example 11 Let j : R → R be the function defined by

j(r) =
{

(r − b)2 if r < b,

1 − e−(r−b) if r ≥ b

for r ∈ R with a constant b ∈ R. This function is nonconvex, locally Lipschitz and its
subdifferential is given by

∂ j(r) =
⎧

⎨

⎩

2(r − b) if r < b,

[0, 1] if r = b,

e−(r−b) if r > b
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for all r ∈ R. Hence, we have |∂ j(r)| ≤ 1+2|b|+2|r | for all r ∈ R. Moreover, using
Proposition 3(ii), one has

j0(r; b − r) = max{ζ (b − r) | ζ ∈ ∂ j(r)} =
⎧

⎨

⎩

−2(b − r)2 if r < b,

0 if r = b,

e−(r−b)(b − r) if r > b

for all r ∈ R. Thus H( j) is satisfied. By the above formula, we also infer that (H1) is
satisfied. Further, we show that condition (24) holds with m j = 1. The condition (24)
is equivalent to the relaxed monotonicity of the subdifferential

(∂ j(r) − ∂ j(s))(r − s) ≥ −|r − s|2 for all r , s ∈ R.

The latter means that

(

∂

(

j(r) + 1

2
r2

)

− ∂

(

( j(s) + 1

2
s2

))

(r − s) ≥ 0 for all r , s ∈ R,

i.e., the subdifferential ∂ψ of the function ψ : R → R defined by ψ(r) = j(r) + 1
2r2

is monotone. Now, the monotonicity of ∂ψ can be verified using the formula

∂ψ(r) =
⎧

⎨

⎩

3r − 2b if r < b,

[b, b + 1] if r = b,

e−(r−b) + r if r > b

for all r ∈ R. We conclude that H( j), (H1) and (24) are satisfied.

Example 12 (see [15, Example 3]) Let the function j : R → R be given by

j(r) = min{ j1(r), j2(r)}

for r ∈ R, where ji : R → R are convex, quadratic and such that j ′i (b) = 0, i = 1, 2.
It is known, see [6, Theorem 2.5.1], that

∂ j(r) ⊂ conv{ j ′1(r), j ′2(r)} for all r ∈ R,

so, the subgradient of j has at most a linear growth. Using the monotonicity of the
subgradient of convex function, we get

0 ≤ (

j ′i (b) − j ′i (r)
)

(b − r) = − j ′i (r)(b − r) for all r ∈ R, i = 1, 2,

and, by Proposition 3(iii), we have

j0(r; b − r) = max{ζ(b − r) | ζ ∈ ∂ j(r)}
= max{(λ j ′1(r) + (1 − λ) j ′2(r)

)

(b − r) | λ ∈ [0, 1]} ≤ 0.
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Hence, we deduce that condition H( j) is satisfied. Similarly, if j0(r; b − r) = 0 for
all r ∈ R, then λ j ′1(r)(b − r) = 0 and (1 − λ) j ′2(r)(b − r) = 0 for all r ∈ R with
λ ∈ [0, 1], which is possible when r = b. So, j satisfies also (H1). Further, it is easy
to observe that in the case when the graphs of functions j1 and j2 have two common
points, then the function j is nonconvex.

Example 13 Let j : R → R be the function defined by

j(r) = 1

2
(r − b)2

for r ∈ R with b ∈ R. Then

j0(r; s) = (r − b) s and ∂ j(r) = r − b

for r , s ∈ R. Moreover, we have j0(r; b−r) = (r −b) (b−r) = −(b−r)2 ≤ 0 for all
r ∈ R. Also, for all r ∈ R, if j0(r; b − r) = 0, then (r − b) (b − r) = −(b − r)2 = 0,
which implies r = b. Hence we deduce that j satisfies properties H( j) and (H1). By
Remark 10, it is clear that j satisfies (24) with m j = 0.

Example 14 Let m1, m2, r0 ∈ R be constants such that m1 ≤ −r0 < 0 and m2 ≥ r0 >

0. Consider the function j : R → R defined by

j(r) =

⎧

⎪⎪⎨

⎪⎪⎩

r20
2 + m1[r − (b − r0)] if r < b − r0,
1
2 (r − b)2 if b − r0 ≤ r ≤ b + r0,
r20
2 + m2[r − (b + r0)] if r > b + r0

for r ∈ R, b ∈ R. The function j is convex, its subdifferential is given by

∂ j(r) =

⎧

⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

m1 if r < b − r0,

[m1,−r0] if r = b − r0,

r − b if b − r0 < r < b + r0,

[r0, m2] if r = b + r0,

m2 if r > b + r0

for all r ∈ R, and its generalized directional derivative has the form

j0(r; b − r) =

⎧

⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

m1(b − r) < 0 if r < b − r0,

−r20 < 0 if r = b − r0,

−(b − r)2 ≤ 0 if b − r0 < r < b + r0,

−r20 < 0 if r = b + r0,

m2(b − r) < 0 if r > b + r0
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for all r , s ∈ R. Hence, we obtain that j0(r; b − r) ≤ 0 for all r ∈ R. Similarly, if
j0(r; b−r) = 0 for all r ∈ R, then r = b. We conclude that j satisfies H( j) and (H1).
Moreover, the function j , being convex, satisfies (24) with m j = 0, see Remark 10.

Example 15 We define j : R → R by

j(r) = |r − b| =
{

−r + b if r ≤ b,

r − b if r > b

for r ∈ R with a constant b ∈ R. Then, we have

∂ j(r) =

⎧

⎪⎨

⎪⎩

−1 if r < b,

[ − 1, 1] if r = b,

1 if r > b

for all r ∈ R, and

j0(r; b − r) =

⎧

⎪⎨

⎪⎩

b − r if r > b,

0 if r = b,

r − b if r < b

for all r ∈ R. Thus, j0(r; b − r) ≤ 0 for all r ∈ R. Also, we observe that if
j0(r; b − r) = 0 for all r ∈ R, then r = b. In consequence, the properties H( j)
and (H1) are verified. Further, since j is convex, it satisfies (24) with m j = 0, see
Remark 10.

7 Conclusions

Wehave studied the nonlinear elliptic problemwithmixed boundary conditions involv-
ing a nonmonotone multivalued subdifferential boundary condition on a part of the
boundary. Based on the notion of the Clarke generalized gradient, the variational form
of the problem leads to an elliptic boundary hemivariational inequality. We have pro-
vided results on existence, comparison of solutions and continuous dependence on the
data. Sufficient conditions have been found which guarantee the asymptotic behavior
of solution, when the heat transfer coefficient tends to infinity, to a problem with the
Dirichlet boundary condition. Under our hypotheses, the proof of the monotonicity
property of Theorem 1(iv) for the elliptic hemivariational inequality (7) remains an
interesting open problem. We have also given some examples of locally Lipschitz
(nondifferentiable and nonconvex) functions to which our results can be applied.
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