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Abstract 

We have considered the simultaneous determination of two unknown 
thermal coefficients for a semi-infinite material which was under a 
phase-change process with a mushy zone according to the model of 
Solomon, Wilson and Alexiades. It was assumed that the material was 
initially liquid at its melting temperature and that the solidification 
process began when a heat flux was imposed at the fixed face. The 
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associated free boundary value problem was overspecified with a 
convective boundary condition aiming at the simultaneous 
determination of the temperature in the solid region, one of the two 
free boundaries of the mushy zone and two thermal coefficients. These 
were chosen among the latent heat by unit mass, the thermal 
conductivity, the mass density, the specific heat and the two 
coefficients that characterize the mushy zone. It was assumed that the 
other free boundary of the mushy zone, the bulk temperature, the heat 
flux and heat transfer coefficients at the fixed face were known. 
Depending on the choice of the unknown thermal coefficients, fifteen 
phase-change problems arose. 

In this paper, we present those fifteen problems and obtain necessary 
and sufficient conditions on data for each of them in order to obtain 
their solutions. We show that there are twelve cases in which it is 
possible to find a unique solution and that there are infinite solutions 
for the remaining three cases. Moreover, for each problem, we give 
explicit formulae for the temperature of the material, the unknown free 
boundary and the two unknown thermal coefficients. 

1. Introduction 

Heat transfer problems with a phase-change such as melting and freezing 
have been studied in the last century in view of their wide scientific and 
technological applications [1, 2, 4, 12]. Especially, inverse problems related 
to the determination of thermal coefficients have attracted many scientists 
because they are often ill-posed problems [3, 6-11, 13-15, 17-19, 22]. 

In our recent work [5], we studied the determination of one unknown 
thermal coefficient for a semi-infinite material which is under a solidification 
process ensued from a heat flux imposed at the fixed boundary. In that work, 
we overspecified the associated free boundary value problem by a convective 
boundary condition [21] aiming at the simultaneous determination of the 
temperature in the solid region, the two free boundaries of the mushy zone 
and one unknown thermal coefficient. In this paper, we study the same 
physical phenomenon with two unknown thermal coefficients and some 
additional information given on it. 
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In the following, we restate the main characteristics of the phase-change 
process considered in [5, 16]. The material is assumed to be initially liquid at 
a melting temperature of 0°C and it is considered the existence of the 
following three different regions in the solidification process, according to 
the model of Solomon et al. [16, 19]: 

1. liquid region at temperature ( ) :0, =txT  

{( ) ( ) },0,, 2 >>∈= ttrxtxDl R  

2. solid region at temperature ( ) :0, <txT  

{( ) ( ) },0,0, 2 ><<∈= ttsxtxDs R  

3. mushy region at temperature ( ) :0, =txT  

{( ) ( ) ( ) },0,, 2 ><<∈= ttrxtstxDp R  

where ( )tsx =  and ( )trx =  represent the free boundaries of the mushy zone 

and ( )txTT ,=  represents the temperature of the material. The mushy zone 

is considered as isothermal and the following assumptions on its structure are 
made: 

1. the material contains a fixed portion of the total latent heat per unit 
mass (see condition (4) below), 

2. its width is inversely proportional to the gradient of temperature (see 
condition (5) below). 

Finally, we note that all of the thermal coefficients involved in the 
solidification process are assumed to be constant, where the bulk temperature 

0<− ∞D  and the coefficients 00 >q  and 00 >h  that characterize the heat 

flux and the heat transfer at the fixed face, respectively, are assumed to be 
known. 

In this paper, we consider that we also know the evolution in time of one 
of the two free boundaries of the mushy zone. More precisely, we assume 
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that the free boundary ( )tsx =  is given by: 

 ( ) ,0,2 >σ= ttts  (1) 

where 0>σ  is a known coefficient. Thanks to this additional information on 
the physical phenomenon, we will be able to determine simultaneously the 
temperature ( )txTT ,=  in the solid region, the free boundary ( )trx =  and 

two unknown thermal coefficients among the latent heat by unit mass ,0>l  
the thermal conductivity ,0>k  the mass density ,0>ρ  the specific heat 

0>c  and the two coefficients 10 <ε<  and 0>γ  that characterize the 

mushy zone, by solving the following overspecified free boundary value 
problem: 

( ) ( ) ( ) ,0,0,0,, ><<=−ρ ttsxtxkTtxcT xxt  (2) 

( )( ) ,0,0, >= tttsT  (3) 

( )( ) ( ) ( ) ( )[ ] ,0,1, >ε−+ερ= ttrtslttskTx  (4) 

( )( ) ( ) ( )( ) ,0,, >γ=− ttstrttsTx  (5) 

( ) ,00 =r  (6) 

( ) ,0,,0 0 >= t
t

qtkTx  (7) 

( ) ( )( ) .0,,0,0 0 >+= ∞ tDtT
t

htkTx  (8) 

Since inverse Stefan problems are usually ill-posed problems, it is 
expected that restrictions on data have to be set in order to obtain solutions to 
problem (2)-(8). The goal of this paper is to obtain necessary and sufficient 
conditions on data, under which solutions can be obtained, for the fifteen 
phase-change problems (2)-(8) that arise depending on the choice of the 
unknown thermal coefficients. Moreover, we also expect to obtain those 
solutions explicitly. 

The organization of the paper is as follows: first (Section 2) we proved a 
preliminary result in which necessary and sufficient conditions on data for 
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the phase-change process (2)-(8) are given in order to obtain the temperature 
( )txTT ,=  and the unknown free boundary ( ).trx =  Then (Section 3), 

based on this preliminary result, we presented and solved the fifteen different 
cases for the phase-change process (2)-(8) corresponding to each possible 
choice of the two unknown thermal coefficients among l, k, ρ, c, ε and γ. 
Under certain restrictions on data (Ri’s inequalities), we proved that there are 
twelve cases in which it is possible to find a unique explicit solution which 
depends on a dimensionless parameter defined as the unique solution of a 
certain equation (Ei’s equations) and that there are infinite explicit solutions 
for the remaining three cases. 

2. Explicit Solution to the Phase-change Process 

The following theorem represents the base on which we will prove the 
subsequent results. 

Theorem 2.1. The solution to problem (2)-(8) is given by: 

( ) ( ) ,0,0,21, 0 ><<
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎟
⎠
⎞⎜

⎝
⎛

α
σ

⎟
⎠
⎞⎜

⎝
⎛

α−⎟
⎠
⎞⎜

⎝
⎛

α
σα

−= ttsx
erf

t
xerf

erfk
tqtxT  (9) 

( ) ( ) 0,2exp
0

2
>⎥

⎦

⎤
⎢
⎣

⎡
σ+

ασγ
= ttq

ktr  (10) 

if and only if the physical parameters satisfy the following two equations: 

( ) ( ) ( ),exp2
exp1 2

0

2
0 ασ⎥

⎦

⎤
⎢
⎣

⎡ ασε−γ+σ=
ρ q

k
l

q  (11) 

,1
0

0

0
⎟
⎠
⎞

⎜
⎝
⎛ −

απ
=⎟

⎠
⎞⎜

⎝
⎛

α
σ

∞
∞

Dh
q

q
kDerf  (12) 

where the coefficient α, defined by: 

 ,c
k
ρ

=α  (13) 

is the thermal diffusivity. 
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Proof. The free boundary value problem (2)-(8) has the solution [16, 19, 
20]: 

( ) ( ) ,0,0,
2

, ><<⎟
⎠
⎞⎜

⎝
⎛

α
+= ttsx

t
xerfBAtxT  (14) 

( ) ,0,2 >αμ= tttr  (15) 

where coefficients A, B and μ have to be found. 

By imposing conditions (3)-(5), (7) and (8) on (14)-(15), we have that: 

k
qBerfk

qA απ
=⎟

⎠
⎞⎜

⎝
⎛

α
σαπ

−= 00 ,   and  ( )
α
σ+

α
ασγ=μ

0

2

2
exp

q
k  

 (16) 

which corresponds to solution (9)-(10) and that the physical parameters must 
satisfy equations (11) and (12). ~ 

Hence, from Theorem 2.1, we have that there is an equivalence between 
solving the free boundary value problem (2)-(8) with two unknown thermal 
coefficients or solving the system of equations (11)-(12) for the same two 
unknown coefficients. 

3. Explicit Formulae for the Unknown Thermal Coefficients 

In this section, we are presenting and solving the fifteen different cases 
for the phase-change process (2)-(8) that arise depending on the choice of the 
two unknown thermal coefficients. With the aim of organizing our work, we 
have identified each problem by making reference to the coefficients which 
is necessary to know in order to solve it (see Theorem 2.1): 

Case 1. Determination of ε and γ. 

Case 2. Determination of ε and l. 

Case 3. Determination of γ and l. 

Case 4. Determination of ε and k. 
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Case 5. Determination of ε and ρ. 

Case 6. Determination of ε and c. 

Case 7. Determination of γ and k. 

Case 8. Determination γ and ρ. 

Case 9. Determination of γ and c. 

Case 10. Determination of l and k. 

Case 11. Determination of l and ρ. 

Case 12. Determination of l and c. 

Case 13. Determination of k and ρ. 

Case 14. Determination of k and c 

and 

Case 15. Determination of ρ and c. 

Moreover, we have introduced several functions and parameters which 
were labeled with an index according to the number of the cases where they 
arise for the first time. 

Theorem 3.1 (Case 1: determination of ε and γ). If we consider the 
phase-change process (2)-(8) with unknown thermal coefficients ε and γ, 
then it has infinite solutions given by (9)-(10) with: 

 ( ) ( ) ( )ασ−⎟
⎠
⎞

⎜
⎝
⎛ −ασ−

σρε−
σ

=γ 2200 exp1exp1
2

l
q

k
q  (17) 

and any ( )1,0∈ε  if and only if the remaining physical parameters satisfy 

condition (12) and the following inequality: 

 ( ) .1exp0 20 −ασ−
σρ

< l
q  (R1) 

Proof. Owing to Theorem 2.1, we have that the phase-change process 
(2)-(8) has the solution given by (9)-(10) if and only if ε and γ satisfy 
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equation (11) and the remaining physical parameters satisfy condition (12). 
Then we have from equation (11) that γ must be given by (17) for any 

( ).1,0∈ε  To finish the proof, it only remains to observe that the coefficient 

γ given by (17) is positive if and only if inequality (R1) holds. ~ 

Theorem 3.2 (Case 2: determination of ε and l). If we consider the 
phase-change process (2)-(8) with unknown thermal coefficients ε and l, then 
it has infinite solutions given by (9)-(10) with: 

 ( )
( ) ( )⎥⎦

⎤
⎢⎣
⎡ ασ

σ
ε−γ+ρσ

ασ−
=

2
0

2
0

exp2
11

exp

q
k

ql  (18) 

and any ( )1,0∈ε  if and only if the physical parameters ,0h  ,0q  ,∞D  σ, ρ, 

c and k satisfy condition (12). 

Proof. It is similar to the proof of Theorem 3.1. ~ 

Theorem 3.3 (Case 3: determination of γ and l ). If we consider the 
phase-change process (2)-(8) with unknown thermal coefficients γ and l, then 
it has infinite solutions given by (9)-(10) with any 0>γ  and l given by (18) 

if and only if the parameters ,0h  ,0q  ,∞D  σ, ρ, c and k satisfy condition 

(12). 

Proof. It is similar to the proof of Theorem 3.1. ~ 

Remark 1. Let us observe that it follows from the previous three 
theorems that, under certain conditions for the data of the problem, the 
phase-change process (2)-(8) corresponding to Cases 1, 2 and 3 has an 
infinite number of solutions. 

Nevertheless, as we will see in the following, for the remaining cases it is 
possible to obtain necessary and sufficient conditions on data in order to 
obtain existence and uniqueness of solution. In each case, the solution 
depends on a dimensionless coefficient ξ which is defined as the unique 
positive solution to a certain equation. According to the notation used in this 
paper, equations for the coefficient ξ were labeled by making reference to the 
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case in which they arise for the first time (Ei’s equations). For this reason 
equations for ξ are not labeled in consecutive manner. 

Theorem 3.4 (Case 4: determination of ε and k). If we consider the 
phase-change process (2)-(8) with unknown thermal coefficients ε and k, 
then it has the solution given by (9)-(10) with: 

( ),1 4 ξ−=ε f  (19) 

,
2
⎟
⎠
⎞⎜

⎝
⎛
ξ
σρ= ck  (20) 

where ξ is the only positive solution to the equation: 

 ( ) ⎟
⎠
⎞

⎜
⎝
⎛ −

π
σρ=

∞
∞

Dh
q

q
cDxg

0
0

0
4 1  (E4) 

and the real functions 4f  and 4g  are defined by: 

( ) ( ) ( )22200
4 exp1exp2 xxxl

q
c
qxf −⎟

⎠
⎞

⎜
⎝
⎛ −−

σρσγρ
=  and 

( ) ( ) 0,4 >= xxxerfxg  (21) 

if and only if the remaining physical parameters satisfy the next three 
inequalities: 

,10
0

0
∞

−< Dh
q  (R2) 

,10 0
σρ

−< l
q  (R3) 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛

σρσρ
π

<−
∞∞ l

qgcD
q

Dh
q 0

4
0

0
0 ln1  (R4) 

and any of the following three groups of conditions: 

Group 1. 

( ) ,14 >ηf  (R5) 
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( )14
0

0
01 ζ

σρ
π

<−
∞∞

gcD
q

Dh
q   or  ( ),1 24

0
0

0 ζ
σρ

π
>−

∞∞
gcD

q
Dh

q  (R6) 

where 1ζ  and 2ζ  are the only two positive solutions to the equation: 

 ( ) 14 =xf  (22) 

and η is the only positive solution to the equation: 

 ( ) ( ) ( ).exp121 2220 xxxl
q

−=−
σρ

 (23) 

Group 2. 

( ) ,14 =ηf  (R7) 

( ),1 4
0

0
0 η

σρ
π

≠−
∞∞

gcD
q

Dh
q  (R8) 

where η is the only positive solution to equation (23). 

Group 3. 

 ( ) ,14 <ηf  (R9) 

where η is the only positive solution to equation (23). 

Proof. We have from Theorem 2.1 that the phase-change process (2)-(8) 
has the solution given by (9)-(10) if and only if ε and k satisfy equations (11) 
and (12). By introducing the following dimensionless parameter: 

 ,k
cρσ=

α
σ=ξ  (24) 

we have that the solution of the system of equations (11)-(12) is given by 
(19)-(20) if and only if ξ is a solution to equation (E4). Then we need to 
prove that the restrictions on data given in the statement of the theorem are 
necessary and sufficient conditions for the existence of a positive solution to 
equation (E4) and for obtaining that the coefficient ξ given in (19) is a 
number between 0 and 1. 
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We first note that equation (E4) admits a positive solution if and only if 
inequality (R2) holds, because 4g  is an increasing function from 0 to ∞+  in 

.+R  Henceforth, we will assume that (R2) holds. 

Let us now focus on the fact that ( ).1,0∈ε  On one hand, we have that ε 

is less than 1 if and only if (see (19)): 

( ) 1exp0 20 −ξ−
σρ

< l
q  

which is equivalent to inequality (R3) and: 

 .log 0 ⎟
⎠
⎞

⎜
⎝
⎛

σρ
<ξ l

q  (25) 

Since 4g  is an increasing function and ξ satisfies equation (E4), by applying 

function 4g  side by side of inequality (25), we have that it is equivalent to 

inequality (R4). Therefore, from now on, we will assume that inequalities 
(R3) and (R4) also hold. 

On the other hand, we have that ε is positive if and only if (see (19)): 

 ( ) .14 <ξf  (26) 

It is easy to prove that 4f  has a finite maximum M in +R  and that ( )η= fM  

.0>  In the following, we will study three different situations: ( ) ,1>ηf  

( ) 1=ηf  and ( ) 10 <η< f  which are related to the conditions given in 

Groups 1, 2 and 3, respectively. 

If ( ) ,1>ηf  that is if inequality (R5) holds, then we have that ξ satisfies 

inequality (26) if and only if: 

 1ζ<ξ   or  ,2ζ>ξ  (27) 

where 1ζ  and 2ζ  are the only two positive solutions to equation (22). By 

applying the increasing function 4g  side by side to both inequalities and 

taking into account that ξ satisfies equation (E4), it follows that (27) is 
equivalent to (R6). 
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If ( ) ,1=ηf  that is if (R7) holds, then we have that ξ satisfies inequality 

(26) if and only if .η≠ξ  We now proceed as in the previous situation and 

obtain that η≠ξ  is equivalent to (R8). 

Finally, if ( ) ,10 <η< f  that is if (R9) holds, then we have that 

inequality (26) holds immediately. ~ 

The previous Theorem 3.4 states necessary and sufficient conditions on 
data for problem (2)-(8) under which it is possible to find the temperature 

( ),, txTT =  the free boundary ( )trx =  and the two unknown thermal 

coefficients ε and k. There are also some sufficient conditions on data which 
are easier to check than the necessary and sufficient conditions given in 
Theorem 3.3 that enable us to find the solution to problem (2)-(8). Next, 
proposition is related to those sufficient conditions. 

Proposition 3.1 (Sufficient conditions for Case 4). Let us consider the 
phase-change process (2)-(8) with unknown thermal coefficients ε and k. If 
the remaining physical parameters satisfy inequality (R3) and the following 
three conditions: 

,ln11 0
4

0
0

0
4

4
0 ⎟

⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛

σρσρ
π

<−<⎟
⎠
⎞⎜

⎝
⎛
νσρ

π
∞∞∞ l

qgcD
q

Dh
qgcD

q  (R10) 

,11ln20 000 −⎟
⎠
⎞

⎜
⎝
⎛ −

σρ⎟
⎠
⎞

⎜
⎝
⎛

σρσργ
< l

q
l

q
c
q  (R11) 

where 

 ,
ln

211ln2 0
0

0
4

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎟
⎠
⎞

⎜
⎝
⎛

σρ

γ++⎟
⎠
⎞

⎜
⎝
⎛

σρ
σρ=ν

l
ql

c
l

q
q
l  (28) 

then the solution to problem (2)-(8) is given by (9)-(10) with ε and k given by 
(19) and (20), being ξ the only positive solution to equation (E4). 

Proof. Let us assume that inequalities (R3), (R10) and (R11) hold. We 
have seen in the proof of Theorem 3.4 that ε and k must be given by (19) and 
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(20) and that ξ must satisfy equation (E4). We have also seen that (R2) is a 
necessary and sufficient condition for the existence and uniqueness of the 
solution to equation (E4). Then, since the first inequality in (R10) implies 
(R2), we have that equation (E4) admits only one positive solution. 
Moreover, we have seen that ε given in (19) is less than 1 if and only if 
inequalities (R3) and (R4) hold. Since inequality (R10) implies inequalities 
(R3) and (R4), we have that the coefficient ε given by (19) is less than 1. 
Finally, we have also seen that the coefficient ε given by (19) is positive if 
and only if inequality (26) holds. The rest of the proof will be devoted to 
demonstrate that the first inequality in (R10) and (R11) imply inequality 
(26). 

Since the coefficient ε given by (19) is positive, we have that 

( ) ,01exp 20 >−ξ−
σρl

q  that is, 

.ln 02
⎟
⎠
⎞

⎜
⎝
⎛

σρ
<ξ l

q  

Then we have (see (21)): 

 ( ) ( ) ( ).expln1exp2 20200
4 ξ−⎟

⎠
⎞

⎜
⎝
⎛

σρ⎟
⎠
⎞

⎜
⎝
⎛ −ξ−

σρσγρ
<ξ l

q
l

q
c
qf  (29) 

From the above analysis, it follows that it is enough to prove that the first 
inequality in (R10) and (R11) imply that the right hand side of (29) is less 
than 1. Let 4w  be the function defined by: 

 ( ) 0,14
2

44 >−−= xxbxaxw  (30) 

with 4a  and 4b  given by: 

 0ln2 0
22

2
0

4 >⎟
⎠
⎞

⎜
⎝
⎛

σργσρ
= l

q
cl

qa   and  .0ln2 00
4 >⎟

⎠
⎞

⎜
⎝
⎛

σρρσγ
= l

q
c

qb  (31) 

We have that 4ν  given in (28) is a positive root of .4w  Moreover, we have 

that inequalities (R3) and (R11) imply .14 <ν  Since the other root of 4w  is 
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negative, we have that the right hand side of (29) is less than 1 if and only if 

( ) ,exp 4
2 ν<ξ−  that is if and only if: 

.1ln
4
⎟
⎠
⎞⎜

⎝
⎛
ν

>ξ  

Only remains to observe that this last inequality is equivalent to the first 
inequality in (R10) because 4g  is an increasing function and ξ satisfies 

equation (E4). ~ 

Theorem 3.5 (Case 5: determination of ε and ρ). If we consider the 
phase-change process (2)-(8) with unknown thermal coefficients ε and ρ, 
then it has the solution given by (9)-(10) with: 

( ),1 5 ξ−=ε f  (32) 

,
2
⎟
⎠
⎞⎜

⎝
⎛
σ
ξ=ρ c

k  (33) 

where ξ is the only positive solution to the equation: 

 ( ) ⎟
⎠
⎞

⎜
⎝
⎛ −

πσ
=

∞

∞
Dh

q
q

kDxg
0

0

0
5 1  (E5) 

and the real functions 5f  and 5g  are defined by: 

( ) ( ) ( )2
2

2
00

5 exp1exp2 x
x

x
lk
cq

k
qxf −⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−−σ

γ
σ

=  and 

( ) ( ) 0,5 >= xx
xerfxg  (34) 

if and only if the remaining physical parameters satisfy the following two 
conditions: 

( ) ( ) ,,2min1 25
00

0
0

15
0

⎭
⎬
⎫

⎩
⎨
⎧

ζ
πσσ

<−<ζ
πσ

∞∞∞∞
gkD

q
kD
q

Dh
qgkD

q  (R12) 

where 1ζ  and 2ζ  are, respectively, the only positive solutions to equations: 
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( ) ,exp 220 xxlk
cq

=−
σ  (35) 

( ) ( ) .1exp2exp 22
0

20 xxq
kxlk

cq
⎥⎦
⎤

⎢⎣
⎡ +

σ
γ=−

σ  (36) 

Proof. We have from Theorem 2.1 that the phase-change process (2)-(8) 
has the solution given by (9)-(10) if and only if ε and ρ are given by (32) and 
(33), where the dimensionless parameter ξ (see (24)) is a solution to equation 
(E5). Then we need to prove that the two restrictions given by (R12) are 
necessary and sufficient conditions for the existence of a positive solution to 
equation (E5) and for obtaining that the coefficient ε given by (32) is a 
number between 0 and 1. 

Since 5g  is a decreasing function from 
π

2  to 0 in ,+R  we have that 

equation (E5) admits positive solutions if and only if: 

 .210 0
0

0
∞∞

σ
<−< kD

q
Dh

q  (37) 

Let us assume for a moment that (37) holds and focus on the fact that 
( ).1,0∈ε  It is easy to see that 5f  has a finite minimum m and that =m  

( ) .0<ηf  Then we have that the coefficient ε given by (32) is a number 

between 0 and 1 if and only if 21 ζ<ξ<ζ  with 1ζ  and 2ζ  the only two 

positive numbers such that ( ) 015 =ζf  and ( ) ,125 =ζf  that is the only 

positive solutions to equations (35) and (36), respectively. Since 4g  is a 

decreasing function and ξ satisfies equation (E5), we have that 21 ζ<ξ<ζ  

is equivalent to: 

 ( ) ( ).1 15
0

0
0

15
0 ζ

πσ
<−<ζ

πσ
∞∞∞

gkD
q

Dh
qgkD

q  (38) 

Only remains to observe that inequalities (37) and (38) are equivalent to the 
inequalities given by (R12). ~ 

Theorem 3.6 (Case 6: determination of ε and c). If we consider the 
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phase-change process (2)-(8) with unknown thermal coefficients ε and c, 
then it has the solution given by (9)-(10) with: 

( ),1 6 ξ−=ε f  (39) 

,
2
⎟
⎠
⎞⎜

⎝
⎛
σ
ξ

ρ
= kc  (40) 

where ξ is the only positive solution to equation (E5) and 6f  is the real 

function defined by: 

 ( ) ( ) ( ) 0,expexp2 2200
6 >−⎟

⎠
⎞

⎜
⎝
⎛ −

σργ
σ

= xxxl
q

k
qxf  (41) 

if and only if the remaining physical parameters satisfy the following 
condition: 
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⎛

σρ
πσ

Dh
q

l
qfkD

q
0

00
5

0 1ln  (R13) 

and any of the following two groups of conditions: 

Group 1. 

,12 0
0 +

σ
γ≥

σρ q
k

l
q  (R14) 

,1ln,2min1
6

5
00

0
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⎬
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⎧
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⎜
⎝
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ν

πσσ
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∞∞∞
fkD

q
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q

Dh
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where 

 .2112 20
6 ⎥

⎦

⎤
⎢
⎣

⎡

ρσ
γ++σρ=ν

l
k

q
l  (42) 

Group 2. 

,121
0

0 +
σ

γ<
σρ

< q
k

l
q  (R16) 

.21 0
0

0
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σ
<− kD

q
Dh

q  (R17) 
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Proof. It is similar to the proof of Theorem 3.4. ~ 

Theorem 3.7 (Case 7: determination of γ and k). If we consider the 
phase-change process (2)-(8) with unknown thermal coefficients γ and k, 
then it has the solution given by (9)-(10) with: 

 ( ) ( ) ( )22200 exp1exp1
2

ξ−ξ⎟
⎠
⎞

⎜
⎝
⎛ −ξ−

σρε−σρ
=γ l

q
c

q  (43) 

and k given by (20), where ξ is the only positive solution to equation (E4) if 
and only if the physical parameters ,0h  ,0q  ,∞D  σ, l, ρ and c satisfy 

conditions (R2), (R3) and (R4). 

Proof. We have from Theorem 2.1 that γ and k must be given by (43) 
and (20), where the dimensionless parameter ξ (see (24)) is a solution to 
equation (E4). As we saw in the proof of Theorem 3.4, equation (E4) admits 
positive solutions if and only if inequality (R2) holds. 

To complete the proof, it only remains to observe that the coefficient γ 

given by (43) is positive if and only if ( ) 1exp0 20 −ξ−
σρ

< l
q  and as we also 

saw in the proof of Theorem 3.4 that this inequality is equivalent to 
inequalities (R3) and (R4). ~ 

Theorem 3.8 (Case 8: determination of γ and ρ). If we consider the 
phase-change process (2)-(8) with unknown thermal coefficients γ and ρ, 
then it has the solution given by (9)-(10) with: 

 ( )
( ) ( )2

2
00 exp1exp

1
2

ξ−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

ξ
ξ−σ

ε−
σ

=γ lk
cq

k
q  (44) 

and ρ given by (33), where ξ is the only positive solution to equation (E5) if 
and only if the physical parameters ,0h  ,0q  ,∞D  σ, k and c satisfy 

conditions (R2), (R17) and: 

 ( ) ,1
0

0

0
5 ⎟

⎠
⎞

⎜
⎝
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πσ
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∞
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Dh
q

q
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where 5g  is defined in (34) and η is the only positive solution to the 

equation: 

 ( ) .1exp 2
0 =−σ

x
x

lk
cq  (45) 

Proof. We have from Theorem 2.1 that γ and ρ must be given by (44) 
and (33), where the dimensionless parameter ξ (see (24)) is a solution to 
equation (E5). As we saw in the proof of Theorem 3.5, equation (E5) admits 
a positive solution if and only if inequality (37) holds, that is if and only if 
inequalities (R2) and (R17) hold. 

We also have that the coefficient γ given by (44) is positive if and only 
if: 

 ( ) ,08 >ξu  (46) 

where 8u  is the real function defined by: 

 ( ) ( ) .0,1exp 2
0

8 >−−σ
= xx

x
lk
cqxu  (47) 

Since 8u  is a decreasing function from ∞+  to –1 in ,+R  we have that 

equation (45) has only one positive solution η. Therefore, inequality (46) 
holds if and only if .η<ξ  It only remains to observe that η<ξ  is 

equivalent to condition (R18) because 5g  is a decreasing function and ξ 

satisfies equation (E5). ~ 

Theorem 3.9 (Case 9: determination of γ and c). If we consider the 
phase-change process (2)-(8) with unknown thermal coefficients γ and c, 
then it has the solution given by (9)-(10) with: 

 ( ) ( ) ( )2200 exp1exp1
2

ξ−⎟
⎠
⎞

⎜
⎝
⎛ −ξ−

σρε−
σ

=γ l
q

k
q  (48) 

and c given by (40), where ξ is the only positive solution to equation (E5) if 
and only if the physical parameters ,0h  ,0q  ,∞D  σ, l, k and ρ satisfy 

conditions (R3), (R13) and (R17). 
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Proof. It is similar to the proof of Theorem 3.8. ~ 

Theorem 3.10 (Case 10: determination of l and k). If we consider the 
phase-change process (2)-(8) with unknown thermal coefficients l and k, then 
it has the solution given by (9)-(10) with: 

 ( )
( ) ( )2
2

2

0

0 expexp

2
11

1 ξ−
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

ξ
ξ

ε−σγρ+ρσ
=

q
c

ql  (49) 

and k given by (20), where ξ is the only positive solution to equation (E4) if 
and only if the physical parameters ,0h  0q  and ∞D  satisfy condition (R2). 

Proof. It is similar to the proof of Theorem 3.7. ~ 

Theorem 3.11 (Case 11: determination of l and ρ). If we consider the 
phase-change process (2)-(8) with unknown thermal coefficients l and ρ, then 
it has the solution given by (9)-(10) with: 

 ( ) ( )

( )
ξ
ξ−

⎥
⎥
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⎦
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⎢
⎢
⎢

⎣

⎡

ξ
σ
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σ
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2
0

0 exp

exp2
11

1

q
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cql  (50) 

and ρ given by (33), where ξ is the only positive solution to equation (E5) if 
and only if the physical parameters ,0h  ,0q  ∞D  and k satisfy conditions 

(R2) and (R17). 

Proof. It is similar to the proof of Theorem 3.8. ~ 

Theorem 3.12 (Case 12: determination of l and c). If we consider the 
phase-change process (2)-(8) with unknown thermal coefficients l and c, then 
it has the solution given by (9)-(10) with: 

 ( ) ( )
( )2
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0 exp
exp2
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⎥
⎥
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⎢
⎢
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σ
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q
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and c given by (40), where ξ is the only positive solution to equation (E5) if 
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and only if the physical parameters ,0h  ,0q  ∞D  and k satisfy conditions 

(R2) and (R17). 

Proof. It is similar to the proof of Theorem 3.8. ~ 

Theorem 3.13 (Case 13: determination of k and ρ). If we consider the 
phase-change process (2)-(8) with unknown thermal coefficients k and ρ, 
then it has the solution given by (9)-(10) with: 

( ),
1

5

0
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0 ξ
⎟
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πσ
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∞
∞
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( ),4
0 ξ
σ

π
=ρ

∞
gDc

q  (53) 

where the real functions 4g  and 5g  are defined in (21) and (34), ξ is the 

only positive solution to the equation: 

 ( ) ( )xhc
axg 13
13
13

13 =  (E13) 

and the real functions 13g  and 13h  are defined by: 

( ) ( )
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xxg
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with 
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⎠
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∞Dh
qc

0
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13 12  (55) 

if and only if the physical parameters ,0h  0q  and ∞D  satisfy condition (R2). 

Proof. On one hand, we have from Theorem 2.1 that the phase-change 
process (2)-(8) has the solution given by (9)-(10) if and only if k and ρ 
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satisfy equations (11) and (12). Since inequality (R2) is a necessary condition 
for the existence of a solution to equation (12), now and on, we will assume 
that inequality (R2) holds. 

On the other hand, the solution to the system of equations (11)-(12) is 
given by (52) and (53), where the dimensionless parameter ξ is a solution to 
equation (E13). It only remains to observe that equation (E13) admits a 

positive solution since 13g  is a decreasing function from ∞+  to 0 in +R  and 

13h  is an increasing function from 0 to ∞+  in .+R  ~ 

Theorem 3.14 (Case 14: determination of k and c). If we consider the 
phase-change process (2)-(8) with unknown thermal coefficients k and c, 
then it has the solution given by (9)-(10) with k given by (52) and: 
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0
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0 ξ
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⎛ −σρ
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∞
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where the real function 4g  is defined in (21), ξ is the only positive solution 

to the equation: 

 ( ) ( )xhxga 141414 =  (E14) 

and the real functions 14g  and 14h  are defined by: 

( ) ( ) xxl
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⎠
⎞

⎜
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σρ
= 1exp 20

14   and  ( ) ( ) ( ) 0,exp 2
14 >= xxxerfxh  (57) 

with 
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if and only if the remaining physical parameters satisfy conditions (R2), (R3) 
and 

 ( ) ( ),1414 η>η hg  (R19) 
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where η is the only positive solution to the equation: 

 ( ) ( ).exp21 220 xxl
q

=−
σρ

 (59) 

Proof. It is similar to the proof of Theorem 3.13. ~ 

Theorem 3.15 (Case 15: determination of ρ and c). If we consider the 
phase-change process (2)-(8) with unknown thermal coefficients ρ and c, 
then it has the solution given by (9)-(10) with 

( )
( ) ( )

,
exp2
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exp
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σ
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q
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( ) ( ) ( ),expexp2
11 222

00
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σ
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σ
= q

k
q
klc  (61) 

where ξ is the only positive solution to equation (E5) if and only if the 
physical parameters ,0h  ,0q  ,∞D  σ and k satisfy conditions (R2) and (R17). 

Proof. It is similar to the proof of Theorem 3.13. ~ 

4. Conclusions 

In this paper, we have studied the simultaneous determination of two 
unknown thermal coefficients for a semi-infinite material which was under a 
solidification process with a mushy zone according to the model of Solomon, 
Wilson and Alexiades. The unknown thermal coefficients were chosen 
among the latent heat by unit mass, the thermal conductivity, the mass 
density, the specific heat and the two coefficients that characterize the mushy 
zone. We have assumed that the evolution in time of one of the two free 
boundaries of the mushy zone, the bulk temperature and the coefficients that 
characterize the heat flux and the heat transfer at the fixed face were known. 
We have assumed that the solidification process ensued from a heat flux 
imposed at the fixed boundary and we have overspecified the associated free 
boundary value problem aiming at the simultaneous determination of the 
temperature in the solid region, the unknown free boundary and two 
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unknown thermal coefficients. We have first proved a preliminary result 
where necessary and sufficient conditions on data for the phase-change 
process were given in order to obtain the temperature and the unknown free 
boundary. Then, based on this preliminary result, we have presented and 
solved the fifteen different cases for the phase-change process corresponding 
to each possible choice of the two unknown thermal coefficients. We have 
proved that, under certain restrictions on data, there are twelve cases in 
which it is possible to find a unique explicit solution and that there are 
infinite explicit solutions for the remaining three cases. For each case, we 
have given formulae for the temperature, the unknown free boundary and the 
two unknown thermal coefficients with the necessary and sufficient 
conditions on data in order to obtain them. 
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