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Remarks on a One-Dimensional Stefan Problem Related to the
Diffusion-Consumption Model

Wir muersm:hen c‘n..s- i grkah‘cn des frews Randes im Crank-Gupta-Modell fiir die Diffusion und den Verbrauch von Sauer-
alaff im [ wobei wi h dafi die Anfangsbedingung der stationiren Lisung entspricht und der
Zustrom von Saucraluff sich auf dem _,fl:rwrtan Rand verringert.

We study the behaviour of the free boundary of fﬁe Cmnt ("upl'a mad'el' for the diffusion-consumption of oxygen in a living
lissue, assuming an initial condition corresp g to the st and with a decreasing input of oxygen at the
fixed boundary.

Mu secaenyem nogeienne caoboIHol rpanuusl B Mojean Kponka-Iynta naa anddyaun u pacxofa kuedo-
pofa B osuBoll Teann, [Ipu oToM npeanoaaraeM, 4TO HAYATBHOE YCIORHE COOTBETCTBYCT CTAIMOHADIOMY
peuenie i, Luibiie, WTO IPUTOR KHeJdo| 1a pueny il rpannue yMennuaere.,

1 Iutroduetion

The Crank-Gupta model for the one-dimensional diffusion of oxygen in a living tissue [4] is given by the following
equations
ey —up =1, in Dy={x)0czcst)0<t<T},

80) =1,
uz, 0y =hiz), O<z<l; w0=[1, O<i<T;
u(st), &) =0, O<ti<T; wfe))=0, O<i<?,

where u(x, t) denotes the oxygen concentration and the source term in the heat equation accounts for the oxygen
consumption in the tissue,

It is well known that this problem admits a stationary solution w(z, ) = ; (1 — x)®, &(t)=1,in correspondence
with the obvious initial condition and the boundary condition f(t) = —1, which means that a constant unitary input
of oxygen is maintained at x = (.

In this paper we study the behaviour of the free boundary x - s(t) when, given an initial condition correspond-
ing to the stationary solution, the oxygen input at x = 0 decreases in time (with possible change of sign), i.e. when
10, t) is & monotonically increasing function of the time, with (0, 0) = —1.

To this aim we will consider the equations for the time derivative z(x, t) = wu(z, t). For z(x, t) we have then
a one-phase Stefan problem, similar to that of a supercooled liquid, i.e. with the free boundary conditions z(s(t), £) =0,
z:(s1t), t) = —3(t), and with z(x, £) < 0 in 0 < = < s(t), for ¢ > 0.

According to the general scheme of [5], we know that only one of the following three cases can occur:

(A} the solution exists for arbitrarily large 7';

(B) a time Ty exists such that s(T'p) = 0;

(C) a time T exists such that lim s(t) = 0 and lim &(t) = —oo.

t=Tg t+T¢

In section 2 the general case of a monotonically increasing u,(0, 1), implying z,(0, £} = 0, is considered. A ne-
cessary and sufficient condition for the case (A) is also determined: this condition is quite intuitive in terms of the
oxygen problem as it states that a global solution exists if and only if the oxgyen input at x = 0 remains positive
(i-e. u.(0, t) < 0) for any time t > 0.

In section 3 the case in which z,(0, {) is constant (l e. u(0, {) increases linearly in 1.|me) is considered in detail.

2. The general case of inereasing flux

Let us consider the following problem: find a triple (7', s, z) such that

iy T=0;

(ii) s(t) is a positive continuous function in [0, T), s € C1(0, 1");

(iii) z(z, t) is a bounded function, continuous in 0 =< = < s(t), 0 =t < T, such that z;(z, {) is bounded in the
same domain and continuous, with the possible exception of a finite numer of points on the parabolic boundary,
zz5(x, 1) and z,(z, t) are continuous in 0 < z < 8(t), 0 <t < 7T';

(iv) the following conditions are satisfied:

2o — 2, =0, Dy = {{zg, 1): 0=z < 8(t), 0 <t < T} (2.1)
5(0) =15 2z 0)=0, D<x<l; (2.2); (2.3)
2(0,8) = g(t), O<t<T; (2.4)
z(s()t) =0, O<ti<T; z(sltht)= -3, O<t<T. (2.5); (2.6)
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We are concerned with the case in which git) satisfies the following hypothesis, which will be assumed
throughout sec. 2:
(H) g{t) is & non negative piecewise continuous function in (0, -+oo), bounded in every interval (0, ¢), t = 0.

Tt iz well known that the problem (i) —(iv), with the hypothesis (H), has a unique solution (see [5]). Moreover,
the behaviour of the solution is ruled by Theorem 8 of the above mentioned reference. The statement of this Theorem
implies that one of the following cases must oceur (see also [6]):

(A) the problem (i)—(iv) has a solution with arbitrarily large T';
(B) there exists a time 7'y = 0 such that lim s(t) = 0;
=Ty

(C) there exists a time T'c = 0 such that
inf  s(t) >0 and liminfs{t) = —oo.
te (o, Te t=Tg
As we shall see, any of these cases can actually occur with an appropriate choice of the function g(t) in (2.4).
The first simple proprieties of the solution of (i)—(iv) are summarized in the following
Lemma 2.1: If the hypothesis (H) holds, we have:

2, ) =0 in Dy (2.7)
) = —z(s(0),8) =0, O<i<T, (2.8)
e, Y =0 in Dy (2.9

Moreover, if G(t) = sup g(r)
e (0, 0)

2, ) =G (x—1) dnDyp. (2.10)

Proof: (2.7) and (2.10) are direct consequences of the maximum principle, and (2.8) follows immediately from
(2.7) and (2.5). (2.9) follows from a generalized version of the maximum principle (see for instance [2]).

Lemma 2.2: It (T, s, z) solves (i)—(iv) then

s(t) =1 —j g(z) dz -juz(x. Hde, te(0,1), &1
t #t)
‘&ii = fz(ﬂ. 7)dz — fxz(x. t) dx, te(0,1); (2.12)
b 0
t t 1)

-‘““‘”.{'—1 =3 f Th(r)dr + 2 f 7g(r) dz — f (@ — 2)2la, ) dz,  1E(0, 1), (&=l

i 0 o L
ang r o) (1)

‘?ﬁ;__.}. — 2fdtf z(z, 7) dx - f,;’z(-,u, t)de , e, 1. Astd)

; ] [} o

Proof: (2.11), (2.12) and (2.13) follow from Green's identity

_f_f (vLu — ul*v) dz dr = f[(u,v — uvg) dr + uv dx]
Iy aln

where L denotes the heat operator and L* its adjoint, with u = z(x, ) and v = 1, v =, v = a? — 24, respectively
(2.14) follows immediately from (2.13) and (2.11).
We can now state a first important consequence of (2.11).

- 3
Lemma 2.3: Suppose t = T and let lim s(t) = 0 and [ g(t) dt < 1. Let
L o
o max {z € [0, s(t)]: 2z, 1) = —1}
= 0 if zxd=-—-1, x € [0, a(t)]
Then
Tin sup n(t) < lim s(t) .
teal -t
Proof: Notice first that lim s(f) exists because of (2.8). From (2.9) we have z(z, 1) = —1 in [0, %(t)] and
tsl
—1 = z(z, t) = 0in (5(t), s(t)] for ¢ < . =
Let 5 = lim sup 7(t) and {t,} a sequence such that t, — ¢ and 5, = n(fs) — s, then, from (2.11)
(]
ta n #lin) fn
slt) =1 — [ gydt — [ 2z, t)dz — [ z(z, t)dz =1 — [ g(t) dt + 9.
i [ i

tin
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Performing the limit with n — J-c0
i
lims{ty) = 1 - fg,f(.‘}rlf >3,
[0
The following Lemma is an adapted, simplified version of Lemima 2.4 of [6]. We repeat the proof for sake of

completeness.

Lemma 2.4: Let (T, s, z) be a solution of (i) —(iv) and T" = T. If there exist two constant z, < (0, 1) and d € (0, &),

8 = inf s(t), such that
Lo (o, Ty

2(s(t) — d, f) > —z,, O<t=1,

then
sy=d?In(l —z), O<t<T. (2.15)
Proof: Fix e and let £, = {s(t) —d < 2 < s(t),0 <t = T — £}. On 2, consider the function
w(x, 1) = —z(1 — e—2d)=1 (] — ea(z-20))

where a is a positive arbitrary constant.

We have immediately w(z, t) = z(, t) on the parabolic boundary of £2,, and w(s(f). I) = :(s(.r), :) =0,0 =<
< T" — e, Moreover, if we chose @ = ale) — —inf sit), we have Lw = 0 and, from the maximum principle
iz, §) = ziz, 1) on 02, FED, T 0)

It follows that z,(s(t), {) = w.(s(t), {) = azy(l — e~*)=" and, with our choice @ = a(¢)

ale) = afe) zy(l — el d)—1
from which
ity = —ale) =d'In (1L — z), Dt T —e,
and (2.15) follows with & — 0.
A first immediate consequence of these two Lemmas is
Corollary 2.5: If (T¢, 8, z) solves (i)—(iv) and

liminf &(t) = —o0, limi s(t) = 0

t-=To t-+Tg
then there exists a t = Tp such that

]
I GE =0 (2.16)
0

Actually the strict inequality holds in (2.16) as stated in the following Proposition.

Proposition 2.6: If the case (C) occurs, then
Te
Jowydi=>1, (2.17)
0

Proof: Lemmas (2.3) and (2.4) imply that, if (C) occurs, there exists a unique level curve z(z, {) — —1, say
nit), which starts from the fixed boundary x = 0 at some {; = T, and hits the free boundary at (s( Te), Te),
where s(T'z) = lim s(t).

1=Tg

Applying the strong maximum principle in 0 < = < (1), {e < t < T\, we have z(x, {) < —1and also z(z, T'.)
= lim z(z, t) << —1 (this limit exists for classical arguments). Substituting in (2.11) we obtain (2.17).
t-=Tg
Concerning the case (B) we have the following results.

Proposition 2.7: If (T'y, s, z) solves (i) — (iv) and lim s(t) = 0, then
t-Tp

Tr
[attyde =1.
L
Proof: Let @ = sup g(t) then, from (2.10), |z{z, #)] < G(1 — ) and we can perform the limit for ¢ — T'p
in (2.11). e, Tz
As a partial converse of Preposition 2.7 we have

T
Proposition 2.8: If there exists Ty = 0 such .'.’m:f gty dt =1 and glt) = 1, 0 < t < Ty, then (B) oceurs with
Tp= T, 0
Proof: Proposition 2.5 ensures that (C) did not occur up to T,. Moreover, as g(t) = 1, 0 = { = 7T}, we have
z(x,t) = x — 1 and performing the limit in (2.11)
ATy

CYY;
.s(r.,:gf (1 _3)(]1:8‘(5"0)_8(:0‘,

1]
so that #(T,) = 0.
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The necessary condition for both the cases (C) and (B), given by Corollary 2.5 and Proposition 2.7, respectively,
gives an immediate sufficient condition for the case (A).
Moreover, this condition is also necessary.

Theorem 2.9. The problem (i)—(iv) has a (uwique) solution for arbitrarily large T if and only if
J"g{t) dr <1 forany t=0.
0

To complete the proof of Theorem 2.9 we need the following comparison Lemma.
Lemma 2.10: Let (T, 8;, 2), j = 1, 2, be two solutions, in the sense of (i) —(iii), of

B — =10, Dpy= {lz,): 0 <@ < 5(1), 0 < t < Ty}, (2.18a)
8(0) = by; zylx, 0) = Iy(x) , 0=z = (2.18b); (2.18¢)
z(0, ) = gylt) O<t<1T; (2.18d)
el t) =0, O<i<Th z(H0.0)=—4), O<t<Ty, (2.18¢); (2.181)

where both g, and g, satisfy the hypotesis (H) and hy, hy are piecewise continuous functions satisfying appropriate
comditions for the local existence (see, for instance [7]), and let be

by < by; (2.19)
gelt) = mit) , 0=t hy(x) = halx), 0=x<bh: (2.20); (2.21)
by

Jhaly) + ) dy =0, O<z<b,. (2.22)

Define q; = by +0}Jh,(:r) dx, Tos = min [Ty, sup {t> l’]:ﬁ[lgg('t) dr = gy, 1 < 1)} then (1) < (1), 0 <t <

< min {T, Tgs}.
Proof: Define

iy wln

uylz, t) =j’ dff dy(zy, ) + 1) . (2.23)
& o

By straightforward computation one verifies that, if (T}, 8, z;) solves (2.18a)— (2.181), (T, 8, u;) solves:

g, = Wy =15 in Dy 8(0) = by3 (2.24a); (2.24h)
b by

wylz, 0) =fd$fdy(k,(y) +1),0 <2< by (2.24¢)
=z £

[ 3
w00 = —gy + [amde, 0Lt Ty (2.24d)
o
wis(t),t) =0, O<t<Ty; i (8(8), ) =0, Qiit=Ty. (2.24e); (2.241)

Consider now us,(x, t): from (2.22) we have u,,(x, 0) < 0, 0 < z < b,. Moreover, u,(s,(t), .!') =0,0<t<T,
from (2.24f) and, from the definition of 75 and (2.24d), us0,t) = 0, 0 < t < Tpz. We can apply the maximum
principle in Dy, = {(x,): 0 < z < &(t), 0 < t < Tog} so that us,(z, ) < 0 in Dy, ,. This inequality and (2.24e)
imply ! .

uy(x, 8) =0 in .");nmz ; (2.25)

Moreover, if 0 < x < b;, using (2.21) and (2.22)

by B, by B, B
e, 0) — wle, 0) = [ at 3’ dy (hyly) + 1) + J d& {{f dy(hy(y) + 1) — { dy(hty) + 1)) =

by by by
= [dg ([ dylhely) — () + [ dylhely) + 1)) 2 0. (2.26)
T & by

Suppose now that a t, < min {7, Tz} exists such that s,(f) < s,(t) in 0 <t < &, and & () = s,(ty). Let
Dy, = {2, 1): 0 << x < (1), 0 < t < t,} and consider w(z, ) = wuy(z, t) — uy(z, 1) in Dy,
]
As Lw = 0 in Dy, and w,(0, t) =j (:(7) — (7)) dT — (g3 — g,) = 0, w(x, t) assumes its minimum on
o
) 0<z<b,t=0}u{(xt):x=a(t)0<t<t}
and from (2.25) and (2.26) w(z, t) = 0 in Dy,
As w(s (L), ty) = 0, (8(t), t;) is an isolated minimum for w in D,, and the parabolic Hopf’s Lemma [1] gives
ws(8(ty), ) < O contrary to the hypothesis that s,(fy) = s,(f)-
Remark 2.11: Note that the lemma ensures also the monotonic behaviour of the solutions wuy(z, t). On the

contrary, no monotonic dependence holds for the functions z;. Such a difference in the behaviour relates to the fact
that the functions uy, and not z;, appear in real physical models (4, 6].
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Proof of Theorem 2.9: It remains lo prove that (A) implies thatjg{‘c} dr < 1, ¢=0.
Suppose that T, exists such that fg(l} df = 1and 2(7,) = 0, s(?o) > — o0, Then either:

(a) g(t) = 0 for any t > T,, or
(b) g(t) = 0, t = T, and not identically zero. Recall that, from (2.11)

#(Ty)
8(Ty) + [ =z, Ty)de =0. (2.27)
n

In the case (a) we can apply Theorem 2.9 of [6] as the condition z.(z, t) = 0, see Lemma 2.1, ensures that the
equation z(x, Ty) = —1 has a unigue solution. Tt follows that (B) must occur at a time 7y = T,
FOIRL0)
Consider now the case (b): Let be u(x, t) = def dy(z(y, 1) + 1) as in (2.23) and apply the maximum principle
to uz, ) in Dy, = {{r, t): 0= x < 2{t), 0 <t < T, } Asugfr, 0) =x — 1 = 0, we have

g, To) = — f dy(sm‘ Ty) +1)<0. (2.28)

To simplify the notation, change the origin time letting 7\, = 0, o that z(x, f) and s(t) satisfy equations (2.18a) to
(2.181) with b; = &(Ty), kylx) = z(x, Ty) and gy(t) = glt + T})
Choose now a monotonically decreasing sequence by, wnh by = s(Ty), lJnl ba= 8(Ty) and let (T'y, 8a, za) be the
solution of (2.18a)- (2.18f) corresponding to the data b; = by, g,(t) = 0, I;,(:\:} = halx) where
Hx, Ty)y O<a < 8Ty
Tgkx) =
0, (T <z<by.

b
Note that b, + f.’e,,(r) dx = 0 and the above mentioned Theorem 2.9 of [6] implies that Ty = + o0, Moreover,
a

b (T
S (kaly) + 1) dy = by — s(Tg) + [ (2, Ty) + 1) dy >0

x

hecanse of (2.28).

We can now apply Lemma 2,10 with z, = z, 5, = s and z, = z,, 8, = , 50 that
&(l) < aq(t) : (2.29)

for any time ¢ for which s(f) exists.

As we have assumed that &(7,) > — o0, z(z, T;) satisfies |z(x, Tg)| = K(s(T;) — x). Then Theorem 5 of [5]
applies and g,(¢) tends (uniformely in t) to the free boundary s(t) of the solution of (2.18a)—(2.18f) with b; = s(T}),
hylx) = z(z, Ty), g4(t) = 0, for any time for which z(t) exists.

Like in the case (a), (2.27) implies that a Tg exists such that s(Tg) = 0.

Performing the limit in (2.29), s(t) =< s(t), and s(t) cannot exist for t = T'p.

Corollary 2.12: Suppose that the solution of (i)— (iv) exists for arbitrarily large T and let
D= {(x,): 0 <z < s(t), t >0}
then z € LMD) and ||z]|pipy) = 2/3 .
Proof: From (2.14) and (2.8)

] i) i)
ﬁfd'rf |2(x, 7) dx < 1/6 — 1/2 [ 2%(, t) dz .
o o

Moreover, from (2.11) and (2.8)
#(t)

) ¢
J — z%(x, ) dx {j —z(x, t) dz gﬂf glr) dr

and, from Theorem 2.9, ||z||zym = 2/3.

We conclude this section giving a criterium to find an upper bound for the maximal time of existence in the
case that g(t) is a monotone non decreasing function (not identically zero). Notice that in this case (A) cannot
oceur.

Proposition 2.13: Let g(t) be @ monotone non decreasing function and (T, s, z) the corresponding solution of
(1)—(iv), then every t < T sadisfies

[
2y<r)nf gl dr = 1 + g*0) . (2.30)

Proof: As g(t) is non decreasing, (2.10) gives
2z, t) = g(t) (x — 1)
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Then, using (2.11) we have

qlt)

bd

3
&)+ (1 — glny) sty +fg('!) dr —1=0 (2.31)
o
for any t < T. (2.30) is the condition to have a real solution s{t) of (2.31).

3. The case g(t) — const.

In this section we consider the case in which the flux z,(0, {) is constant in time, say g(t) = K.

As a trivial consequence of Theorem 2.9 no global solutions exist in this case, so that either (B) or (C) must
oceur, Moreover, one can easily prove that the solution, for a given K, exists for any ' = 1/K : see [8] (Theorem 2.9
could be used in this case choosing a function g{f) such that g{t) = K, t = ' and g(t) = 0, t = 1').

In [8] it is also proved that K < 1implies (B) (this follows immediately from (2.10) and {2.17})‘:111:1 we assume
K = 1 throughout this section.

All the estimates on the behaviour of s(t) are based upon the following inequalities.

Lemma 3.1: Lef z(x, {) be a solution of (1) —(iv) with g(l) = K, then

¢
! exp (—=2/(4(t — 1)) P
2, ) = — K}'p:rf e _-{-}”2—-— ~dxr, (3.1)
(1]
2z, 1) = —I\'((l —x) — 3x (vﬂxn; exp (—:c’.‘ﬂ)). (3.2)
= +00 1 2n + 1) nx ath
z(z, ) = —K (tl - ) = S;‘n’n_;,” o I cos 3 exp (—(2n + 1) n=u4]), (3.3)

2(0,8) = — K min 2}t fy7, 1 — 8[n2exp (—=4)} =

|- E2ftlfx, . t<le’ 1~ 0213033, (3.4)
| —K(L — 8jatexp (—a%d)), t>1,

Proof: (3.1)— (3.3) follow from the maximum principle applied to z(x, 1) — w(x, 1), where aw(x, 1) is the solution
of the heat equation in the following domains and with the following boundary conditions (b.c.}:
for (3.1), w(x, {) is the solution in the first quadrant with b.c. w(z, 0) = 0, w,(0, #) = K;

5 o £ : ; ax =

for (3.2), w(x, 1) is the solution in 0 = z < 1, ¢ = 0 with b.e, w(x, 0) = —K (1 —a—2(n K!OS—,;-) =0, w0, 8) = K,

w(l, ) = 0; 2

for (3.3), w(x, t) is the solution in 0 = & =< 1, { = 0 with b.c. wix, 0) = 0, w,(0, 1) = K, w(l, ) = 0 ([3], pag 102).
From (3.3) we have

- el s
2(0, ) = .J\(l 2 o I

exp (—(2n + 1)":;’”'4}), 3.5)
so that z(0, 1) = -!\'(1 — 8fatexp (- :t’!',n’é-)}. from which (3.4) follows by comparing with (3.1) in x = 0.

Remark 3.2: Obviously (3.3) is a sharper estimate than (3.1) or (3.2), but it is not suited for computation as,
for & = 0, its terms are not defined in sign. Nevertheless, for x = 0, all the terms are positive, so one can obtain
other estimates, like (3.4), for z(0, ¢), keeping a finite number of terms in (3.5). For instance, if we keep the first two
terms, we have

2(0,8) = — K min {2 fyz; 1 — 82 exp (—a%]4) — 8/(922) exp (—7%]4)} (3.6)
the first function being lesser when ¢ < ) ~ 0,125122,
As a consequence of Lemma 3.1, we have the following estimate on K for the case (C).

Proposition 3.3: A K, exists such that K = K, implics (C) for the solution of (i)— (iv). The following estimate
holds fur K. :
K, < 2221297 . (3.7)
Proof: From Proposition 2.7 it follows that (B) implies that 7' = 1/K. Performing the limit ¢t — 1/K in (2.12)
we have
K
12 = — [ 20,0 dt.
L]

Using (3.4) we have

A= K
1/2 gf'zf( Yl dt -s-lj' K(1 — 8fym exp (—a%/4) dt
[} (3
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which can be written as
K — 32/nK exp (—=*[(4K)) = 1/2 (3.9)
where n = f, — H33[(3 V) + 32/at exp (—ay/4).
Letting & = a*/(4K), (3.9) becomes
& = a2 — 16/ exp (—£). (3.10)

(3.10) is satisfied for any & = £,, where £, is the unique solution of the equality in (3.10), so that (3.9} holds for any
K = K, = a*/(4&,). Using the numerical value for {; in (3.4) we obtain the estimate (3.7) for K,.

Remark 3.4: A scarsely better estimate of the lower bound for K to have the case (C) can be obtained in the
same way using (3.6) instead of (3.4). In this case the numerical value is 2,220008.

Remark 3.5: In [8] a first estimate was given using only (3.1) as lower bound for z(x, ). In this way one has
that (C) must oveur if K > 64/(97) ~ 2.263537.

Lemma 3.6: Let Tyus(K) be the greatest time for which the solution cxists for a given K. Then the following
estimates hold :

Tuax(K) = 1/2 + 1/(2K2) , Twax(K) = T, (3.11), (3.12)
where Ty 18 the unique solution of
(1 K 4K[a® exp (—at[4))* + 21 — Kt) K = 0. (3.13)

Proof: (3.11) follows immediately from (2.30) letting g(t) — K.
Using the estimate (3.2}, from (2.11) we obtain

s(t) = 1 — Kt + K(s(t) — s*(t)) — 4K[=® exp (—a/4) siufxig]-.
. as(t) - < -
As 0 < (i) =< 1, then sin =g = s(t) and s(t) must satisfy the inequality

K[28() + (1 — K + 4K[n* exp (—a®/4)) s(t) + (Kt — 1) = 0
which implies

MK, 1) = (1 — K +4K[a* exp (—a%4))* — 2K(Ki — 1) = 0.

As A(K, 0) = 0 for any K, :1% A(K, 1) < 0 for any K and ¢, and lim A(K, {) = — oo for any K, the equation (3.13)
1=+

has a unigue solution Ty and A(K, £) = 0 for ¢ = Ty for any K.

In the appendix, 7'x and the value of 1/2 ++ 1/(2K?) are confronted and an estimate for Tk is given.

Proposition 3.7: Let K, be the solution of K(1 — 8/a®exp (—a®8(1 4 1/K?))) = L. Then K = K, implics
(B). An estimade for K, is K, = L091465, .

Proof: From Lemma 2.3, if (C) holds, there exists a level curve z(r, {) = — 1. As z(x, t) > (0, 1), if 2(0, 1) >
= —Lfor any {, 0 < t << T',.«(K), then the case (B) oceurs.

From the estimates (3.4) and (3.11) for =(0, £) and T',,, respectively, we have

2(0,1) = —F(K) = —K(1 — 8/a* exp (—a?[8(1 4 1/K*)))

because the minorant of z in (3.4) is monotonically decreasing. As F(0) = 0, F(4-00) = +oco, and F'(K) = 0 we
have z(0, t) = —1 for all the values of K lesser than K,, where K, is the unique solution of F(K) = 1.

Remark 3.8: If we replace the estimate (3.4) with (3.6), we have no numerical advantage, the new term in
(3.6) heing approximatively 8/(9a%) exp (—92%/4) ~ 2.0 10 as 7', ~ 1. On the contrary a little progress can be
made, using the same method, using a sharper estimate for 7'y« (see appendix). The numerical value of the new
estimate is K, ~ 1092283,

Note, however, that one cannot expect a very good estimate for the case (B) only by looking at the values
of z(0, 1). In fact, as a consequence of the motion of the free boundary towards x = 0, the function z is, in general,
non monotone w.r.t. the variable ¢, so that a level curve z(z, f) = —1 can actually exist for the same value of K,

which starts for the same £ at 2 = 0, and comes back to x = 0, remaining, for any I, at a distance from the moving
boundary greater than some constant, which implies the case (B).
We conclude giving some estimates for s(t).

Proposition 3.9: The following inequalitics hold :

s(t) = max {(1 — 8(3 }x) Ke2yz, 1 — Ki, 0} (3.14)

where the greatest function is, respectively, the first one in 0 < t << oy, the second one ino g < L < 1)K, and 0 elsewhere,
x = (—4/(3K J7) + 1/K(16/(8r) + 2K))2,

5 : - o 1
M) =1 — Kt Kj2 — 16K 3 (—1) 5oy oxp (— (20 + D 24) . . (3.15)
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Proof: From (2.11) we have immediately sif) = 1 — K¢; using (3.1) wil-h z = 0, from (2.12) we get s*(t) =
=1 — 8/(3)m) Kt¥2; ax is the unique solution of the equation 1 — 8/(3 V) K32 = (L — Ki)*in 0 < t < 1/K.
(3.15) follows immediately inserting (3.3) in (2.11) and integrating the series term by term in (0, 1).
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Appendix
Here we give some estimates for the time T'g, which appears in (3.12). First of all, we rewrite (3.13) as
: giK. ) = gl K1), =K, (A.1)
where
(K, 1) = K(l — 4/a*exp (—at[4)) — 1, gul K, ) = 2Kt — 1/K) . (A.2)

The funetions g, and g, have the following properties:
oy ndd gy are increasing function nj’ bat.k the arguments for K =0 and ¢ = 1[K ;
HE 0 =0 iff K= x¥fia® —
— (K A= =10 iff t= 4/x*(log {éi\) log (a%(K — 1)) = 1K) ;
S O<HK) < YK iff K< K< a¥la®—4) o
where K is the unigue solution of {K) = 1/K with K > 1, K ~ 1.030 ;
K, too) =K —1.  gK, 1K) =0, g(K 124 12K)) = K —1.
From the above properties it follows that, for K = K,
T < 12 + 1/2K%),
and that Ty can be approximated by the following iterative sequence
1/2 4 1)(2K%) > 4H(K) > .. > talK) >t 1(K) - T

for any K = K, where ta 1(K) = 1/K + 1/(2K?) gilK, ts) .
The estimate for K, in Remark 3.8 uses ,( K) as upper bound for P max.




