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Abstract A two-phase solidification process for a one-dimensional semi-infinite material is
considered. It is assumed that it is ensued from a constant bulk temperature present in the
vicinity of the fixed boundary, which it is modelled through a convective condition (Robin
condition). The interface between the two phases is idealized as a mushy region and it is
represented following the model of Solomon, Wilson, and Alexiades. An exact similarity
solution is obtained when a restriction on data is verified, and it is analysed the relation
between the problem considered here and the problem with a temperature condition at the
fixed boundary. Moreover, it is proved that the solution to the problem with the convective
boundary condition converges to the solution to a problemwith a temperature condition when
the heat transfer coefficient at the fixed boundary goes to infinity, and it is given an estimation
of the difference between these two solutions. Results in this article complete and improve
the ones obtained in Tarzia (Comput Appl Math 9:201–211, 1990).
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1 Introduction

Phase-change processes involving solidification or melting are present in a large number of
phenomena related to physics, engineering, chemistry, etc., and they havewidely been studied
since several decades. Some reference books in the subject areAlexiades andSolomon (1993),
Cannon (1984), Crank (1984), Fasano (2005), Gupta (2003), Lunardini (1991), Rubinstein
(1971), and a review of a long bibliography on moving and free boundary value problems
for the heat equation can be consulted in Tarzia (2000). Sometimes, liquid in solidification
processes is cooled until the phase-change temperature without becoming solid. This implies
the presence of a region in the phase-change process containing the material at a special
solid–liquid state, which is known as mushy region (Alexiades and Solomon 1993; Crank
1984; Gupta 2003). In this article, we consider a one-dimensional semi-infinite homogeneous
material undergoing a two-phase solidification process with a mushy zone. This sort of
problems was studied in Tarzia (1990) for boundary conditions of Dirichlet or heat flux type.
We follow it, which is inspired by the model given for Solomon, Wilson and Alexiades in
Solomon et al. (1982) for the one-phase case, to represent the mushy region. Encouraged by
the recent relation between the classical (absence of mushy zone) two-phase Stefan problems
with temperature and convective boundary conditions (Tarzia 2017), we consider here the
following free boundary value problem:

α1θ1xx (x, t) = θ1t (x, t) 0 < x < s(t), t > 0, (1a)

α2θ2xx (x, t) = θ2t (x, t) x > r(t), t > 0, (1b)

s(0) = r(0) = 0, (1c)

θ1(s(t), t) = θ2(r(t), t) = 0 t > 0, (1d)

θ2(x, 0) = θ2(+∞, t) = θ0 x > 0, t > 0, (1e)

k1θ1x (s(t), t) − k2θ2x (r(t), t) = ρl[εṡ(t) − (1 − ε)ṙ(t)] t > 0, (1f)

θ1x (s(t), t)(r(t) − s(t)) = γ t > 0, (1g)

k1θ1x (0, t) = h0√
t
(θ1(0, t) + D∞) t > 0, (1h)

where the unknowns are:

θ1 : temperature of the solid region (◦C)
θ2 : temperature of the liquid region (◦C)
s : free boundary separating the mushy zone and the solid phase (m)
r : free boundary separating the mushy zone and the liquid phase (m)

and the physical parameters involved in the model are:

ρ > 0 : mass density (kg/m3)
k > 0 : thermal conductivity [W/(m◦C)]
c > 0 : specific heat [J/(kg◦C)]
l > 0 : latent heat per unit mass (J/kg)

0 < ε < 1 : coefficient characterizing the amount of latent heat contained in the mushy
region (dimensionless)

γ > 0 : coefficient characterizing the width of the mushy region (◦C)
θ0 > 0 : initial temperature of the material (◦C)

−D∞ < 0 : external bulk temperature at the boundary x = 0 (◦C)
h0 > 0 : coefficient characterizing the heat transfer at the boundary x = 0 [kg/(◦C

s5/2)]
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α = k
ρc > 0 : thermal diffusivity (m2 s−1)

and the subscripts 1 and 2 refer to solid and liquid phases, respectively.
We note that we are making the following assumptions on the mushy region (Tarzia 1990,

2015b; Solomon et al. 1982):

1. It is isothermal at the phase-change temperature, which we are considering equal to 0
◦C.

2. It contains a fixed portion of the total latent heat per unit mass [see condition (1f)].
3. Its width is inversely proportional to the gradient of temperature [see condition (1g)].

We also observe that, by considering the convective boundary condition (1h), we are
thinking of a solidification process ensued due to the constant temperature −D∞ present in
the vicinity of the fixed boundary x = 0 of the material, which is often represented through
physically less appropriate boundary conditions of Dirichlet type (Carslaw and Jaeger 1959).
Convective boundary conditions have been also used in the context of phase-change processes
in, for example, Zubair andChaudhry (1994),Beckett (1991),Cadwell andKwan (2009), Foss
(1978),Grzymkowski et al. (2013),Huang andShil (1975), Lu (2000),Roday andKazmiercza
(2009), Sadoun et al. (2009), Singh et al. (2011), Wu and Wang (1994), Briozzo and Tarzia
(1998), Boadbridge (1990). Especially, a heat transfer coefficient inversely proportional to the
square root of time time, it was also considered in Zubair and Chaudhry (1994). Finally, we
note that we are assuming that the temperature varies moderately. This allows us to consider
(piecewise) constant thermophysical properties (Alexiades and Solomon 1993; Carslaw and
Jaeger 1959). Even though when the latter adjusts well with most materials, more realistic
approaches could be considered. For example, a density jump through the interface or a
temperature-dependent thermal conductivity might be introduced in the model. As examples
of these sort of generalizations we mention here Ceretani and Tarzia (2014) and Solomon
et al. (1982).

In the following (Sect. 2), we give a characterization for the existence and uniqueness of
an explicit similarity solution to problem (1) in terms of the existence and uniqueness of a
positive solution to a transcendental equation.We thenprove that it has only one solution if and
only if data verify a certain condition. Then, (Sect. 3), we analyse the relation of problem (1)
with the problem (1�) given by (1a)–(1g) and the following temperature boundary condition:

θ1(0, t) = −D0, t > 0 (D0 > 0), (1h�)

and we establish when both problems are equivalent. Finally, (Sect. 4), we prove that the
solution to problem (1) converges to the solution to problem (1�)∞, that is the special case
of problem (1�) in which the temperature boundary condition is given by:

θ1(0, t) = −D∞, t > 0, (1h�)∞
when the heat transfer coefficient goes to infinity. Moreover, we obtain that the difference

between the two solutions is O
(

1
h0

)
when h0 → ∞.

2 Existence and uniqueness of solution

In this section, wewill look for a similarity solution to problem (1). By following the classical
method of Neumann (Weber 1912), that is, by introducing the similarity variables:

η1 = x

2
√

α1t
and η2 = x

2
√

α2t
,
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and proposing a solution defined by:

θ1(x, t) = θ1(η1) 0 < x < s(t), t > 0,

θ2(x, t) = θ2(η2) x > r(t), t > 0,

s(t) = 2ξ
√

α1t t > 0,

r(t) = 2μ
√

α2t t > 0,

with ξ and μ positive numbers to be determined, we obtain that θ1 and θ2 must be given by:

θ1(x, t) = A1 + B1 erf(η1) 0 < x < s(t), t > 0,

θ2(x, t) = A2 + B2 erf(η2) x > r(t), t > 0,

where A1, A2, B1, and B2 are real numbers that must be specified from conditions (1d)–(1h),
and erf is the error function defined by:

erf(x) = 2√
π

∫ x

0
exp(−y2) dy, x > 0.

Through conditions (1d) and (1h), we obtain that:

A1 = − D∞ erf(ξ)

erf(ξ) + k1
h0

√
α1π

and B1 = D∞
erf(ξ) + k1

h0
√

πα1

,

and from conditions (1d) and (1e) that:

A2 = −θ0 erf(μ)

erfc(μ)
and B2 = θ0

1 − erfc(μ)
,

where erfc is the complementary error function defined by:

erfc(x) = 1 − erf(x), x > 0.

Exploiting condition (1g) we have that the parameters ξ and μ, which characterize the two
free boundaries of the mushy region, are related as:

μ = √
α12W (ξ), (2)

where α12 is the number defined by:

α12 = α1

α2
> 0,

and W is the function defined by:

W (x) = x + γ
√

π

2D∞
exp(x2)

(
erf(x) + k1

h0
√

α1π

)
, x > 0. (3)

Finally, through condition (1f), we have that ξ must be such that:

F(ξ) = l
√

π

D∞c1
G(ξ),

where F and G are the functions defined by:

F(x) = exp(−x2)

erf(x) + k1
h0

√
α1π

− θ0
√
k2c2

D∞
√
k1c1

exp
(−α12W 2(x)

)

erfc
(√

α12W (x)
) x > 0, (4a)
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G(x) = x + (1 − ε)γ
√

π

2D∞
exp(x2)

(
erf(x) + k1

h0
√

α1π

)
x > 0. (4b)

Then, we have the following result:

Theorem 2.1 The Stefan problem (1) has the similarity solution θ1, θ2, s, and r given by:

θ1(x, t) = − D∞ erf(ξ)

erf(ξ) + k1
h0

√
πα1

⎛
⎝1 −

erf
(

x
2
√

α1t

)

erf(ξ)

⎞
⎠ 0 < x < s(t), t > 0, (5a)

θ2(x, t) = θ0 erf(μ)

erfc(μ)

⎛
⎝erf

(
x

2
√

α2t

)

erf(μ)
− 1

⎞
⎠ x > r(t), t > 0, (5b)

s(t) = 2ξ
√

α1t t > 0, (5c)

r(t) = 2μ
√

α2t t > 0, (5d)

with μ given by (2), if and only if ξ is a solution to the equation:

F(x) = l
√

π

D∞c1
G(x), x > 0, (6)

where F and G are the functions defined in (4).

Therefore, finding a similarity solution to problem (1) reduces to studying Eq. (6). We
begin this by introducing some functions related to Eq. (6) and some properties of them. Let
F1 and F2 be the functions defined by:

F1(x) = exp(−x2)

erf(x) + k1
h0

√
α1π

, x > 0, (7)

F2(x) = exp(−x2)

erfc(x)
, x > 0. (8)

Then, (4a) can be rewritten as:

F(x) = F1(x) − θ0
√
k2c2

D∞
√
k1c1

F2
(√

α12W (x)
)
, x > 0. (9)

Lemma 2.1 1. The functions W, F1, and F2 defined by (3), (7), (8), respectively, verify:

W (0+) = γ k1
2D∞h0

√
α1

, W (+∞) = +∞, W ′(x) > 0 ∀ x > 0, (10a)

F1(0
+) = h0

√
α1π

k1
> 0, F1(+∞) = 0, F ′

1(x) < 0 ∀ x > 0, (10b)

F2(0
+) = 1, F2(+∞) = +∞, F ′

2(x) > 0 ∀ x > 0. (10c)

2. The function F defined by (4a) verifies:

F(0+) = h0
√

α1π

k1
− θ0

√
k2c2

D∞
√
k1c1

F2

(
γ k1

2D∞h0
√

α2

)
,

F(+∞) = −∞, F ′(x) < 0 ∀ x > 0. (11)
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3. The function G defined by (4b) verifies:

G(0+) = (1 − ε)γ k1
2D∞h0

√
α1

, G(+∞) = +∞, G ′(x) > 0 ∀ x > 0. (12)

Proof It follows from elementary computations. �	
Then, we have:

Theorem 2.2 Equation (6) has an only one positive solution if and only if the coefficient h0
verifies the following inequality:

h0 > h�
0, (13)

where h�
0 is defined by:

h�
0 = γ k1

2D∞η
√

α2
, (14)

with η = η
(

γ k1
θ0k2

,
(1−ε)l
θ0c2

)
, the only one solution to the equation:

F3(x) = 0, x > 0, (15)

and the function F3 is defined by:

F3(x) = F2(x) − γ k1
√

π

2θ0k2

1

x
+ (1 − ε)l

√
π

θ0c2
x, x > 0. (16)

Proof It follows from the properties of the functions F , G given in Lemma 2.1 that Eq. (6)
admits an only one positive solution if and only if:

F(0+) >
l
√

π

D∞c1
G(0+). (17)

Let us observe that, using the function F3 given by (16), (17) can be rewritten as:

F3

(
γ k1

2D∞h0
√

α2

)
< 0. (18)

Let F4 be the function defined by:

F4(x) = γ k1
√

π

2θ0k2

1

x
− (1 − ε)l

√
π

θ0c2
x, x > 0.

Since
F3(x) = F2(x) − F4(x), x > 0,

it follows from the properties of the function F2 given in Lemma 2.1 and the fact that F4
verifies:

F4(0
+) = −∞, F4(+∞) = +∞, F ′

4(x) < 0 x > 0,

that F3 is such that:

F3(0
+) = −∞, F3(+∞) = +∞, F ′

3(x) > 0 x > 0.

Therefore, (18) holds if and only if:

0 <
γ k1

2D∞h0
√

α2
< η, (19)

where η = η
(

γ k1
θ0k2

,
(1−ε)l
θ0c2

)
is the only one positive solution to Eq. (15). Only remains to

observe that inequality (19) is equivalent to (13). �	
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From Theorems 2.1 and 2.2, we can establish now the main result of this section:

Corollary 2.1 The Stefan problem (1) has the similarity solution given by (5) if and only if
the coefficient h0 that characterizes the heat transfer coefficient at the boundary x = 0 is
large enough so much as to verifies inequality (13).

Remark 1 In Tarzia (2015b), it was obtained an explicit similarity solution for a one-phase
solidification process with a mushy zone according to the model of Solomon et al. (1982).
We note that Theorem 2.1 reduces to Theorem 1 in Tarzia (2015b), in which the explicit
solution is established when it is considered an initial temperature for the liquid phase equal
to the phase-change temperature. That is, when θ0 = 0, we have that the solution presented
in this article coincides with the solution given in Tarzia (2015b) and that the hypothesis on
the heat transfer coefficient under which we have the solution is equivalent to the one given
in Tarzia (2015b).

In Tarzia (2017), it was obtained an explicit similarity solution for a two-phase solidifica-
tion process without any mushy region. We also have that Theorem 2.1 reduces to Theorem
2 in Tarzia (2017), in which the explicit solution is obtained, if we think of a mushy region
of zero thickness. In other words, when γ = 0, we have that the solution obtained here
coincides with the solution given in Tarzia (2017) and that the condition for the heat transfer
coefficient is equivalent to the one given there.

3 Relation between the problems with convective and temperature
boundary conditions

Aswe have mentioned before, convective boundary conditions are physically more appropri-
ate to represent a temperature imposed at the boundary of a material (actually, in the vicinity
of) than conditions of Dirichlet type (Carslaw and Jaeger 1959). Nevertheless, Dirichlet con-
ditions are frequently encountered in the literature modelling this sort of situations. Thus,
we are interested in analysing the relationship between the problems with the two types of
conditions. In other words, in how problems (1) and (1�) are related.

Let us start by considering problem (1) with h0 satisfying condition (13). We know from
Corollary 2.1 that it has the similarity solution given by (5), where ξ is the only one positive
solution to Eq. (6). Since

θ1(0, t) = − D∞ erf(ξ)

erf(ξ) + k1
h0

√
πα1

,

we will consider problem (1�) with D0 defined as:

D0 = D∞ erf(ξ)

erf(ξ) + k1
h0

√
πα1

> 0. (20)

We know from Tarzia (1990) that this problem has the similarity solution given by:

θ�
1 (x, t) = −D0

⎛
⎝1 −

erf
(

x
2
√

α1t

)

erf(ξ�)

⎞
⎠ 0 < x < s�(t), t > 0, (21a)

θ�
2 (x, t) = θ0 erf(μ�)

erfc(μ�)

⎛
⎝erf

(
x

2
√

α2t

)

erf(μ�)
− 1

⎞
⎠ x > r�(t), t > 0, (21b)
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s�(t) = 2ξ�
√

α1t t > 0, (21c)

r�(t) = 2μ∗√α2t t > 0, (21d)

where μ∗ is given by:
μ∗ = √

α12W0(ξ
�), (22)

ξ� is the only one solution to the equation:

F0(x) = l
√

π

D0c1
G0(x), x > 0, (23)

and W0, F0, and G0 are the functions defined by:

W0(x) = x + γ
√

π

2D0
exp(x2) erf(x) x > 0, (24a)

F0(x) = exp(−x2)

erf(x)
− θ0

√
k2c2

D0
√
k1c1

exp
(−α12W0

2(x)
)

erfc
(√

α12W0(x)
) x > 0, (24b)

G0(x) = x + (1 − ε)γ
√

π

2D0
exp(x2) erf(x) x > 0. (24c)

Exploiting the fact that ξ satisfies (6), it follows that it is also a solution to Eq. (23). In fact,
when D0 is given by (20), we have that:

F0(ξ) = exp(−ξ2)

erf(ξ)
− θ0

√
k2c2

D∞
√
k1c1

erf(ξ) + k1
h0

√
πα1

erf(ξ)

× F2

(√
α12

(
ξ + γ

√
π

2D∞
exp(ξ2)

(
erf(ξ) + k1

h0
√

πα1

)))

=
erf(ξ) + k1

h0
√

πα1

erf(ξ)

[
F1(ξ) − θ0

√
k2c2

D∞
√
k1c1

F2
(√

α12W (ξ)
)]

=
erf(ξ) + k1

h0
√

πα1

erf(ξ)
F(ξ) =

erf(ξ) + k1
h0

√
πα1

erf(ξ)

[
l
√

π

D∞c1
G(ξ)

]

=
erf(ξ) + k1

h0
√

πα1

erf(ξ)

⎡
⎣ l

√
π

D0c1

erf(ξ)

erf(ξ) + k1
h0

√
πα1

(
ξ + (1 − ε)γ

√
π

2D0
exp(ξ2) erf(ξ)

)⎤
⎦

= l
√

π

D0c1
G0(ξ).

Therefore, ξ = ξ�. From this, it is easy to see that μ = μ�, θ1 = θ�
1 , and θ2 = θ�

2 .
Then, we have the following theorem:

Theorem 3.1 If h0 satisfies condition (13), then the similarity solution (5) to problem (1)
coincides with the similarity solution (21) to problem (1�) when D0 is given by (20).

Let us consider now the problem (1�). It follows fromTarzia (1990) that it has the similarity
solution given by (21), where ξ� is the only one positive solution to Eq. (23). Let D∞ > D0

and let h0 > 0. Since

k1θ1
�
x (0, t) = h0√

t
(θ�

1 (0, t) + D∞)
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if and only if:

h0 = k1D0√
πα1(D∞ − D0) erf(ξ�)

> 0, (25)

we will consider problem (1) with D∞ > D0 and h0 given by (25). As before, by considering
that ξ� satisfies equation (23), it can be shown that ξ� is a solution to equation (6). Then,
we have from Theorem 2.1 that problem (1) admits the similarity solution given by (5) with
ξ = ξ�. Moreover, Corollary 2.1 implies that h0 satisfies (13), which, in this case, can be
written as:

erf(ξ�) <
2D∞D0η

γ (D∞ − D0)
√

πα12
. (26)

Then, we have the following theorem:

Theorem 3.2 The similarity solution (21) to problem (1�) coincides with the similarity solu-
tion (5) to problem (1) when D∞ > D0 and h0 is given by (25). Moreover, the parameter ξ�

that characterizes the free boundary separating the solid phase and the mushy region verifies
the following inequality:

erf(ξ�) < min

{
1,

2D∞D0η

γ (D∞ − D0)
√

πα12

}
, (27)

where η is the only one solution to Eq. (15).

Therefore, in the sense established by Theorems 3.1 and 3.2, we have that problems (1)
and (1�) are equivalent.

Corollary 3.1 The parameter ξ� that characterizes the free boundary separating the solid
and mushy regions in problem (1�) verifies the following inequality:

erf(ξ�) ≤ min

{
1,

2D0η

γ
√

πα12

}
, (28)

where η is the only one solution to Eq. (15).

Proof It follows by making D∞ → ∞ into both sides of (26). �	
Remark 2 Inequality (28), which is physically relevant when 2D0η

γ
√

πα12
< 1, has already been

obtained in Tarzia (1990) through the relationship between problem (1�) and the problem
consisting in (1a)–(1g) and the following flux boundary condition:

k1θ1x (0, t) = q0√
t
, t > 0 (q0 > 0).

4 Asymptotic behaviour when h0 → +∞
From a physical point of view, if we were able to consider an infinite heat transfer coefficient
at x = 0, the convective boundary condition (1h) could be replaced by the temperature
boundary condition (1h�)∞. Thus, it is reasonable to expect that the solution to problem (1)
converges to the solution to problem (1�)∞ when the heat transfer coefficient increases its
value. In this section, we will analyse this sort of convergence, which was already proved
for some other Stefan problems in Ceretani and Tarzia (2014), Ceretani and Tarzia (2015),
Ceretani and Tarzia (2016).
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For each h0 satisfying (13), we will consider problem (1) and we will denote its solution
as θ1,h0 , θ2,h0 , sh0 , and rh0 . The solution to problem (1�)∞ will be referred to as θ�

1,∞, θ�
2,∞,

s�∞, and r�∞.
The main result of this section is as follows:

Theorem 4.1 The solution to problem (1) given by (5) punctually converges to the solution
to problem (1�)∞ given by (21), when h0 → ∞. Moreover, the following estimations holds
when h0 → ∞:

θ1,h0(x, t) − θ1,∞(x, t) = O
(

1

h0

)
∀ x > 0, t > 0, (29a)

θ2,h0(x, t) − θ2,∞(x, t) = O
(

1

h0

)
∀ x > 0, t > 0, (29b)

sh0(t) − s∞(t) = O
(

1

h0

)
t > 0, (29c)

rh0(t) − r∞(t) = O
(

1

h0

)
t > 0. (29d)

The key to prove Theorem 4.1 is the fact that ξh0 − ξ∞ = O
(

1
h0

)
when h0 → ∞. We

will first prove it and then we will back and give the demonstration of Theorem 4.1.
Hereinafter, we will refer to the functions F ,G,W , F1 related to problem (1), as Fh0 ,Gh0 ,

Wh0 , F1,h0 , respectively. Analogously, we will refer to the functions F0, G0, W0 associated
with condition (1h�)∞, as F∞,G∞,W∞. That is, F∞,G∞,W∞ will be the functions defined
by:

F∞(x) = exp(−x2)

erf(x)
− θ0

√
k2c2

D∞
√
k1c1

exp
(−α12W 2∞(x)

)

erfc
(√

α12W∞(x)
) x > 0, (30a)

G∞(x) = x + (1 − ε)γ
√

π

2D∞
exp(x2) erf(x) x > 0, (30b)

W∞(x) = x + γ
√

π

2D∞
exp(x2) erf(x) x > 0. (30c)

Finally, let Jh0 J∞ be the functions defined by:

Jh0(x) = Fh0(x)

Gh0(x)
, x > 0, (31a)

J∞(x) = F∞(x)

G∞(x)
, x > 0. (31b)

Using the functions Hh0 and H∞ defined by:

Hh0(x) = Gh0(x)

F1,h0(x)
, x > 0, (32a)

H∞(x) = G∞(x)

F1,∞(x)
, x > 0, (32b)

where the F1,∞ is the function given by:

F1,∞(x) = exp(−x2)

erf(x)
, x > 0,
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it follows that (31) can be written as:

Jh0(x) = 1

Hh0(x)
− θ0

√
k2c2

D∞
√
k1c1

F2
(√

α12Wh0(x)
)

Gh0(x)
, x > 0 (33a)

J∞(x) = 1

H∞(x)
− θ0

√
k2c2

D∞
√
k1c1

F2
(√

α12W∞(x)
)

G∞(x)
, x > 0 (33b)

Lemma 4.1 1. The function Jh0 defined by (31a) verifies:

Jh0(0
+) > 0 ∀ h0 ≥ h�

1, (34a)

J ′
h0(x) < 0 ∀ x ∈ (0, νh0), ∀ h0 ≥ h�

1, (34b)

where h�
1 is a positive number, such that:

1

h�
1
F2

(
γ k1

2D∞
√

α2

1

h�
1

)
< ζ, (35)

with:

ζ = D∞
√

π

θ0
√

ρk2c2
, (36)

and νh0 is the only one solution to the equation:

Jh0(x) = 0, x > 0, h0 ≥ h�
1. (37)

2. The function J∞ defined by (31b) verifies:

J∞(0+) = +∞ (38a)

J ′∞(x) < 0, ∀ x ∈ (0, ν∞), (38b)

where ν∞ is the only one solution to the equation:

J∞(x) = 0, x > 0. (39)

Proof 1. We have from Lemma 2.1 that:

1

Hh0(0+)
= 2D∞α1

√
π

(1 − ε)γ

(
h0
k1

)2

F2
(√

α1
α2
Wh0(0

+)
)

Gh0(0+)
= 2D∞h0

√
α1

(1 − ε)γ k1
F2

(
γ k1

2D∞h0
√

α2

)
.

Then:

Jh0(0
+) = 2D∞α1

√
π

(1 − ε)γ

(
h0
k1

)2 (
1 − 1

h0ζ
F2

(
γ k1

2D∞h0
√

α2

))
, (41)

where ζ is defined by (36). Therefore, Jh0(0
+) > 0 if and only if:

1

h0
F2

(
γ k1

2D∞
√

α2

1

h0

)
< ζ. (42)

Let F5 be the function defined by:

F5(x) = 1

x
F2

(
1

x

)
, x > 0.
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Since F5 verifies:

F5(0
+) = +∞, F5(+∞) = 0, F ′

5(x) < 0 ∀ x > 0,

it follows that there exists a positive number h�
1 ≥ h�

0 which verifies (35). Moreover, as
we know from Lemma 2.1 that F2 is an increasing function, we have that (42) holds for
any h0 ≥ h�

1.
It follows from (34a) and the properties of the function Fh0 given in Lemma 2.1, that
there exists an only one solution νh0 to the Eq. (37) for any h0 ≥ h�

1. Moreover, since

Fh0(x) > 0 ∀ x ∈ (0, νh0), ∀ h0 ≥ h�
1, (43)

it follows from the Leibnitz rule and the properties of the functions F ′
h0
, G ′

h0
given in

Lemma 2.1 that (34b) holds.
2. It is similar to the proof given for Jh0 in the previous item.

�	
Lemma 4.2 1. Let h�

1 be as in Lemma 4.1. The sequence of functions
{
Jh0

}
h0≥h�

1
has the

following properties:

(a) Jh0(x) → J∞(x) when h0 → ∞, for all x ∈ R
+.

(b) If h�
1 ≤ h(1)

0 < h(2)
0 , then:

J
h(1)
0

(x) < J
h(2)
0

(x) ∀ x ∈ (0, ν
h(1)
0

), (44)

where ν
h(1)
0

is defined as in Lemma 4.1.

2.
{
ξh0

}
h0≥h�

1
is an increasing sequence of numbers which converges to ξ∞ when h0 → ∞.

Proof 1. Let h�
1 be as in Lemma 4.1.

(a) It follows immediately from the definitions of Jh0 and J∞.
(b) Since

∂F1,h0(x)

∂h0
> 0 ∀ x > 0, (45)

it follows that:
∂Wh0(x)

∂h0
< 0 ∀ x > 0.

Then, as we also know from Lemma 2.1 that F2 is an increasing function, we have
that:

∂

∂h0

(
F2

(√
α12Wh0(x)

))
< 0 ∀ x > 0.

Therefore:
∂Fh0(x)

∂h0
> 0 ∀ x > 0. (46)

We also have from (45) that:

∂Gh0(x)

∂h0
< 0 ∀ x > 0. (47)

Then, it follows from (43), (46), (47), and the Leibnitz rule that:

∂ Jh0(x)

∂h0
> 0 ∀ x ∈ (0, νh0).
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Therefore,
{
νh0

}
h0≥h�

1
is an increasing sequence of numbers and (44) holds.

2. It is a direct consequence of the previous item and the definitions of ξh0 and ξ∞ as the
only one solutions to the Eqs. (6) and (23), respectively.

Lemma 4.3 Let h�
1 be as in Lemma 4.1. Then, there exist a positive functionJ and a number

h��
0 ≥ h�

1, such that:

∣∣Jh0(x) − J∞(x)
∣∣ ≤ J (x)

h0
∀ x ∈ [ξh��

0
, νh0 ], ∀h0 ≥ h��

0 , (48)

where νh0 is defined as in Lemma 4.1.
Therefore, the following estimations holds when h0 → ∞:

ξh0 − ξ∞ = O
(

1

h0

)
(49a)

μh0 − μ∞ = O
(

1

h0

)
(49b)

Proof Let be h0 ≥ h�
1. We have from Lemma 4.2 that:

0 < J∞(x) − Jh0 (x) = Hh0 (x) − H∞(x)

H∞(x)Hh0 (x)
+ θ0

√
k2c2

D∞
√
k1c1

(
F2

(√
α12Wh0 (x)

)

Gh0 (x)
− F2

(√
α12W∞(x)

)

G∞(x)

)
,

(50)
for all x ∈ [ξh�

1
, νh0 ].

On one hand, we know from Tarzia (2015b) that there exist a positive function J1 and a
number h��

0 ≥ h�
1, such that:

0 < Hh0(x) − H∞(x) ≤ J1(x)

h0
, ∀ x ∈ [ξh��

0
, νh0 ], ∀ h0 ≥ h��

0 . (51)

Then, since
{
Hh0

}
h0≥h��

0
is a decreasing sequence of functions which punctually converges

to H∞ when h0 → ∞, it follows that:

0 <
Hh0(x) − H∞(x)

H∞(x)Hh0(x)
<

J2(x)

h0
, ∀ x ∈ [ξh��

0
, νh0 ], ∀ h0 ≥ h��

0 , (52)

where J2 is the function defined by:

J2(x) = J1(x)

H2∞(x)
, x > 0. (53)

On the other hand, since
{
Wh0

}
h0≥h��

0
is a decreasing sequence of functions which converges

to W∞ when h0 → ∞ and F2 is an increasing function, we have that:

0 < F2
(√

α12Wh0(x)
) − F2

(√
α12W∞(x)

)
, ∀ x ∈ [ξh��

0
, νh0 ], ∀ h0 ≥ h��

0 . (54)

Then, as
{
Gh0

}
h0≥h��

0
is a decreasing sequence of functions which punctually converges to

G∞ when h0 → ∞, it follows that:

0 <
F2

(√
α12Wh0(x)

)

Gh0(x)
− F2

(√
α12W∞(x)

)

G∞(x)

<
1

G∞(x)

(
F2

(√
α12Wh0(x)

) − F2
(√

α12W∞(x)
))

<
J3(x)

h0
, ∀ x ∈ [ξh��

0
, νh0 ], ∀ h0 ≥ h��

0 .

(55)
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where J3 is the function defined by:

J3(x) = L2γ k1
2D∞

√
α2

exp(x2)

G∞(x)
, x > 0, (56)

and L2 is a Lipschitz constant for F2 in
[
W∞(ξh��

0
),Wh��

0
(ν∞)

]
. Henceforth, we have from

(50), (52), and (55) that (48) holds when we consider the function J defined by:

J (x) = J2(x) + θ0
√
k2c2

D∞
√
k1c1

J3(x), x > 0. (57)

To prove (49a), we will use some geometric arguments. Let T be the right triangle with
vertices P1(ξh0 , Jh0(ξh0)), P2(ξh0 , J∞(ξh0)), and P3(ξ∞, J∞(ξ∞)). Then, we have that:

0 < ξ∞ − ξh0 = J∞(ξh0) − Jh0(ξh0)

tan(αh0)
, (58)

where αh0 is the inner angle of T with vertex P3. Let also be tan(̃αh0), α̃h0 ∈ (0, π), the
slope of the secant line to the graph of J∞ which contains the points P2 and P3, and let be
tan(β̃, β ∈ (0, π), the slope of the tangent line at P3 of the same graph. Since ξh0 < ξ∞ and
J∞ is a decreasing convex function in [ξh��

0
, ν∞], we have that:

α̃h0 < β and α̃h0 , β ∈
(π

2
, π

)
.

Then:
tan(αh0) > tan(−β) = −J ′∞(ξ∞) > 0, (59)

since αh0 = π − α̃h0 . Therefore, it follows from (48), (58), and (59) that:

0 < ξ∞ − ξh0 <
J (ξh0)

−J ′∞(ξ∞)

1

h0
∀ h0 ≥ h��

0 . (60)

We know from Tarzia (2015a) that J1 can be considered as given by:

J1(x) = k√
πα1

exp(−x2)

erf2(x)

(
x + γ (1 − ε)

√
π

D∞
1

F1,h�
0
(x)

)
1

F1,∞(x)F1,h�
0
(x)

.

Then:

J2(ξh0) = F1,∞(ξh0)

G2∞(ξh0)

k√
πα1

exp(−ξ2h0)

erf2(ξh0)

(
ξh0 + γ (1 − ε)

√
π

D∞
1

F1,h�
0
(ξh0)

)
1

F1,h�
0
(ξh0)

< M1,

(61)
where M1 is the number defined by:

M1 = k√
πα1

F1,∞(ξh��
0

)

G2∞(ξh��
0

)F1,h�
0
(ν∞) erf2(ξh��

0
)

(
ν∞ + γ (1 − ε)

√
π

D∞
1

F1,h�
0
(ν∞)

)
> 0.

We also have that:
θ0

√
k2c2

D∞
√
k1c1

J3(x) < M2, (62)

where M2 is the number defined by:

M2 = θ0Lγ k1
√
k2c2

2D2∞
√
k1c1α2

exp(ν2∞)

G∞(ξh��
0

)
.
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Then, it follows from (60), (61), and (62) that:

0 < ξ∞ − ξh0 <
M
h0

∀ h0 ≥ h��
0 , (63)

where M is the number defined by:

M = M1 + M2

−J ′∞(ξ∞)
> 0.

Then, (49a) holds.
Finally, we have that:

∣∣μh0 − μ∞
∣∣ ≤ √

α12

(M
h0

+ γ
√

π

2D∞
(
exp(ξ2∞) erf(ξ∞) − exp(ξ2h0) erf(ξh0)

)

+γ k1 exp(ν2∞)

2D∞
√

α1

1

h0

)

≤ M3

h0
∀ h0 ≥ h��

0 ,

where M3 is the number defined by:

M3 = √
α12

(
M

(
1 + γ

√
πL6

2D∞

)
+ γ k1 exp(ν2∞)

2D∞
√

α1

)
> 0

and L6 is a Lipschitz constant in
[
ξh��

0
, ν∞

]
for the function F6 defined by:

F6(x) = exp(x2) erf(x), x > 0.

�	
We are now in a position to prove Theorem 4.1:

Proof of Theorem 4.1 Let be x > 0 and t > 0. We have that:

∣∣θ1,h0(x, t) − θ1,∞(x, t)
∣∣ ≤ D∞

1 +
√

α1π

k1
erf(ξh��

0
)

1

h0

[
1 + 1

erf(ξh0)

(
h0

√
α1π

k1
(erf(ξ∞)

− erf(ξh0)
) + 1

) ]

≤ Mθ1

h0
∀ h0 ≥ h��

0 ,

where Mθ1 is the number defined by:

Mθ1 = D∞
1 +

√
α1π

k1
erf(ξh��

0
)

[
1 + 1

erf(ξ∞)

(
L
√

α1π

k1
M + 1

)]
> 0

and L is a Lipschitz constant for the error function. Then, (29a) holds.
We also have that:

∣∣θ2,h0(x, t) − θ2,∞(x, t)
∣∣ ≤ 2θ0

erfc2(μ∞)

(
erf(μ∞) − erf(μh0)

) ≤ Mθ2

h0
∀ h0 ≥ h��

0 ,
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where Mθ2 is the number defined by:

Mθ2 = 2θ0LM3

erfc2(μ∞)
> 0.

Therefore, (29b) also holds.
The proofs of (29c) and (29d) follow straightforward from (49a) and (49b).

Conclusions

In this article, we have considered a two-phase solidification process for a one-dimensional
semi-infinite material. We have assumed that the phase-change process starts from a constant
bulk temperature imposed in the vicinity of the boundary and we have modelled it through
a convective condition. Regarding the interface between solid and liquid phases, we have
assumed the existence of a mushy zone and we have represented it by following the model of
Solomon,Wilson, andAlexiades. Thermophysical properties were assumed to be (piecewise)
constant, which is reasonable for most materials under moderate temperature variations.
For this problem, we have obtained a similarity solution that depends on a dimensionless
parameter, which is defined as the only one solution to a transcendental equation. Moreover,
we have analysed the relationship between the problems with convective and temperature
boundary conditions and we have established when both problems are equivalent. We have
also proved that the solution to the problem with the temperature boundary condition can be
obtained from the solution to a problem with a convective boundary condition when the heat
transfer coefficient at the fixed boundary goes to infinity and we have given the order of that
convergence.
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