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A study on similarity solutions for a mathematical model for thawing in a saturated
porous medium is considered when change of phase induces a density jump and the in-
fluence of pressure on the melting temperature is considered. The mathematical analysis
is made for different cases, depending on the sign of the three physical parameters.

1. Introduction

In this paper we consider the problem of thawing of a partially frozen porous
medium, saturated with an incompressible liquid, with the aim of constructing

similarity solutions.

More specifically we deal with the following situations (for a detailed exposition

of the physical background we refer to Ref. 6):

(i) a sharp interface between the frozen part and the unfrozen part of the domain

exists (sharp, in the macroscopic sense);

(ii) the frozen phase is at rest with respect to the porous skeleton, which will be

considered to be undeformable;

(iii) due to the density jump between the liquid and solid phases, thawing can
induce either desaturation or water movement in the melting region. We will
consider the latter situation, assuming that liquid is continuously supplied to

keep the medium saturated.
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Although thawing has received less attention than freezing, our investigation is
in the same spirit as Nakano®7 (see also Refs. 10 and 11 for further references) with
the simplification due to the absence of ice lenses and frozen fringes.

The unknowns of the problem are a function x = s(t), representing the free
boundary separating @, = {(z,t) : 0 < z < s(t), ¢ > 0} and Q2 = {(z,t) :
s(t) < z, t > 0}, and the two functions u(z,t) and v(z,t) defined in @; and Q;
respectively, representing the temperature of the unfrozen and of the frozen zone.
Besides standard regularity requirements, s(t), u(z,t) and v(z, t) fulfil the following
conditions (we refer to Ref. 5 for a detailed explanation of the model):

Uy = a1Uzz — bps(t)u,, in @ (1.1)
Vs = A2Vzz , in Q2 (1.2)
u(s(t),t) = v(s(t), t) = dps(t)s(t), t>0, (1.3)
kruz(s(t),t) — kyuz(s(t), t) = as(t) + Bps(t)s(t), t>0, (1.4)
u(0,t) =B >0, t>0 (1.5)
v(z,0) = v(4+00,t) = —A <0, z>0,t>0, (1.6)
s(0)=0, 1.7
with . k
a1=af= v a2=ag= K _E'DWCW
pucu PFCF pucy
EYK pw — pI
d==E ,= . a=epr, 1.8
. % P pom a=ep; (1.8)
e2pr(ew — cr)vp
B= = edpr(ew —cr),
{ K
where

(€ > 0: porosity, p, and pr > 0: density of water and ice (g/cm?3),

¢ > 0: specific heat at constant density (cal/g-°C),

ky and kr > 0: conductivity of the unfrozen and frozen zones
(cal/s cm-°C),

u : temperature of the unfrozen zone (°C),

v : temperature of the frozen zone (°C), ¥ = v = 0 being the

$ melting point at atmospheric pressure, (1.9)

A > 0 : latent heat at u = 0 (cal/g),

7 : coefficient in the Clausius—Clapeyron law (s?cm °C/g),

i > 0 : viscosity of liquid (g/s cm),

K > 0 : hydraulic permeability (cm?),

B > 0 : boundary temperature at the fixed face z = 0 (°C),

[ —A < 0: initial temperature (°C).
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Remark 1.1. We recall the Clausius—Clapeyron law on the dependence of melting
temperature upon pressure, which, in the presence of capillarity has the form?®
p

s T - To
— +p—=-A .
o1 ppz Ty

(1.10)

In (1.10) 7 is the capillarity at the interface, T is the absolute temperature, and
Ty is the melting point under normal conditions (°C), and p is the pressure of the
liquid phase (p = 0 being the atmospheric pressure).

The usual Clapeyron law corresponds to setting = = 0, thus implying that

u(s(t)at) = v(s(t)at) = —'yp(s(t),t), (1'11)

where v = pTp/p1 ) has the same sign as p.
On the other hand, if the frozen region is in equilibrium with the environment
at atmospheric pressure, 7 = —p and (1.10) still lead to (1.11), but with

To
-0 1.12
7 PWA ( )

which is always positive.
In the following we will use (1.11) with no sign restriction on +.

Remark 1.2. In order to fulfil (1.3), a pressure gradient is needed. Darcy’s law
implies that p, is independent of r and, assuming that p(0,t) = 0, we obtain

p(s(t),t) = —LEs()s(t), >0, (113)
and hence, substituting (1.13) into (1.11), we obtain (1.3).

Remark 1.3. The free boundary problem (1.1)-(1.7) reduces to the usual Stefan
problem when dp = 0, since in that case we have the classical Stefan condition on
z = s(t):

u(s(t),t) = v(s(t),t) =0, t>0, (1.3"
krug(s(t),t) — kuuz(s(t),t) = as(t), t>0. (149

For this reduced problem a similarity solution (often referred to as Neumann’s
solution) is known.>%!%13 From now on we assume that dp # 0.

2. Similarity Solutions

Now, we will look for similarity solutions to problem (1.1)—(1.7) by considering eight
different cases depending on the sign of the parameters p, 3 and d (or equivalently
of 7). Our results include the cases considered in Refs. 3 and 5.
First of all we note that the function
z

201/t

u(z,t) = ¢(n) with n= (21)
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is a solution of Eq. (1.1) if and only if ¢ satisfies the following equation:

1
5+ (1= LaoVe) ) =o0. (22)
1
If we assume
s(t) = 21Vt (2.3)
we obtain that .
o(m =C1 + Cz/ exp(—12 + 2bpér) dr, (2.4)
0

where £, C and C; are constant values.
A solution of (1.1), (1.2) and (1.6) is given by (2.3) and

z /(201 V%)
u(z,t) =Cy + Cz/ exp(—r? + 2bpér) dr, (2.5)
0
z
, ) =Cs +Cyerf { —— | | 2.6
v t) =G+ Crert (527 9)
where erf is the error function defined as
2 t 4
erf(x =—/ exp(—r?)dr, erfc(z) =1-erf(z), 2.7
(z) 7= (=) (x) (z) 2.7)
and C,, Cy, C3, C4 and & are constant values to be determined.
From conditions (1.3), (1.5) and (1.6) we deduce that
2dpai¢? — B
Ci=B, C=—rr——ro 2.8
' 2T g(26p,8) (28)
2dpa?e? + Aerf(a €/ az) 2dpale? + A
= S i L 2.
Cs erfc(a1£/az) » G erfc(a;&/az)’ (29)
where g = g(p, y) is defined by
Y
g(p,v) =/ exp(pyr — r?) dr. (2.10)
0

Therefore, the similarity solution is completely determined once the constant £ is
chosen. This is done by imposing condition (1.4) which yields that £ is a root of
the following equation:

K\(B-my*)H(p,y) — K2F(m,y) =y + vy, y>0, (2.11)
where

_exp((p—1)¢®)
Hp.y) = 2v7)g(p,y) (212)
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and (r2?)
F(m,y) = (A + my?) SN0V ) 2.13
(m,y) = (4+my?) 200 (213)
and the constants Ky, K3, 79, 4, p, m and v are defined as follows:
kU k]-" a1
= K = = — = 2.
K, a1ﬁ>0’ 2 a2ﬁ>0’ Yo a2>0, d=aa; >0, ( 14)

p=2bp, m=2dpa?, v=208pa3. (2.15)
Then, we have obtained

Theorem 2.1. The free boundary problem (1.1)—(1.7) has the similarity solution

s(t) = 2l Vt, (2.16)
3 m€2 —-B z/(2a1v1) 2
u(z,t) = B + 0.0 o exp(—r* + p€r) dr, (2.17)
mé? erfc ( z ) +A (erf('yo.{) —erf ( z ))
_ 2094/t 2a2\/f
v(z,t) = orfe(708) (2.18)

if and only if the coefficient £ > 0 satisfies Eq. (2.11).

3. Preliminary Results

To analyze (2.11) in the different cases, we need to study the properties of the
functions involved. First, we consider F, defined by (2.13) where A and 4o are
given positive constants, while m can be positive or negative. We have

Proposition 3.1. Ifm > 0, then F grows from A to +o0o when y grows from 0
to 400 and it tends to +oo like \/Tyomy®. If m < 0, F grows from A to a positive
mazrimum, then it decreases to —oo like \/Tyomy?®.

Proof. The first part is trivial. To prove the second part of the proposition, we
only have to show that the derivative F'(y) has only one zero. Setting z = 7y, it
is easy to see that the equation

Im|

A
A= Y

Im|

has one unique root, since the L.H.S. increases from 1 —m/(Avyo)? to +00 as z goes
from 0 to vo+/A4/|m)]. O

Now we study g(p,y) defined by (2.10) or by its equivalent form!

%g(p, y) = exp (@) (erf (%y) +erf(£2—_2z—))—y>) , PER, y>0. (3.2

[V7zexp(z?)erfe(z)] 1 =1+
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When p > 0, we have from elementary calculation:

Proposition 3.2. For all p > 0, we have

opry) > piy (exp(( — 1)3?) — exp(—3?)) , ¥ >0, (33)
a(p.y) 2 exp((p - 1)) + & (1-exp(—1?) , ¥>0, (3.4)
g(p,O) =0a g‘y(p’o) = 1’ g(p7+°°)=+00- (35)

From Proposition 3.2 and (2.12), we immediately have
Proposition 3.3. For all p > 0, the function H(p,y) has the following properties:

Lim H(p,y) = +00, V¥ p>0; (3.6)

0 if0<p<?2,

yETmH(p,y)z 1 ifp=2, (3.7
400 if p>2;
. y 2
1 = ; .
PTGy~ GoavE T &2
0 if0<p<2,
lim y*H(p,y) = (3.9)
y—+oo +oo if p>2;
%%(p,y)<0, Vy>0,vV0<p<2. (3.10)

In order to study H(p,y) for p < 0, it is useful to introduce the variable

q=-p/2, (3.11)
and to write
H(p,y) = exp(—(1 + q)%y?)[erf((1 + q)y) — erf(qy)] *,
(3.12)
y>0, g=-p/2>0.

The proofs of the propositions that follow are based on elementary though
lengthy calculations which will not be reproduced here. If we denote by N(q,y)
the function in square brackets in (3.12), we have

Proposition 3.4. Function N has the following properties for any q > 0:
N(q,0)=0, yBTOON(q,y)=O, (3.13)
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2y 2 2 2y 2,2
—(1 < < = - .
ﬁeXP( (1+¢)%y?) < N(q,y) < ﬁexp( ¢°y?), Vy>0,¢>0, (3.14)

N >0 if 0<y<(qg)),
%—y(q,y) =0 if y=71(q), (3.15)
<0 if y>7), ’

%(q, y)=0 & y=V3y(q), (3.16)

where § corresponds of the mazimum of ON/dy for fized q, i.e.

¥(g) = \/ W : (3.17)

Proposition 3.5. For any p < 0, function H has the following properties:

Consequently, we have

gl_rg)H(p,y)=+oo, Vp>0 ygrwa(p,y)=0, (3.18)
OH
—(1+ 29)y?
ymexp(-(1+ Q)y)SH(p,y)S—‘/—i, Vy>0, (3.20)
2 Y 2y
- 2 _
m Y H(p,y)=0. (3.21)

At this point, we use Propositions 3.3 and 3.5 to study the behavior of the first
term on the L.H.S. of Eq. (2.11). Setting for convenience

I(y) = (B—my*)H(p,y), (3.22)
we have

Proposition 3.6. For every value of constants m and p we have

yl_ifﬁo I(y) = +o00. (3.23)
Moreover
(i) fm>0, y = \/m is such that
I(yo) =0, I(y)<0, Yy=>yo (3.24)
and

(a) ifp<2, then I'(y) <0 in (0,y0) end lim;, o I(y) =0,
(b) if p > 2, then limy— 400 I(y) = —00, and I(y) ~ —m(p/2 — 1)/7y>,
(c) ifp=2, then I'(y) < 0 in (0,%0), lime 100 I(y) = +00, and I(y) ~ —my>.
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(ii) fm <0,
(a) ifp <2, then lim;, 4 I(y) =0,

(b) if p > 2, then limy 4o I(y) = +00, and I(y) ~ —m(p/2 — 1)\/7y3,
(¢) if p=2, then limy—, 10 I(y) = +00, and I(y) ~ —my?.

4. Similarity Solutions

Now we are in a position to discuss the solvability of (2.11), which we rewrite as
follows:
Kil(y) - K:F(y) =y +vy®, y>0. (4.1)

It will be convenient to denote by ¢;, ¢ = 1,2,..., N the zeroes of the L.H.S. of
(4.1), if they exist, i.e.

KiI(g;))— K2F(¢;)=0, i=1,2,...,N. (4.2)
First we consider the case m > 0 and we prove
Theorem 4.1. Ifm > 0 and v > 0, (4.1) always admits solutions. Moreover,
(a) if p < 2, there erists a unique £ satisfying (4.1),

(b) if p> 2, there is one and only one solution § in (0,q).

Proof. The theorem is a straightforward consequence of the results of Sec. 3. We
note that the monotonicity of both sides of (4.1) guarantees uniqueness in case (a)
and that Proposition 3.6(i) yields the following inequality:

§<m<m=¢g. (4.3)

Result (b) is weaker since the monotonicity of I(y) is no longer guaranteed. |
Next, we have

Theorem 4.2. Ifm >0, v <0, a solution to (4.1) exists whenever

B é

E m . (4.4)

Proof. It is sufficient to recall that ¢; is always less than yo and that the R.H.S.

of (4.1) is positive in (0,/8/|v]). O

Remark 4.3. It is obvious that (4.4) can be replaced by the weaker requirement

/ J '
Q< Wa (44)

but we preferred to state Theorem 4.2 as above, since (4.4) involves explicitly the
parameters entering the model.
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Remark 4.4. Under some additional requirements, it can be seen that no more
than one solution exists in the interval (0, ¢;). This is true, e.g. if p > 2 and

Q< (4.5)

3jm|’

where the R.H.S. of (4.5) is the abscissa of the maximum of the function on the
R.HS. of (4.1).

Remark 4.5. If (4.4) is not satisfied, examples of non-existence of a solution can
actually be found.

Now we consider cases in which m < 0.

Theorem 4.6. Ifm <0, v > 0, sufficient conditions for the existence of solutions
are the ezistence of a root of (4.2) or

+
oo (131) o) s

where ( )* denotes the positive part of the quantity in bracket.

Proof. It is sufficient to note that (4.6) guarantees that, as y — +oo, the L.H.S.
of (4.1) tends to +oo slower than the R.H.S. (see Proposition 3.6(ii) and Proposi-
tion 3.1). The first case is obvious. a

Now, we pass to consider the last case. The proof of the following theorem is
trivial.

Theorem 4.7. Ifm <0, v <0 (4.1) has at least two solutions if (4.2) has roots
and

)
@< Eh 4.7)

Remark 4.8. When ¢, # ¢, the temperature

A
ut = (4.8)
CI — Cy
is the intersection of the two lines representing the energy of the solid and the liquid
as a function of temperature.

We note that the similarity solution is such that
u(s(t), t) = v(s(t),t) = me2. (4.9)

Therefore it seems appropriate to say that a similarity solution is physically accept-
able if

A

CI] — Cy

mg? <

when ¢ > ¢y,

when ¢; < ¢y,

mg* >

Cr — Cw
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ie.
2dpai(cr — )€ < A. (4.10)

(I) Xdp>0and ¢ < ¢, ie. m > 0, v > 0) (4.10) is always satisfied and
hence all solutions whose existence is guaranteed by Theorem 4.1 (with no
restrictions on the data and the coeflicients) are physically acceptable.

(II) If dp > 0 and ¢; > ¢, (i.e. m > 0, v < 0) condition (4.4) of Theorem 4.2
guarantees that at least a solution exists such that (4.10) is satisfied.

(IIT) If dp < 0 and ¢f < ¢y (i.e. m < 0, v > 0) (4.10) is always satisfied. Although
Theorem 4.6 does not guarantee existence for any value of the parameters,
nevertheless it does not impose any restriction on the size of £.

(IV) If dp < 0 and ¢, < ¢f (i.e. m < 0, v < 0) condition (4.7) of Theorem 4.7
guarantees that at least a solution exists such that (4.10) is satisfied.
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