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Abstract. We consider a semi-infinite material characterized by x > 0 which is initially
assumed to be liquid at its melting temperature. At time t = 0 a heat flux condition is
imposed at the fixed face x = 0, and a solidification process with a mushy zone begins. We
impose an overspecified convective condition at x = 0 with the aim of the simultaneous
determination of two thermal coefficients among l (latent heat by unit mass), k (thermal
conductivity), ρ (mass density), c (specific heat), ε and γ (coefficients that characterize
the mushy zone), when q0 > 0, h0 > 0 (coefficients that characterize the heat flux and
heat transfer at x = 0, respectively), D∞ (external temperature at x = 0) and one of
the two boundaries of the mushy zone are determined experimentally. This lead us to
the study of 15 different cases. We present the study of some of them, besides explicit
formulae for the unknown thermal coefficients.

1 Introduction

Heat transfer problems with a phase-change such as melting and freezing have been
studied in the last century due to their wide scientific and technological applications.
Some previous books in the subject are [1–8,14].

In this paper we consider a semi-infinite material characterized by x > 0 that is initially
assumed to be liquid at its melting temperature, which without loss of generality we
assume equal to 0◦C. At time t = 0 a flux condition is imposed at the fixed face x = 0, and
a solidification process begins where the following three regions can be distinguished [9,11]:

1. liquid region at temperature T (x, t) = 0: Dl = {(x, t) ∈ R2/ x > r(t), t > 0},

2. solid region at temperature T (x, t) < 0: Ds = {(x, t) ∈ R2/ 0 < x < s(t), t > 0},
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3. mushy region at temperature T (x, t) = 0: Dp = {(x, t) ∈ R2/ s(t) < x < r(t), t > 0},
being s = s(t) and r = r(t) the functions that characterize the free boundaries of the
mushy zone. We make the following assumptions on the structure of the mushy zone,
which we consider isothermal:

1. the material contains a fixed portion εl of the total latent heat per unit mass l > 0,
with 0 < ε < 1, that is:

kTx(s(t), t) = ρl[εṡ(t) + (1− ε)ṙ(t)], t > 0,

where k > 0 is the thermal conductivity and ρ > 0 is the density mass of the
material,

2. its width is inversely proportional to the gradient of temperature, that is:

Tx(s(t), t)(r(t)− s(t)) = γ, t > 0

where γ > 0.

Encouraged by the recent works [12,13] and with the aim of the simultaneous determina-
tion of the temperature T = T (x, t), the free boundary x = r(t) and two of the thermal
coefficients among l (latent heat by unit mass), k (thermal conductivity) , ρ (mass den-
sity), c (specific heat), ε and γ (coefficients which characterize the mushy zone), we impose
an overspecified convective condition at x = 0 (see condition (7) below), which leads us
to the following free boundary problem:

ρcTt(x, t)− kTxx(x, t) = 0 0 < x < s(t), t > 0 (1)

T (s(t), t) = 0 t > 0 (2)

kTx(s(t), t) = ρl[εṡ(t) + (1− ε)ṙ(t)] t > 0 (3)

Tx(s(t), t)(r(t)− s(t)) = γ t > 0 (4)

r(0) = s(0) = 0 (5)

kTx(0, t) =
q0√
t

t > 0 (6)

kTx(0, t) =
h0√
t
(T (0, t) +D∞) t > 0 (7)

where q0 > 0 and h0 > 0 are the coefficients that characterize the heat flux and the heat
transfer at x = 0, respectively, and −D∞ < 0 is the external temperature at x = 0.

We assume the free boundary s(t) is given by:

s(t) = 2σ
√
t, t > 0 (σ > 0) (8)

and the coefficients q0, h0, D∞ and σ are determined experimentally.
The determination of the two unknown thermal coefficients for the one-phase Lamé-

Clapeyron-Stefan problem without a mushy zone was done in [10]. The goal of this paper
is to obtain the explicit solution to problem (1)-(7) with two unknown thermal coefficients
and the necessary and sufficient conditions on data in order to obtain the explicit formulae
for the two unknown thermal coefficients.
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2 Solution of the Problem

We have:

Theorem 1. The solution to problem (1)-(7) with x = s(t) as in (8) is given by:

T (x, t) = −q0
√
αt

k
erf

(
σ√
α

)
1−

erf
(

x
2
√
αt

)

erf
(

σ√
α

)

 0 < x < s(t), t > 0 (9)

r(t) =

(
γk exp (σ2/α)

q0
+ 2σ

)√
t t > 0 (10)

if and only if the parameters involved in the problem (1)-(7) satisfy the following two
equations:

q0
ρl

=

[
σ +

γk(1− ε) exp (σ2/α)

2q0

]
exp (σ2/α) (11)

erf

(
σ√
α

)
=

kD∞

q0
√
απ

(
1− q0

h0D∞

)
(12)

Proof. Since the solution to problem (1)-(7) with x = s(t) as in (8) has the form [9,11,13]:

T (x, t) = A+ B erf

(
x

2
√
αt

)
0 < x < s(t), t > 0 (13)

r(t) = 2µ
√
αt t > 0 (14)

where α = k
ρc

(thermal diffusivity), by imposing conditions (2)-(7) we obtain that the
coefficients A, B and µ must be given by:

A = −q0
√
απ

k
erf

(
σ√
α

)
, B =

q0
√
απ

k
and µ =

γk exp (σ2/α)

2q0
√
α

+
σ√
α

(15)

that is, the solution to problem (1)-(7) is given by (13)-(14), and that the parameters
involved in the problem must satisfies equations (11) and (12).

The problem of the determination of the temperature T = T (x, t), the free boundary
x = r(t) and two coefficients among l, γ, ε, k, ρ y c, leads us to the study of 15 different
cases, which we classify as:

Case 1: Determination of ε and γ, Caso 2: Determination of ε and l,

Caso 3: Determination of γ and l, Case 4: Determination of ε and k,

Caso 5: Determination of ε and ρ, Caso 6: Determination of ε and c,
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Case 7: Determination of γ and k, Caso 8: Determination γ and ρ,

Caso 9: Determination of γ and c, Case 10: Determination of l and k,

Caso 11: Determination of l and ρ, Caso 12: Determination of l and c,

Case 13: Determination of k and ρ, Caso 14: Determination of k and c,

and

Caso 15: Determination of ρ and c.

We will present the study of some of them in the following Section.

3 Results

We consider the cases 7 and 13.

Theorem 2 (Case 7: determination of γ and k). If in problem (1)-(7) we consider
x = s(t) as in (8) and the thermal parameters γ and k as unknowns, then its solution is
given by (13)-(14) with γ and k given by:

γ =
2q0ξ

2

σρc

(
q0
σρl

exp (−ξ2)− 1

)
exp (−ξ2) > 0 (16)

k = ρc

(
σ

ξ

)2

> 0 (17)

being ξ the unique positive solution of the equation:

f(x) =
σρcD∞

q0
√
π

(
1− q0

h0D∞

)
, x > 0, (18)

where f is the function defined by:

f(x) = x erf(x), x > 0, (19)

if and only if the parameters q0, h0, D∞, σ, l, ρ and c satisfy the following three inequal-
ities:

q0
σρl

− 1 > 0 (20)

0 < 1− q0
h0D∞

<
q0
√
π

σρcD∞

√
ln

(
q0
σρl

)
erf

(√
ln

(
q0
σρl

))
(21)
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Proof. We know from Theorem 1 that (13)-(14) is the solution to problem (1)-(7) with
x = s(t) as in (8) if and only if γ and k satisfy the system of equations (11)-(12). This
system can be written as:

γ =
2q0ξ

2

σρc

(
q0
σρl

exp (−ξ2)− 1

)
exp (−ξ2) (22)

f(ξ) =
σρcD∞

q0
√
π

(
1− q0

h0D∞

)
(23)

where

ξ =
σ√
α

= σ

√
ρc

k
. (24)

Since f is a strictly increasing function in R+ such that f(0+) = 0 and f(+∞) = +∞, we
have that equation (23) admits a unique positive solution if and only if the first inequality
in (21) holds. In other words, that equation (12) admits a unique solution k, which is
given by (17) (see (24)) where ξ is the unique positive solution of the equation (18), if
and only if the first inequality in (21) holds. Finally, let us observe that the coefficient γ
given in (22) is positive if and only if q0

σρl
exp (−ξ2) > 1, that is, if and only if inequality

(20) holds and

ξ <

√
ln

(
q0
σρl

)
. (25)

By applying the function f side by side of this last inequality and taking into account
that f is strictly increasing in R+ and ξ is the unique solution of the equation (18), it
follows that this last inequality is equivalent to the second inequality in (21).

Theorem 3 (Case 13: determination of k and ρ). If in problem (1)-(7) we consider
x = s(t) as in (8) and the thermal parameters k and ρ as unknowns, then its solution is
given by (13)-(14) with k and ρ given by:

k =
q0σ

√
π

D∞

(
1− q0

h0D∞

) erf(ξ)

ξ
> 0 (26)

ρ =
q0
√
π

cσD∞
ξ erf (ξ) (27)

being ξ the unique positive solution of the equation:

g(x) = h(x), x > 0, (28)

where functions g and h are defined by:

g(x) =
a

exp (x2) erf(x)
and h(x) = bx+ c exp (x2) erf(x), x > 0 (29)

5
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with

a =
2cD∞

l
√
π

(
1− q0

h0D∞

)2

> 0, b = 2

(
1− q0

h0D∞

)
> 0, c =

γ
√
π(1− ε)

D∞
> 0,

(30)
if and only if the parameters q0, h0 and D∞ satisfy the following inequality:

1− q0
h0D∞

> 0 (31)

Proof. We know from Theorem 1 that (13)-(14) is the solution to problem (1)-(7) with
x = s(t) as in (8) if and only if k and ρ satisfy the system of equations given by (11)-(12).
This system can be written as:

q0cσ
2

lkξ2
=

[
σ +

γk(1− ε)

2q0
exp (ξ2)

]
exp (ξ2) (32)

erf(ξ) =
kD∞ξ

q0σ
√
π

(
1− q0

h0D∞

)
(33)

where ξ is as in (24). Let us observe that inequality (31) is a necessary condition for the
existence of a solution k > 0 and ρ > 0 to system (32)-(33). Then, henceforth, we assume
that inequality (31) holds.

From equation (33), we have that k is given by (26). By replacing this expression for
k in (32), we obtain that equation (32) is equivalent to g(ξ) = h(ξ), that is ξ must satisfy
equation (28).

Since g is a strictly decreasing function in R+ such that g(0+) = +∞ and g(+∞) = 0,
and h is a strictly increasing function such that h(0+) = 0 and h(+∞) = +∞, it follows
that there exists a unique positive solution to equation (28). Therefore, condition (31)
is a necessary and sufficient condition for the existence and uniqueness of the solution to
system (11)-(12), which is given by (26) and (27) (see (24)), where ξ is the unique positive
solution to equation (28).
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