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Graciela G. GARGUICHEVICH - Domingo A. TARZIA (*)

The Steady-State Two-Phase Stefan Problem
with an Internal Energy
and Some Related Problems (**).

1. - Introduction.

We consider the problem of the steady temperature distribution of a
body or a container with a fluid, which is submited to an internal ener-
gy g-

We assume the body to be a bounded domain 2 c R", with a suffi-
cently regular boundary 80 =I'y U I U I, I'y and I'; being disjoint por-
tions of 32 of positive (= — 1) dimensional measure. Assuming a phase-
change temperature of 0°C for the material occupying Q, keep I'y at the
temperature 6= b> 0 and maintain a heat flux ¢ on I'; and a null heat
flux on I';. Assuming a stady-state problem, we can expect a phase
change to take place in Q if the internal energy g in Q and the outflow of
heat g through I', are small and large enough respectively. This paper
is devoted to obtain necessary and/or sufficient conditions for ¢ and g
such that 6 takes negative and positive values in Q@ (two phases are
present).

The temperature. 6=06(x) can be represented in the following
way

0,(x) <0, «e, (solid phase),
(1.1) x) =40, x € £ (free boudary),
6, (x) >0, « e, (liquid phase),

(*) Instituto de Matemética «Beppo Levi», Facultad de Ciencias Exactas,
Ing. y Agr., Avda. Pellegrini 250, 2000 Rosario, Argentina.
(**) Nota giunta in Redazione il 7-IT1I-1990.
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where Q = Q, U0, U £, and satisfies the conditions below

(—k;A0;,=¢ in Q;,(i=1,2),

6;=6=0, k1%=k2%onﬁ,
1.2) wln=b Sr], =0

—kg—Z%-= if6>0o0nTI,,

L—kl%=q if <0 on I,

where k; > 0 is the thermal conductivity of phase 7 (i =1 solid phase,
1=2 liquid phase).
If we define the new unknown function » as follows[3, 7, 14]

1.3) . u=ky6"—k6- inQ,
we obtain the problem

—_ = i = - a—u = % =
(1.4) Au=g in Q, ulrl B’ on |r, 7, on Iy 0’
with
(1.5) B =lkb>0.

The notation above and in the sequel is the following: » is the outer
normal to I'; (or I'3); |Q| denotes n-dimensional Lebesgue measure of Q;
|I'| denotes (n — 1) dimensional Lebesgue measure of I'; I'y, I'; and I'; are
assumed to be smooth such that the solutions of some elliptic problems,
which appeared in this paper, are functions of H%(Q) nC°(@Q).

In section 2 we present the variational formulation of (1.4), whose
solution is well known[9, 14]. We give several monotonic properties of
the solution u to (1.4) and some comparison theorems that will allow us
to estimate, from above and below (section 3), the critical flux function
q = q.(B, g) such that (following[2]):

— for (q,g9) with ¢=<gq.(B,g), 6>0 in Q (only one phase is
present),

— for (g, g) with ¢ > ¢.(B, g), 6 takes negative and positive values
in Q (two phases are present).

We also obtain (following[15]) some useful functional deriva-
tives.
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In section 4 we solve some heat flux optimization problems with
temperature constrains (following[8]) and we give three steady-state
examples[15] with explicit solution (section 5) which illustrate all pre-
vious theoretical results. Moreover, we can exhibit and example with a
mushy region.

This work has grown out as a generalization of the results obtained
in[2, 8, 15] in the case g=0.

2. - Variational formulation and some general properties.

We recall the variational formulation of (1.4). Let:

o, ) = [ VuVuds,
Q

@1 L) = fswdw—fqur (= Ly,
I

Q 2
V=H'@), V,={veV:i,=0},
K = {veV:v|, =B} (= Kp),

with L e V{ (e.g. ge L?(I,), g € L)) and B € HY%(I;), then the
unique solution u = ug,, of (1.4) is characterized by [9, 14]:

2.2) ueKg, au,v)=Lw®), WVveV,,
and also by the minimum problem

2.3 ueKg, Ju)ysJw), WveKj,
with

@.4) Jw) = %a(v, v)— L(w).

Linearity implies that the unique solution ug,, of (1.4) is also charac-
terized by

(2.5) Uy = Up + U, +u, in Q,

where ug, u, and u, are respectively defined by

2.6) upe Kz, a(ug,v)=0, VveV,,

@1 u€Vo,  al,v) =~ [qudy, WweV,

I

2.9 ueVo,  aluy,v)=[gude, WoeV,
Q



618 GRACIELA G. GARGUICHEVICH - DOMINGO A. TARZIA [4]

REMARK 2.1. In the case B, ¢, g are constant on I';, I'; and in Q re-
spectively, it results

(2.9) qug=B—q'u1+gug inD,

where

2.10) u, € Vy, a,(ul,'v)=f'vdr, YveV,,
Iy

and

2.11) uy € Vg, a.(uz,v)=fvdx, YveV,.

a

We recall the maximum principle[9, 13] to prove:
2.12) %, and u; are positive functions in Q.
Next, we give a monotonicity property of the solution to problem (2.2)
as a function of the data B (or b), ¢ and g.

LEMMA 2.1. If u = ug,, is the unique solution to problem (2.2) for
data functions B (= k,b), ¢ and g then, we have:

) If Bij<By, (or by<b,)onIy, g;<q,onT,, and g;<g, in Q,

then
(2.13) Uy = Up g g S Upygg =%z In Q.

ii) A strict inequality is obtained for u; if either of the inequalities
for B;, g; or g; is strict.

We consider for fixed B > 0, the unique solution « to (2.2). It is easy
to prove that

(2.19) fgu‘dx+a(u‘,u‘) = fqu'dr
el Ty
and this result leads immediately to the following:
LEMMA 2.2. The unique solution u to (2.2) for fixed positive

B e HY2(I)), positive gqe L2(I';) and non negative g e L2(Q) veri-
fies:

(2.15) u #0 inQ <« 4 #0 onl5.

REMARK 2.2. In other words, if g =0 in Q, there will be a change of
phase in Q if and only if u takes negative values on I',. We can also
achieve this fact by using the maximum principle[9, 13].
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Now, we define the real functions Fg;: R— R and Fig,;: R— R such
that

216)  Fp(@) = Jing) = 5 0ng , Usg) — [ QUngda + [ ungydy,
Q

Ty

for fixed positive B € HY2(I;) and g € L%(Q), and

@17 Fa,(g)=Juzy) = -;-a(uaq, tneg) — 9 [ gy @+ [ quagdy,
o

Iy
for fixed positive B € HY2(I") and q € L2(I';). Then, we obtain the fol-
lowing properties:
THEOREM 2.3. The functions Fy, and Fj, verify:
i) Fg, € C'(R) with

(2.18) Fh (= f Upgdy,
Ty
and Fp, is a strictly decreasing function.
i) Fp, € ¢ (R) with

(2.19) Fiq(9) = — [ ungydz,
[°]

and Fj, is a strictly decreasing function.

PrOOF. We shall only include a proof for ii). The item i) is proved
using similar techniques and the same result is obtained in[15] for the
gase g =0. First we prove that the function g — [ugy de is continu-
ous. a

Let « be the coercivity constant on V, of the bilinear form a, and
heR. Taking into account the Cauchy-Schwarz and the Poincare-
Friedrichs inequalities (with constant &(Q)) we obtain:

fo) 1/26(-0)
(2.20) lltmacg + 1y — gy llv < l?_ IAl,
and
Q(e(Q)
2.21) f(“aq(aw“uaw)d-'”\ < | la In .

0
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It is easy to verify that:

FBq(o+h) —Fqu

(2.22) B S— = —:.12" J’(qu(g+h) + upy) dix,
Q

and hence, Fp, € ¢ (R®) with Fj, given by (2.19).
Moreover Fj, is a strictly decreasing function as a consequence of
Lemma 2.1.

COROLLARY 2.4. i) If g, € R, such that Fg , (g,) <0 for a fixed po-
sitive B, € H'/2(I';) and non negative g, € L2(Q), then Upggy is of non-con-
stant sign in 0O (two phases are present) for all Be HY3(I}),
0<B<B,; geL*(Q), O0<g<g, and qeL3@;) such that
}gf,’ q@) =¢qo.

ii) If gjeR such that Fp,(g,)>0 for a fixed positive
B, € HY2(y) and q, € L®(I';), then ug,, is of non-constant sign in Q for
all Be HV*(I'), 0<B<B,;qe L*(I;), ¢ = ¢, and g € L2(Q) such that
sup g(x) < g,.

z€0

PROOF. The results follow from the above Theorem and Lemmas
2.1 and 2.2 (the last one only in case i)). We can also use the maximum
. principle.

3. - Some estimates for the critical heat flux which characterizes
a two-phase steady Stefan problem.

We shall now consider the case B> 0 and constant on Iy, q constant
on I'; and g € L%(Q). We define a critical heat flux function

3.1 ¢.:R*L2@Q)—>R, (B,9)—q.(B,9

such that

— for each B>0 and ¢=<gq.(B,g), upy =0 in 2 (no phase
change),

— for each B>0 and ¢ > ¢.(B, g), ug,, is a function of non-con-
stant sign in Q (two phases are present).

THEOREM 3.1. ¢. is a non decreasing function, that is for all
0<B,<B, and for all g,,g, € L2(Q), g, <g; it results

(3'2) .qc(Bl’gl)sqc(BZ)QZ)-
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PROOF. From Lemma 2.1, 0<up @, 50 S UByq,By,0) N O and
hence we have the thesis.

In next theorem we follow the idea of{2] and we give some esti-
mates for ¢.(B, g).

THEOREM 3.2. i) Set g=0 and wg, denote the solution of

) a’ng
(8.3) —Awg, =g in Q, ng|r1=Bv WBg|p2=0, an r3=0

Define ¢;: R* (L2(Q))* =R* {g e L2(Q): ¢ >0 in Q} — R such that

)

Then, for all B>0 and g=0, ¢ <g;(B,9) implies Uggy = Wy in Q.

1
ii) Let P, e I'; and we define, if it is possible, the affine function
ng to be such that

3.4 B, gy = Inf| - 222
3.9 %(8,0) = Inf | -

3]

(3.5) ch|p1>B, nB(P2)=O, ”B|r2>0, ﬂ =0
on I,

and

(3.6) zgg=rng+W, inQ,

where i, denotes the solution of

- - dw,
@D -aWy=g, WI=0, Bln=0, | =0.

Let ¢,: R* (L2(Q))* > R be such that

(8.8) ¢,(B,g) = Sup(

Then, for all B>0 and g=0, q > q,(B,g) implies ugy < 25, in Q.
iii) We have

(3.9) ¢:B,9)<q.(B,9)<q,(B,9), VgeL?@), g=0, BeR".

PROOF. We use the maximum principle.

REMARK 3.1. We note that w, < =g+ %, in Q, and, if w, +# =g + W,,



622 GRACIELA G. GARGUICHEVICH - DOMINGO A. TARZIA (8]

we have ¢;(B, g) <q,(B, g). Sufficient conditions for nz to exist are
the same as in the case ¢ =0 and can be seen in[2].

THEOREM 3.3. Let Fp, be defined as in (2.16), then we have

G1) D Fh@<0eg>a®+ L,
with
3.11) &= aluy, ) = [u,dy >0,
Iy
3.12) cg=a(ug,u1)=fgu1dx=fugdy,
0 Iy
(3.13) g (B) = ﬂgz_l >0,

(u, and u, are defined by (2.10) and (2.8) respectively).

c
@14 i) @B+ >¢B,9, VYgel*@, g=0, BeR*,
that is, if ¢ > qo(B) + ¢,/ ¢, then ug, is of non-constant sign in Q.

Proor. 1) We use (2.5)-(2.10) in (2.16) and we obtain

2
3.15) Fg,(q) = —-;:a(uy,ug)+qa(uy,u1)— %a(ul,u1)+

+B [q|1’2 | -af gdxl .

Therefore
(3.16) Fj,(q) = alu,,u; ) + B|l2| — galu;,, u,) = ¢, + BIl;| — ge;.
It results from (2.12) that ¢, > 0 and then

B|y|

(5]

. G Cq
Fp,(@ <0< qg> +c-1=q0(B)+ R
il) It results from i) and Lemma 2.2, taking into account that, for

920, ¢, =[gu;de>0 and then ¢o(B) +¢,/c; > 0.
Q
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REMARK 3.2. In the case g is constant, we have ¢, = gc); with

@17  c=0(, %)= [wmdr= [uzdy>0, (u, defined by (2.11))
ol

Iy

and
C
(3.18) w®B)+ 229> q.(B,9), Vg=0.

~ In a similar way, we shall consider now the case B>0 and constant
on Iy, g € L2(I;) and g constant in Q. It results:

2
(3.19)  Fa,(g) = — T-aluz, up) — glatus, u,) + Blall +

+qudy+ % fquqdy,

Iy Iy
3.20) Féq(g)=_a(W’u‘Z)g_a(u‘Z’uq)_Blo|’

where u, and u, are defined by (2.11) and (2.7) respectlvely We obtain
the following

THEOREM 3.4. Let Fp, be defined by (2.17), then we have:

@.21) i) F3,(g)>0g< z—: —go(B),

with

@2 ¢ = alg, up) = [ >0,
o

(3.23) ¢g= —alug, u) = — [uyde = [ quyy,
g P

(3.24) g0(B) = —"’—l >0.

ii) If g<-—go(B)+c,/cc then wug, is of non-constant sign
in Q.

REMARK 3.3. Note that in the above theorem neither ¢ nor g are
required to be positive or non negative, as they were in the previous
theorems.
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REMARK 3.4. In the case q is constant on I';, we have ¢, = qc;,
and

(3.25) 0. (B) + cc—;y>qc(B,g), VgeR,
with

3.26 B) = go(B) -2

(3.26) ¢:1(B) = go( )EE'

From now on, we shall consider the case B >0, ¢ and g are constant
on I, I'; and in Q, respectively.
The function F: R*R?— R, defined by

8.27) F(B, q,9) = J(ugy) = Fgy(q) = Fgy(g),
verifies

C C.
3.28) F(B,q,9)= —glq2+clzqy— 3292+B|I‘zlq—3|0|y,

and
'%fl’.(B,q,g) = —¢ ¢+ 29+ B|I|,
3.29) ) %(3, q,9) = c12q — czg — Bl
L%(B,q,g) =Irzlg—lalg.

THEOREM 3.5. i) We have that D = ¢, ¢, — c% > 0, that is, for fixed
B>0

graph F = {(¢,9,2) e R*/2 = F(B, ¢, 9)}
is an elliptic paraboloid.
ii) The straight-lines in the ‘plane g, ¢:
B.30L) —cig+cg+Bllz|=0, L) cpqg—cig—BlO|=0,
meet together at the point (¢*, g*) where

Il2| e, — Q] 12 |P2| ere— Q] €4
* * -—
(38.31) q —B————D , g*=B D .
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PROOF. We have
0< e = alty, %) = | Yoty Vit < |Vats | [Vt oo = ViV,
o]

and divVu,=A4u; =0 in Q, divVuy,=Au,=-1 in Q, and then
Vu, # ¢ Vu, for any constant c. Therefore, the equality doesn’t hold and
it is D = ¢, ¢, — €13 > 0. After that, we simply solve the linear system
(8.30) to obtain (3.31).

THEOREM 3.6. Let be

B _ _B
Infu, ~ Supu,
Iy Iy

(3.32) Q(B) = =q(B)>0,

Su
rzpuz - Ipfuz

(3.33) M= =m>0.

2
Infu, ~ Supu,
Iy Iy
Then, we have

(3.34) goB)+myg<q.(B,9) <Qy(B)+Mg, Vg=0.

PROOF. If up,, is of non-constant sign in Q, then by Lemma 2.2, for
B>0, g=0 and ¢>0, there exists x €I such that wuggy(x)=B -
— qu; () + gus () < 0. Therefore

B + guy (2)

> go(B) + >0,
u, (%) 0B +mg
that is, §,+mg <g¢.(B,g), Vg =0. If g=0 and

B + Sup u,

Iy

q>Q0(B)+Mg= —1pr1—>0’

then, ugy, (x) <0, Vx eI’; and ¢.(B,9) <Q,(B) + Mg, Vg =0.

CoROLLARY 3.7. i) If %, |5, = «, is constant, then ¢.(B,0) =B/« =
= go(B) = Q(B).

ii) If %, |r, = «; and uz|r, = a; are constant, then

(3.35) ag, (B, g) = ZBI +2g, wvg=0.
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4, - Some heat flux optimization problems with temperature
constrains.

Following the idea of(8], we consider, for B € H¥2(I";), B> 0;
g € HY3(I,), and g € L%(Q), g = 0, the following optimization problem:
For a fixed B>0 and g € L2(Q), g =0; find ¢ that produces the total
ma.zc_imum heat flux on I';, within the outflow of heat for which ug,, = 0
in Q (only one phase is present). That is

4.1 (P,): Findg, € Q, such that N(g,) = Sup N(g),
qeQy '
where
4.2) N:Q—R, q—>N(q)=fqdr,
Ty

and

S,={veKg:—Av=¢g in Q dv =0

g B ’ an r, ’
@3 15t ={(veS,:v=01in 0},

Q=H"'My), @ =T(5})=1{7€Q, upy >0 in 0},
with .
4.4) T:Q,—S,, q— T(q)=upy,

where ug,, is the unique solution of (2.2). Then, there will not exist a
phase change in O for any heat flux g€ Q; .

LEMMA 4.1. i) T is an affine and monotone decreasing operator,
that is, there exist u; € S; and Ty, T; so that T=T, +T;, where

{le Q,—S,/T\@=u¢e8,, VqeQq,,

4.5)
T:: Q,— V,/T; is linear and continuous.

ii) Q, is a convex set and N is a linear (then, convex) func-
tional.

PROOF. The proof is similar to that given in[8], for the case g =0, if
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we define %, € K and %, € V, such that:

4.6) @ K, a(al,v—al)=[g(v—al)dx, Vv e Kj,

]

@D GeVe, alg,v)=-[qudy, WoeV,,

Py
and we put

4.8) T'(@=u and Ty =%, VgeqQ.

If we consider, by hypothesis, that the solution % of (1.4) or (2.2)
verifies the condition u € H2(Q) n C°(@Q) (For n <3, it is sufficient that
u € H?(Q)), we can obtain the following existence and uniqueness

property.
THEOREM 4.2. There exists a unique g, € @, such that
“4.9) N(g,) = Maézf N(g).
geky

Moreover, the element g, is defined by

awBy

4.10) %=""3,

’
I

where w, is given by (3.3).

PROOF. We consider v, = u — wg,, and we have, from the maximum
principle:

ov,
N(qy)—N(q)=f(qy—q)dy= —f—a—n—dyzo.
I, n

Uniqueness will be proved later on. Let I: S; — R be the linear function-
al defined by

v
(4.11) 1) = —f %dy, VveS,.
Iy

We now consider a new formulation P{ of P;: Find v,e S, such
that

(4.12) I(v,) = Mag)f I().

1)6,
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It is clear that

v,
v, is a solution to (P{)=>g,= _8_7: . is a solution to (P,),
2

g, is a solution to (P,) = v, =T(q,) is a solution to (P{),

We can also define (P{) in the following way: Find v, € S, such
that

4.13) I(v,) = Max {I(v): ve S,, Gv) <0},
where
4.149) G: S,—»C(p), v-oGW) =—1,.

We obtain, following[1,4, 8], that there exists a Lagrange multiplier
®E ((‘30(1“2)) (dual of GO(FZ)) with x=0 (ie. (u,p)= fypdy?()
Vp € @%(I;), p=0 on I';) that satisfies

(4.15) —IW)+ {u,GW)) = -I(u), Wve Sy,
(4.16) (u, Gw)) =0,
and then, we can prove that
e _ %
4.17) u=wp, and u= o |n’

where v, is the unique solution of

81)0

(4.18) A’Uo=0 mn Q, vo'l"l=0, v0'1~2=1, an

Iy

REMARK 4.1. The Lagrange multiplier u, defined by (4.17), is inde-
pendent from g, so we have the same u for each solution wg,,
Vg=0.

We now consider a second optimization problem:

(P;) Forfixed B € H¥2(I';), B> 0; g € L*(Q), g = 0, find the max-
imum constant flux gy such that up, =0 in Q, that is: Find gy =
= gy (B, g) > 0 such that

(4.19) Upgy =0 in Q for all constant g <gy.

From (3.1), it is obvious that, for fixed constant B, we have that
qu(B,9) = ¢.(B,9), Vg =0, g e L2@).



[15] THE STEADY-STATE TWO-PHASE STEFAN PROBELM ETC. 629
THEOREM 4.3. The solution to (P;) is given by

Ug (x) + ug (x)
(4.20) 9u = qu (B, 9) = Inf — -

where up, %, and u, are given respectively by (2.6), (2.8) and
(2.10).

PRrRoOOF. It follows immediately from (2.5) and Lemma 2.2,
The monotonicity of up, (Lemma 2.1) implies

COROLLARY 4.4. We consider Bye H¥2(I')), By>0, go€ L*(Q),
90=0 and q € L2(I';) such that Sup ¢(®) < gy (By, 9o ), then ugy, = 0in 0
for all B= B, and g=g,. zele

We give a third optimization problem as a generalization of problem
(Py):

(P;) For fixed Be H¥2(I), B>0; q,eL?*}), q.,>0 and
g e L3(Iy), g=0; find Q4 > 0 such that

(4.21) Upe =0 in Q, for al Q<Qy and ¢=Qq,.

THEOREM 4.5. The solution to (P3) is given by

ug () + u, ()
4.22) =Inf ———————
( QM ze [‘2 qq‘ (x)
where ug, u, and u,, are given respectively by (2.6), (2.8) and
au‘lt au‘h

. = 1 . = = >
(4 23) Auq' 0in Q y Ugq, II'1 0 ' “an f qx 0 ' 3n A n

=0.

5. — Examples.

We shall give three examples in which the solution is explicitly
known, for B>0, ¢ and g constant[6, 15]:

EXAMPLE 1. We consider

n=2, 0=0,2)%0,4) >0, y%>0,
(5-1) Fl= {O} X[O,?/o], F2= {x‘O} X[O, y0]7
T3 =(0,2) X {0} U (0,2) X {0} .



630 GRACIELA G. GARGUICHEVICH - DOMINGO A. TARZIA [16]

We obtain that (%, ug, ¢, ¢, ¢12, l; and Iy, (g%, ¢*), ¢i, ¢, and ¢, are
defined by (2.10), (2.11), (3.11), (3.22), (3.17), (3.30), (3.31), (3.4), (3.8)
and (3.1) respectively):

( 2
ul(x’y)=x7 ug(x,y)=x0x—?,
x8 xf
€1 = %oYo,> C = 03?/0’ Ci2 = 02%,
x4 2
D=0102"0122=—}g_0, Q| = x99, 2] =0,
Zo B _ %o B _
62 b)) ¢-59-%2 =0, b)g-7g9-5 =0,
-(_2B _6B = B %
(g*,q*)—( Zo xg), %B,9)=¢B,9)= -+ 39,
qc(B g)__0+_g, lfg?——z',
0
qc(B9g)=gx0+ —-2B, ’ 1fg$—2;
L Lo
EXAMPLE 2. We consider
n=2, 0<nr<nr,, 7, w: polar coordinates in RZ,
6.3){a={(r,u):r<r<r}, Nn={re:r=r,0<o0<2r},
D={row:r=r,0€0<2r}, Ir;=40.
We obtain that
2 2 2
_ r _ Tz r _r-n
u‘(r)—rzlong, U () = 2 log " 1
We define
c=%, ac) = 2—-1)—2log ¢,

Bey=(1+c2)logec—(c2—1), y(c)=2c%log c—(c2-1),
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and then

(5.4) W

mric

¢ =2nriloge, cp= [2c%log ¢ — (c2—1)],

2
i 4 2.2 2
c2=—8—[4c log ¢ —2¢2(c2— 1) — (c2—1)*],

2
D=cicg—ch=Zrfc3(c2-1)Blc),

4
|D|=7'(7'22_rf)1 |I'2|=27".2’
B rp nE-D|
h g rylog ¢ [2 4clog ¢ =0,
2(c2-1)B
L) q-

[2¢%log ¢ — (2= 1)) c -

n [4ctlog ¢ — (¢ — 1)(8c2 — 1)]

4c[2c%log c— (2 - 1)]

631

(g*,q*)=(— 280 ,E[ 1____ 190 ])
rfc?—- DA 2| loge  (*-1)c)log e
¢:(B,9) = rzlfgc [-rzg - %6120;_1)] ’

uB,9= 2 +[% - %%—;—?]9’

4. (B, ) = rzlfgc +[%_%c:0;_?]g’ f9=-5
98,9 = -ZL1Q*g) - 2], ifa<—rl.fB

where Q(g) is defined implicitely by

(5.5)

2
H(g,@=B+g 2 [Q*[210g Q- 11+ 1] =0.

ExAMPLE 3. We consider the same data as in example 2 but now
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for n=3. We obtain

3 2_ .2
T re—r
Ul(r)=r§(%—%),wg(r)=—g(%—%)— =,

cy=4mrdctc—-1), c¢p= %m‘i‘cz(c— 1¥@2c+1),

C;= :’—57:1-15(0— 1)2(5c®+6c2+3c+1),

D=cicp—ch = fgnzrf(c— 1% c3(de? + Te + 4),

Q] = %n(rg—rf) , M =4arE,

L) B rc—1D2c+1)
V9T de=-D 6c o
" 2B(c2+c+1) 2r, (5c3+6c2+3c+1) — 0
6.7 | 9 re2(c - 1)@c +1) 15¢2(2c+ 1) =5
. 180B(c + 1)
S T ie-1PAE A Te+ )
q*=_123 (c2+8c+1) ’
™ elc—1@Ec2+Tc+4)
: r(c—1)02c+1)
¢(B,9) = ricc—1) + 6¢c g
_ B ri(c—1)2c+1)
qa(,B’g)— "'1(0—1) + 6¢ g9,
r(c—1)2c+1) .
B, 9= —D—+ ifg=g,

rec—1) 6¢c g

qc(B,g)=g%(c—Q(g)), ifg=g,
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where

6B
8 - ,
6.8 9 T e —1r@e+ D)

and Q(g) is implicitely defined by
73 [, ~ c \\/3 4/3 732/3
6.8 H(g,®=B+g-|2Q c—(a) — 3023+ 1] =0.
We recall that, in the three examples, for g =0, Lemma 2.2 is valid

and, for g<0, ugg (xy) = Min ug,, (x) with x, € Q[6].
z€E0

REMARK 5.1. The formulation (1.4) can exhibit the existence of a
mushy region[5, 10, 11, 12] (i.e. the zone where u is equals to zero has
positive measure) in Q for a suitable source g. We consider data (5.1) in
Example 1. Then, if data 2> 0, B >0, ¢ >0, go >0 and g, <0 satisfy

the following condition
2B \'/* q
( [} ) < %o gz’

then the function
B+g1£x—%x2, O<zxs<t,
w(x, y) = wx) =40, E<z<ny,
—g—2f+gznx—&x2, n<x <X,

2 2

exhibits a mushy region, given by the interval (¢, n), where
2B \'/* g
<t=|-22) <p=gy—-—<
0<¢ ( 0 ) M=% gy < %o

and the source term g € L2(Q) is given by

<0, O<x<i, 0<y <y,
g(x,?/)= 0, {sz=snqy, 0<?I<’!Io,
g2>0, n<x<x0, 0<y<yo.

Moreover, we can easily verify that the right size inequality in
(3.10) is hold.
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An open problem remains to verify the asymptotic behaviour
of the evolution mushy region model.
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