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a b s t r a c t

In this article it is proved the existence of similarity solutions for a one-phase Stefan
problem with temperature-dependent thermal conductivity and a Robin condition
at the fixed face. The temperature distribution is obtained through a generalized
modified error function which is defined as the solution to a nonlinear ordinary
differential problem of second order. It is proved that the latter has a unique non-
negative bounded analytic solution when the parameter on which it depends assumes
small positive values. Moreover, it is shown that the generalized modified error
function is concave and increasing, and explicit approximations are proposed for
it. Relation between the Stefan problem considered in this article with those with
either constant thermal conductivity or a temperature boundary condition is also
analysed.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

The understanding of phase-change processes has been inspiring scientists from the earlier 18th century.
Already in 1831, Lamé and Clapeyron studied problems related to the solidification of the Earth planet [1].
Also the mathematical formulation of phase-change processes as free boundary problems dates from the
18th century, since it owes much to the ideas developed by Stefan in 1889 [2–4]. At present, their study is
still an active area of research. Besides phase-change processes are interesting in themselves, they attract
interests because they are present in a wide variety of situations, both natural and industrial ones. Glass
manufacturing and continuous casting of metals are examples of industrial activities involving them, some
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recent works in this area are [5,6]. Controlling side-effects of certain industrial processes or preventing future
problems derived from our energy-dependent lifestyle, are also examples of how phase-change processes arise
as a subject of study [7,8]. Permafrost phenomena or dynamics of snow avalanches are examples of natural
situations whose study involves phase-change processes, some recent articles in these subjects are [9–11]. We
refer the reader to [12,13] and the references therein for a recent survey in applications and future challenges
in free boundary problems. Other references can be seen in the last published Free Boundary Problems
International Conference Proceedings [14].

In this article we will focus on phase-change processes that are ensued from an external temperature
imposed at some part of the fixed boundary of a homogeneous material. A classical simplification in modelling
this sort of phenomena is to consider boundary conditions of Dirichlet type (temperature conditions). This
is based on the assumption that heat is instantaneously transferred from the external advise through which
a specific temperature is imposed to the material. In view that is physically unrealistic, several authors have
suggested to consider conditions of Robin type (convective conditions) since they mimic the fact that the
heat transfer at the boundary is proportional to the difference between the imposed temperature and the one
the material presents at its boundary (see for example the books [15,16]). Another classical simplification
when modelling phase-change processes is to consider that thermophysical properties are constant. Though
it is reasonable for most phenomena under moderate temperature variations [15], it is not what actually
happens as a rule. In fact, this hypothesis has been removed in many works in the attempt to improve
the mathematical model (see, for example [17–20]). All this have encouraged us to look at phase-change
processes with convective boundary conditions and non-constant physical properties.

In 1974, Cho and Sunderland studied a phase-change process for a one-dimensional semi-infinite material
with temperature-dependent thermal conductivity [21]. The dependence was assumed to be linear, which is
a quite good approximation of what actually happens with several materials (water, for example [15]). The
phase-change process was assumed to be ensued from a constant temperature imposed at the fixed boundary
of the body, what was modelled through a Dirichlet condition. For the resulting Stefan problem, Cho and
Sunderland have presented an exact similarity solution. The temperature was obtained through an auxiliary
function Φ that they have called a Modified Error (ME) function and that was defined as the solution to a
nonlinear ordinary differential problem of second order. Revisiting the work of Cho and Sunderland, a couple
of curiosities have arised. On one hand, the existence of the ME function was not proved there. Despite of
this lack of theoretical results, the ME function was widely used in the context of phase-change processes
before their existence and uniqueness were proved in the recent article [22] (see, for example, [19,23–31]).
On the other hand, by following the arguments presented in [21] it is obtained that the ME function must
satisfy a differential problem over a closed bounded interval [0, λ] with Φ(0) = 0, Φ(λ) = 1. Nevertheless,
in [21] it was considered a boundary value problem over [0, +∞) with Φ(0) = 0, Φ(+∞) = 1. Although in
this way it is clearer the relation between the modified and classical error functions (see [21,22] for further
details), the change made by Cho and Sunderland add some extra conditions on the temperature function.

In this article we consider a similar phase-change process to that studied in [21]. We are mainly motivated
by: (a) improving the modelling of the imposed temperature at the fixed boundary by considering a
convective boundary condition, (b) obtaining a solution of similarity type without any extra condition
on the temperature distribution. We will study a solidification process, but a completely similar analysis
can be done for the case of melting. Aiming for simplicity, we will restrict our presentation to a one-phase
process. That is, the case in which the material is initially liquid at its freezing temperature.

The organization of the paper is as follows. First (Section 2), we introduce the one-phase Stefan problem
through which we will study the phase-change process. In this section we also present a characterization for
any similarity solution to the Stefan problem in terms of a Generalized Modified Error (GME) function. This
will be defined as the solution to a nonlinear boundary value problem of second order. Similarly to [21], this
problem will depend on a positive parameter β related to the slope of the thermal conductivity as a linear
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function of the temperature distribution. Next (Section 3), we analyse the existence of the similarity solutions
given in Section 2. In particular, we prove that there exists a unique non-negative analytic GME function
when β assumes small positive values. We also prove that this GME function is concave and increasing, and
explicit approximations are proposed for it. Finally (Section 4), we discuss about how the Stefan problem
presented in Section 2 is related to those studied in [21] (Dirichlet condition at the fixed boundary) and [32]
(constant thermal conductivity).

2. The Stefan problem

The one-phase solidification process introduced in Section 1 will be studied through the following Stefan
problem:

ρcTt(x, t) = (k(T (x, t))Tx(x, t))x 0 < x < s(t), t > 0 (1a)
s(0) = 0 (1b)
T (s(t), t) = Tf t > 0 (1c)
k(Tf )Tx(s(t), t) = ρlṡ(t) t > 0 (1d)

k(T (0, t))Tx(0, t) = h0√
t
(T (0, t) − T∞) t > 0. (1e)

In (1), the unknown functions are the temperature T of the solid region and the free boundary s separating
the phases. The parameters ρ > 0 (density), c > 0 (specific heat), l > 0 (latent heat per unit mass), h0 > 0
(coefficient related to the heat transfer at x = 0), Tf ∈ R (freezing temperature) and T∞ < Tf (constant
temperature imposed in the neighbourhood of the boundary x = 0) are all known constants. The function
k (thermal conductivity) is defined as:

k(T ) = k0

(
1 + β

T − T∞

Tf − T∞

)
, (2)

where k0 > 0, β > 0 are given constants.

Remark 1. Let us assume for a moment that for each h0 > 0 exists a solution to problem (1) such
that T (0, ·), Tx(0, ·) admit bounds independent of h0 (what actually happens in the most common physical
situations). Then, by taking the limit when h0 → ∞ for each fixed t > 0 in (1e), we obtain:

T (0, t) = T∞ t > 0. (1e†)

In other words, if we were able to consider an infinite value for the heat transfer coefficient h0√
t

in the
convective boundary condition (1e), then the temperature function given through problem (1) would satisfy
the temperature boundary condition (1e†). Thus, the mathematical framework given by problem (1) agrees
well with the physical ideas about temperature and convective boundary conditions discussed in Section 1
(see, for example, [15,16] for a detailed explanation of physical interpretations of boundary conditions).

We are interested here in obtaining a similarity solution to problem (1). More precisely, one in which the
temperature T (x, t) can be written as a function of the single variable x

2
√

α0t
, where α0 = k0

ρc > 0 (thermal
diffusivity for k0). Through the following change of variables in problem (1):

φ

(
x

2
√

α0t

)
= T (x, t) − T∞

Tf − T∞
0 < x < s(t), t > 0, (3)

and a few simple computations, the following theorem can be proved (we refer the reader to the proof of
Theorem 2 in [33] for an illustrative example of this sort of demonstrations).
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Theorem 2.1. The Stefan problem (1) has the similarity solution T , s given by:

T (x, t) = (Tf − T∞)φ
(

x

2
√

α0t

)
+ T∞ 0 < x < s(t), t > 0 (4a)

s(t) = 2λ
√

α0t t > 0, (4b)

if and only if the function φ and the parameter λ > 0 satisfy the following differential problem:

[(1 + βy(η))y′(η)]′ + 2ηy′(η) = 0 0 < η < λ (5a)
y′(0) + βy(0)y′(0) − γy(0) = 0 (5b)
y(λ) = 1 (5c)

together with the following condition:
φ′(λ)

λ
= 2

(1 + β)Ste∞
, (6)

where Ste∞ = c(Tf −T∞)
l > 0 (Stefan number) and γ = 2Bi > 0 with Bi = h0

√
α0

k0
(generalized Biot number).

Any function φ that satisfies problem (5) will be referred to as Generalized Modified Error (GME)
function. In the following section we will prove that such functions exist.

3. Similarity solutions

In this section we will analyse the existence and uniqueness of the similarity solution (4) to problem
(1). By virtue of Theorem 2.1, it can be done through the analysis of problem (5)–(6). First, we will study
the differential problem (5) by assuming that λ is a positive given number. As we shall see shortly, it can
be proved that problem (5) has a unique non-negative analytic solution φ when β assumes small positive
values. Then, we will analyse the relation between the found solution φ and the parameter λ through the
study of Eq. (6).

3.1. Analysis of problem (5)

This section is devoted to the GME function. First, we will present a result on its existence and uniqueness.
Then, it will be proved that the GME function is increasing and concave, as the classical error function is.
Finally, explicit approximations are proposed for the GME function and several plots are presented for
different values of the parameters involved in the physical problem (1).

3.1.1. Existence and uniqueness of the GME function
The ideas that will be developed in the following are based on the recent article [22], where it was proved

the existence of the ME function introduced in [21]. Through a fixed point strategy, we will prove the
existence of the GME function, φ.

All throughout this section we will consider λ > 0, γ > 0 and β ≥ 0. We will denote with X the set of
all bounded analytic functions h : [0, λ] → R. It is well known that X is a Banach space with the supremum
norm ∥ · ∥∞ , which is defined by:

∥h∥∞ = sup {|h(x)| : 0 ≤ x ≤ λ} (h ∈ X). (7)

The subset of X given by all non-negative functions which are bounded by 1 will be referred to as K, that
is:

K = {h ∈ X : 0 ≤ h and ∥h∥∞ ≤ 1} .

Note that K is a non-empty closed subset in (X, ∥ · ∥∞). Finally, for each h ∈ K we will write Ψh = 1 + βh.
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Remark 2. 1 ≤ Ψh ≤ 1 + β for any h ∈ K.

The main idea in the analysis below is to study the nonlinear problem (5) through the linear problem
given by:

[Ψh(η)y′(η)]′ + 2ηy′(η) = 0 0 < η < λ (8a)
Ψh(0)y′(0) − γy(0) = 0 (8b)
y(λ) = 1, (8c)

where h is a known function which belongs to K. The advantage in considering problem (8) lies in the fact
that the differential equation (8a) can be easily solved as a linear equation of first order in y′.

Lemma 3.1. Let h ∈ K. The only solution y to problem (8) is given by:

y(η) = Dh

⎛⎝ 1
γ

+
∫ η

0

exp
(

−2
∫ x

0
ξ

Ψh(ξ) dξ
)

Ψh(x) dx

⎞⎠ 0 < η < λ, (9)

with Dh defined by:

Dh = γ

⎛⎝1 + γ

∫ λ

0

exp
(

−2
∫ x

0
ξ

Ψh(ξ) dξ
)

Ψh(x) dx

⎞⎠−1

. (10)

Moreover, y ∈ K.

Proof. By observing that the constant Dh given by (10) is well defined since Ψh is never zero, the proof
follows easily by checking that the function y given by (9) satisfies problem (8). ■

The next result is a direct consequence of the previous lemma.

Theorem 3.1. Let y ∈ K. Then y is a solution to problem (5) if and only if y is a fixed point of the
operator τ from K to X given by:

(τh) (η) = Dh

⎛⎝ 1
γ

+
∫ η

0

exp
(

−2
∫ x

0
ξ

Ψh(ξ) dξ
)

Ψh(x) dx

⎞⎠ 0 < η < λ, (h ∈ K) (11)

where Dh is defined by (10).

In the following we will focus on analysing the existence of fixed points of τ .

Theorem 3.2. τ(K) ⊂ K.

Proof. Let h ∈ K. We have that:

(i) τh is an analytic function, since h ∈ X.
(ii) 0 ≤ τh, since 0 < Dh.
(iii) ∥τh∥∞ ≤ 1, since |(τh) (η)| ≤ (τh) (λ) = 1 for all 0 < η < λ.

Then, τh ∈ K. ■
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Lemma 3.2. Let h, h1, h2 ∈ K and η ∈ [0, λ]. We have:

(a) ∫ η

0

⏐⏐⏐⏐⏐⏐
exp

(
−2
∫ x

0
ξ

Ψh1 (ξ) dξ
)

Ψh1(x) −
exp

(
−2
∫ x

0
ξ

Ψh2 (ξ) dξ
)

Ψh2(x)

⏐⏐⏐⏐⏐⏐ dx

≤
√

π

4 β(1 + β)1/2(3 + β)∥h1 − h2∥∞

(b) 0 < Dh ≤ γ.

Proof.

(a) See [22, Lemma 2.1].
(b) It is a direct consequence of the positivity of Ψh (see Remark 2). ■

Lemma 3.3. Let g be the real function defined by:

g(x) =
√

π

2 γx(1 + x)1/2(3 + x) x > 0. (12)

The equation:

g(x) = 1 x > 0 (13)

has an only positive solution β1 = β1(γ).

Proof. It follows from the fact that g is an increasing function in R+ with limx→0+g(x) = 0 and
limx→+∞g(x) = +∞. ■

Theorem 3.3. Let β1 be the only positive solution to Eq. (13). If 0 ≤ β < β1, then τ is a contraction.

Proof. Let h1, h2 ∈ K and η ∈ [0, λ]. From Lemma 3.2 and:

|(τh1)(η) − (τh2)(η)| ≤ γ

∫ η

0

⏐⏐⏐⏐⏐⏐
exp

(
−2
∫ x

0
ξ

Ψh1 (ξ) dξ
)

Ψh1(x) −
exp

(
−2
∫ x

0
ξ

Ψh2 (ξ) dξ
)

Ψh2(x)

⏐⏐⏐⏐⏐⏐ dx

+ |Dh1 − Dh2 |

⏐⏐⏐⏐⏐⏐ 1γ +
∫ η

0

exp
(

−2
∫ x

0
ξ

Ψh2 (ξ) dξ
)

Ψh2(x) dx

⏐⏐⏐⏐⏐⏐
≤ 2γ

∫ η

0

⏐⏐⏐⏐⏐⏐
exp

(
−2
∫ x

0
ξ

Ψh1 (ξ) dξ
)

Ψh1(x) −
exp

(
−2
∫ x

0
ξ

Ψh2 (ξ) dξ
)

Ψh2(x)

⏐⏐⏐⏐⏐⏐ dx,

we have that ∥τh1 − τh2∥∞ ≤ g(β)∥h1 − h2∥∞. Recalling that g is an increasing function, it follows that τ

is a contraction when β < β1. ■

We are in a position now to formulate our main result.

Theorem 3.4. Let β1 be as in Theorem 3.3. If 0 ≤ β < β1 then problem (5) has a unique non-negative
analytic solution.

Proof. It is a direct consequence of Theorems 3.1, 3.2, 3.3 and the Banach Fixed Point Theorem. ■
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3.1.2. Some properties of the GME function
This section is devoted to prove that the GME function φ found in Section 3.1.1 shares the following

properties with the classical error function erf:

(i) 0 ≤ φ(η) ≤ 1, (ii) 0 < φ′(η), (iii) φ′′(η) < 0 ∀ 0 < η < λ. (14)

In the following we will consider γ > 0, λ > 0, β1 the solution to Eq. (13) and 0 ≤ β < β1. The first
property in (14) is an immediate consequence of the fact that φ ∈ K. In order to prove (ii) in (14), it will
be enough to show that φ′(η) ̸= 0 for all 0 < η < λ, since φ(0) ≤ 1 and φ(λ) = 1. Let us assume that there
exists 0 < η0 < λ such that φ′(η0) = 0. As we shall see shortly, we will reach a contradiction. Since Eq. (5a)
can be written as:

(1 + βy(η))y′′(η) + β(y′(η))2 + 2ηy′(η) = 0 0 < η < λ, (15)

and we have that:

1 + βφ(η0) > 0, (16)

we obtain that φ′′(η0) = 0. From this, by differentiating (15) and taking into account (16), it follows that
φ′′′(η0) = 0. We continue in this fashion obtaining that φ(n)(η0) = 0 for all n ∈ N. But this implies that
φ ≡ 0 in [0, λ], since φ is an analytic function. This contradicts φ(λ) = 1. Finally, we have that the last
property in (14) is a direct consequence of (i), (ii) and the fact that φ′′ is given by (see (15) and (16)):

φ′′(η) = −β(φ′(η))2 + 2ηφ′(η)
1 + βφ(η) 0 < η < λ.

3.1.3. Approximation of the GME function
The following is devoted to obtain explicit approximations for the GME function φ found in Section 3.1.1.
Let λ > 0, β > 0, γ > 0 be given. Based on the assumption that problem (5) has a solution φ that can

be represented as:

φ(η) =
∞∑

n=0
βnφn(η) 0 < η < λ, (17)

where φn are real functions that must be determined, we will propose approximations φ(N) of the GME
function given as:

φ(N)(η) =
N∑

n=0
βnφn(η) 0 < η < λ, (18)

with N ∈ N0.
If φ is given by (18), Eq. (5a) is formally equivalent to:

∞∑
n=1

(
n∑

k=1
a(η, k − 1, n − k) + b(η, n)

)
βn + b(η, 0) = 0 0 < η < λ, (19)

where:

a(η, n, m) = φ′
n(η)φ′

m(η) + φn(η)φ′′
m(η) 0 ≤ η ≤ λ, n, m ∈ N0

b(η, n) = φ′′
n(η) + 2ηφ′

n(η) 0 ≤ η ≤ λ, n ∈ N0.
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Similarly, we have that (5b) is formally equivalent to:
∞∑

n=1

(
n∑

k=1
a0(k − 1, n − k) + b0(n)

)
+ b0(0) = 0, (20)

where:

a0(n, m) = φ′
n(0)φm(0) n, m ∈ N0

b0(n) = φ′
n(0) − γφn(0) n ∈ N0.

Therefore, if the functions φn are such that:
n∑

k=1
a(η, k − 1, n − k) + b(η, n) = 0, b(η, 0) = 0 0 < η < λ, n ∈ N (21a)

n∑
k=1

a0(k − 1, n − k) + b0(n) = 0, b0(0) = 0 n ∈ N (21b)

φ0(λ) = 1 (21c)
φn(λ) = 0n ∈ N (21d)

then the function φ given by (18) is a formal solution to (5). Thus, functions φn might be determined
through problem (21). Let us observe it states that φ0 must be a solution to:

2ηφ′
0(η) + φ′′

0(η) = 0 0 < η < λ (22a)
φ′

0(0) − γφ0(0) = 0 (22b)
φ0(λ) = 1 (22c)

while each φn, n ∈ N, must satisfy:

2ηφ′
n(η) + φ′′

n(η) = gn(η) 0 < η < λ (23a)
n∑

k=1
φ′

k−1(0)φn−k(0) + φ′
n(0) − γφn(0) = 0 (23b)

φ(λ) = 0 (23c)

with:

gn(η) = −
n∑

k=1

(
φ′

k−1(η)φ′
n−k(η) + φk−1(η)φ′′

n−k(η)
)

0 < η < λ. (24)

Remark 3. Observe that problem (22) coincides with (5) when β = 0.

In the following we will only work with the zero and first order approximations φ(0), φ(1). From elementary
results in ordinary differential equations (see, for example [34]), it can be obtained that the solution φ0 to
problem (22) is the function given by:

φ0(η) = 2
2 + γ

√
π erf(λ)

+ γ
√

π

2 + γ
√

π erf(λ)
erf(η) 0 ≤ η ≤ λ. (25)

Having obtained φ0, we can now compute φ1 through the problem (23) (see (24)), and obtain [34]:

φ1(η) = B1(2 + γ
√

π erf(η)) + B2 + γ

ν2

(
5
√

π − 2η exp(−η2) − γπ exp(−2η2)

− 2γ
√

πη erf(η) exp(−η2) + γπ

2 erf2(η) + γ
√

π erf(η) exp(−η2)
) (26)
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with:

B1 = −B2

ν
+ γ

ν3

(
−5

√
π erf(λ) + 2λ exp(−λ2) + γπ exp(−2λ2)

+ 2γ
√

πλ erf(λ) exp(−λ2) − γπ

2 erf2(λ) − γ
√

π exp(−λ2) erf(λ)
)

B2 = 1
ν2 (12 + 2γ + γ2π)

ν = 2 + γ
√

π erf(λ).

Therefore, we have that φ(0) = φ0 and φ(1) = φ0 + βφ1, with φ0 and φ1 given by (25), (26) respectively.
In order to analyse the relation between each of these approximations and the GME function φ, we define
the error E(N) as:

E(N) = max
{⏐⏐⏐φ(η) − φ(N)(η)

⏐⏐⏐ : 0 ≤ η ≤ λ
}

(N = 0, 1). (27)

In the following, we will show that the GME function φ converges uniformly to the zero order
approximation φ(0), when β → 0. As we shall see below, this is closely related to how the problem (5)
depends on the parameter β.

Definition 3.1. Let 0 < b < β1. We will say that problem (5) is Lipschitz continuous on the parameter β

over the interval [0, b] if there exists L > 0 such that for any b1, b2 ∈ [0, b] the following inequality holds:

∥φb1 − φb2∥∞ ≤ L|b1 − b2|, (28)

where φb1 , φb2 are the only solutions in K to problem (5) with parameters b1, b2, respectively.

It follows from Definition 3.1 that if problem (5) is Lipschitz continuous on β over some interval [0, b]
with 0 < b < β1, then the GME function φ converges uniformly on 0 < η < λ to the function φ0 given by
(25), when β → 0 (see Remark 3). In other words, that E(0) → 0 when β → 0 and therefore, that φ0 is a
good approximation of the GME function φ when the positive parameter β is small enough. In the following
we will prove that problem (5) is in fact Lipschitz continuous on the parameter β over [0, b] for any choice
of 0 < b < β1.

Lemma 3.4. Let h ∈ K, η ∈ [0, λ] and b1, b2 ∈ [0, β1). We have:∫ η

0

⏐⏐⏐⏐⏐⏐
exp

(
−2
∫ x

0
ξ

1+b1φh(ξ) dξ
)

1 + b1φh(x) −
exp

(
−2
∫ x

0
ξ

1+b2φh(ξ) dξ
)

1 + b2φh(ξ)

⏐⏐⏐⏐⏐⏐ dx ≤ 1
2γβ1

|b1 − b2|.

Proof. Let f be the real function defined on R+
0 by f(x) = exp(−2x) and:

x1 =
∫ x

0

ξ

1 + b1h(ξ)dξ, x2 =
∫ x

0

ξ

1 + b2h(ξ)dξ (x > 0 fixed).

It follows from the Mean Value Theorem applied to function f that:

|f(x1) − f(x2)| = |f ′(u)||x1 − x2|,

where u is a real number between x1 and x2. Without any loss of generality, we will assume that b2 ≤ b1.
Then, x1 ≤ x2. We have:

|f ′(u)| ≤ |f ′(x1)| ≤ 2 exp
(

− x2

1 + β1

)
since ∥h∥∞ ≤ 1,

|x1 − x2| ≤ x2

2 |b1 − b2|.
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Table 1
Approximative solutions β∗

1 to Eq. (13) for γ = 0.1, 1, 10, 100.
γ 0.1 1 10 100
β∗

1 1.55 3 × 10−1 3.65 × 10−2 3.75 × 10−3

Therefore,

|f(x1) − f(x2)| ≤ x2 exp
(

− x2

1 + β1

)
|b1 − b2|.

Then, we have:⏐⏐⏐⏐ f(x1)
1 + b1h(x) − f(x2)

1 + b2h(x)

⏐⏐⏐⏐ =
⏐⏐⏐⏐f(x1) − f(x2)

1 + b1h(x) + f(x2)h(x)(b2 − b1)
(1 + b1h(x))(1 + b2h(x))

⏐⏐⏐⏐
≤ |f(x1) − f(x2)| + |f(x2)| |b1 − b2|

≤ exp
(

− x2

1 + β1

)
(x2 + 1)|b1 − b2|.

The final bound is now obtained by integrating the last expression and by the definition of β1. ■

Theorem 3.5. Let 0 < b < β1. The problem (5) is Lipschitz continuous on the parameter β over the
interval [0, b].

Proof. Let η ∈ [0, λ], b1, b2 ∈ [0, b] and φb1 , φb2 ∈ K the solutions to problem (5) with parameters b1, b2,
respectively.

Taking into consideration that φb1 and φb2 are the fixed points of the operator τb1 and τb2 defined by
(11) for β = b1 and β = b2, respectively, we have that:

|φb1(η) − φb2(η)| ≤ 2Dφb1

∫ λ

0

⏐⏐⏐⏐⏐⏐
exp

(
−2
∫ x

0
ξ

1+b1φb1 (ξ) dξ
)

1 + b1φb1(x) −
exp

(
−2
∫ x

0
ξ

1+b2φb2 (ξ) dξ
)

1 + b2φb2(x)

⏐⏐⏐⏐⏐⏐ dx.

Now, from Lemmas 3.2, 3.4 it follows that:

|φb1(η) − φb2(η)| ≤ g(b1)∥φb1 − φb2∥∞ + 1
β1

|b1 − b2|.

Since g is an increasing function, g(β1) = 1 and b1 ≤ b < β1, we have that g(b1) ≤ g(b) < 1. Then:

∥φb1 − φb2∥∞ ≤ L|b1 − b2| with L = 1
β1(1 − g(b)) > 0. ■

We end this section by presenting some comparisons between the GME function φ, and its zero and first
order approximations φ(0), φ(1). Figs. 1–4 show the evolution of the error E(N), and the plots of the GME
function φ against the best approximation obtained between φ(0) and φ(1). Each figure corresponds to one
value of γ = 0.1, 1, 10, 100. The GME function φ was obtained after solving problem (5) through the bvodes
routine implemented in Scilab. Numerical computations were made by considering λ ∈ [0, 10] and a uniform
mesh of step 0.01 for the interval [0, λ]. For each choice of the parameter γ, Eq. (13) was numerically solved.
The approximative solutions β∗

1 for each value of γ are presented in Table 1. According to the election of γ,
parameter beta1 was set as β∗

1 as Table 1 states. From Figs. 1–4 it can be seen that good agreement between
the GME function φ and either the zero or first order approximations φ(0), φ(1) can be obtained. They also
suggest that the election between φ(0) and φ(1) is mediated by the value of γ.
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(a) Error E(N), N = 0, 1. (b) GME function φ and the approximation φ(1).

Fig. 1. Comparison between the GME function and its approximations for γ = 0.1, λ = 10 and β = β∗
1 (see Table 1).

(a) Error E(N), N = 0, 1. (b) GME function φ and the approximation φ(0).

Fig. 2. Comparison between the GME function and its approximations for γ = 1, λ = 10 and β = β∗
1 (see Table 1).

(a) Error E(N), N = 0, 1. (b) GME function φ and the approximation φ(0).

Fig. 3. Comparison between the GME function and its approximations for γ = 10, λ = 10 and β = β∗
1 (see Table 1).
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(a) Error E(N), N = 0, 1. (b) GME function φ and the approximation φ(0).

Fig. 4. Comparison between the GME function and its approximations for γ = 100, λ = 10 and β = β∗
1 (see Table 1).

3.2. Analysis of Eq. (6)

We will now investigate the relation between the solution φ to problem (5) found in Section 3.1.1 and
the upper bound of its domain, that is the parameter λ > 0, in order to analyse the existence of solution to
Eq. (6). Throughout this section, β1 will refer to the only positive solution to Eq. (13).

Lemma 3.5. Let γ > 0, λ > 0, 0 ≤ β < β1. If φ is the GME function which belongs to K, then we have:

(i) g1(λ) < φ′(λ) < g2(λ), (ii) φ′(λ) ≤ γ

1 + β
,

where g1(λ), g2(λ) are given by:

g1(λ) = γ

1 + β
exp

(
−λ2)(1 + γ

∫ λ

0
exp

(
− η2

1 + β

)
dη

)−1

,

g2(λ) = γ

1 + β
exp

(
− λ

1 + β

)
.

Proof.

(i) From the definition of φ as the unique fixed point of the operator τ given by (11), we have that:

φ′(λ) = Dh

Ψφ(λ) exp
(

−2
∫ λ

0

ξ

Ψφ(ξ)dξ

)
.

Now the proof follows from:

γ

(
1 + γ

∫ λ

0
exp

(
− η2

1 + β

)
dη

)−1

≤ Dh ≤ γ,

the bounds for Ψφ given in Remark 2 and elementary boundedness techniques.
(ii) It is a direct consequence of the second inequality in (i). ■

Remark 4. The first part of Lemma 3.5 together with the Squeeze Theorem implies that limλ→0+φ′(λ) =
γ

1+β .
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Lemma 3.6. Let γ > 0, 0 ≤ β < β1. If φ is the GME error function which belongs to K, then φ′ is
continuous on the parameter λ > 0.

Proof. After the change of variables:

y(η) = z (ζ) , ζ = η

λ
,

we have that problem (5) is equivalent to:

[(1 + βz(ζ)) z′(ζ)]′ + 2λ2ζz(ζ) = 0 0 < ζ < 1
[1 + βz(0)] z′(0) − λγz(0) = 0
z(1) = 1.

It follows from the fixed point expression of φ that φ′ belongs to K. Applying Theorem 7.5 of [35] to the
previous differential problem in the space (0, 1) × (K × K) × R+, we have that its solution is C1 on the
parameter λ > 0. ■

Theorem 3.6. Let γ > 0. If 0 ≤ β < β1 then Eq. (6) has at least one solution.

Proof. For any λ > 0, let φ be the only solution in K to problem (5) on the domain [0, λ]. Let also be H

the real function defined by:

H(λ) = φ′(λ)
λ

λ > 0. (29)

Since H is a continuous function (see Lemma 3.6) that satisfies (see Lemma 3.5 and Remark 4):

lim
λ→0+

H(λ) = +∞, lim
λ→+∞

H(λ) = 0, (30)

the theorem follows by recalling that the RHS of Eq. (6) is a positive number. ■

In Fig. 5 we present some plots for the function H defined by (29). To compute H, it was considered the
same numerical framework described at the end of Section 3.1.3 with λ ∈ [0, 5]. Plots in Fig. 5 suggest that
the solution found in Theorem 3.6 is the unique solution to Eq. (6).

4. Relation with other Stefan problems

4.1. Relation with the Stefan problem with constant thermal conductivity

Let λ > 0, γ = 2Bi > 0 be given. As it was already noted in Section 3.1.3, the solution to problem
(5) when β = 0 (constant thermal conductivity) is the function φ0 given by (25). From this, we have that
condition (6) can be written as:

λ exp(λ2) (1 + Bi erf(λ)) = Ste∞Bi. (31)

Therefore, the Stefan problem (1) with β = 0 has the similarity solution T , s given by:

T (x, t) =
1 + Bi

√
π erf

(
x

2
√

α0t

)
1 + Bi

√
π erf(λ)

(Tf − T∞) + T∞ 0 < x < s(t), t > 0 (32)

and (4b) if and only if λ satisfies (31). This result has been already obtained in [32], where it was studied
the phase-change process considered here but with constant thermal conductivity.
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(a) γ = 0.1. (b) γ = 1.

(c) γ = 10. (d) γ = 100.

Fig. 5. Function H for γ = 0.1, 1, 10, 100, λ ∈ [0, 5] and β = β∗
1 ≃ β1 (see Table 1).

4.2. Relation with the Stefan problem with Dirichlet condition

Let us consider now the Stefan problem (1) with the Dirichlet boundary condition (1e†) in place of the
convective one given by (1e). We will refer to it as problem (1†).

By following the same steps that led us to Theorem 2.1, we obtain that problem (1†) has the similarity
solution T , s given by (4) if and only if the function φ and the parameter λ satisfy condition (6) and the
differential problem given by Eq. (5a), condition (5c) and:

y(0) = 0. (5b†)

We will refer to the function φ and the parameter λ associated to problem (1†) as φ† and λ†, respectively.
Problem (1†) was studied in [21], where it was obtained almost the same similarity solution than the one
presented above. In [21], the function φ† is defined over R+

0 through equation (5a), condition (5b†) and
y(+∞) = 1 (that is, as the ME function Φ). This last change adds some extra conditions that must be
satisfied by the temperature distribution T . But it is avoidable, as we are showing here. Let (5†) be the
problem given by (5a), (5b†), (5c). In [22] it was proved the existence and uniqueness of the ME function Φ

for small positive values of β through a fixed point strategy. By performing the same analysis for problem
(5†), we obtain that it has a unique non-negative bounded analytic solution φ† for any given λ† > 0.
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Moreover, we have that φ† is the unique fixed point of the operator τ † from K to itself defined by:

(
τ †h
)

(η) = Ch

∫ η

0

exp
(

−2
∫ x

0
ξ

Ψh(ξ) dξ
)

Ψh(x) dx 0 < η < λ, (h ∈ K) (33)

where Ch is given by:

Ch =

⎛⎝∫ λ

0

exp
(

−2
∫ x

0
ξ

Ψh(ξ) dξ
)

Ψh(x) dx

⎞⎠−1

. (34)

From the definitions of τ and τ † given in (11) and (33), it follows that τh → τ †h (pointwise) when
γ → +∞ for any function h ∈ K. Then, φ → φ† (pointwise) when γ → +∞. When we consider γ = 2Bi

(see Theorem 3.3), γ → +∞ is equivalent to h0 → +∞. Thus, the solution to problem (1†) can be obtained
as the limit case of the solution to problem (1) when the coefficient h0 that characterizes the heat transfer
coefficient at x = 0 goes to infinity. This agrees well with the physical interpretation of temperature and
convective boundary conditions (see Remark 1, [15,16]).

We end this section with some plots for the GME function φ. From Fig. 6 it can be seen that it converges
pointwise to the solution φ† to problem (5†). By an abuse of notation, we have also referred to φ† as ME
function. The plots for both GME and ME functions were obtained after solving problems (5) and (5†) for
λ = 10 in the same numerical framework described at the end of Section 3.1.3. Although it was considered
λ = 10, functions were drawn over the interval [0, 3] aiming at a better visualization.

5. Conclusions

In this article we have presented an exact solution of similarity type for a one-phase Stefan problem with
temperature-dependent thermal conductivity and a Robin boundary condition. The temperature distribution
was defined through a Generalized Modified Error (GME) function. This was defined as the solution to a
nonlinear boundary problem of second order, for which it was proved a result on existence and uniqueness of
solutions. From this, the existence of similarity solutions was proved. It was also shown that results for the
Stefan problems with either constant thermal conductivity or Dirichlet boundary conditions can be obtained
as particular o limit cases of the results presented in this article.

Since the GME function is only available from numerical computations, it was proposed a strategy to
obtain explicit approximations for it. Several values from the parameters involved in the physical problem
were considered in the analysis of errors between the GME function and the two proposed approximations.
The analysis performed suggests that the choice of the best approximation between those presented here
depends on the values of the parameters. Nevertheless, good agreement can be obtained with both of them.
From these explicit approximations, those for the temperature distribution can be obtained since it linearly
depends on the GME function. In order to give some properties of the temperature distribution, it were also
investigated some properties of the GME function. It was proved that it is a non-negative bounded analytic
function which is increasing and concave, just as the classical error function is.
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(a) γ = 0.1. (b) γ = 1.

(c) γ = 10. (d) γ = 100.

Fig. 6. GME and ME functions for γ = 0.1, 1, 10, 100, λ = 10 and β = β∗
1 ≃ β1 (see Table 1).
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[4] J. Stefan, Über die verdampfung und die auflösung als vorgänge diffusion, Zitzungsberichte Kaiserlichen Akad. Wiss. Cl.
98 (1889) 1418–1442.

[5] A. Borodin, A. Ivanova, Modeling of the temperature field of a continuously cast ingot with determination of the position
of the phase-transition boundary, J. Eng. Phys. Thermophys. 87 (2) (2014) 507–512.

[6] M. Gaudiano, G.A. Torres, C. Turner, On a convective condition in the diffusion of a solvent into a polymer with non-
constant conductivity coefficient, Math. Comput. Simulation 80 (2009) 479–489.

[7] L. Fusi, A. Farina, M. Primicerio, A free boundary problem for CaCO3 neutralization of acid waters, Nonlinear Anal.
RWA 15 (2014) 42–50.

[8] Y.M.F. El Hasadi, J.M. Khodadadi, One-dimensional Stefan problem formulation for solidification of nanostructure-
enhanced phase change materials (NePCM), Int. J. Heat Mass Transfer 67 (2013) 202–213.

[9] B.L. Kurylyk, M. Hayashi, Improved Stefan equation correction factors to accommodate sensible heat storage during soil
freezeng or thawing, Permafrost Periglacial Process. 27 (2) (2016) 189–203.

[10] M.P. Akimov, S.D. Mordovskoy, N.P. Starostin, Calculating thermal insulation thickness and embedment depth of
undergoing heat supply pipeline for permafrost soils, Mag. Civ. Eng. 46 (2) (2014) 14–23.

http://refhub.elsevier.com/S1468-1218(17)30140-2/sb1
http://refhub.elsevier.com/S1468-1218(17)30140-2/sb1
http://refhub.elsevier.com/S1468-1218(17)30140-2/sb1
http://refhub.elsevier.com/S1468-1218(17)30140-2/sb2
http://refhub.elsevier.com/S1468-1218(17)30140-2/sb2
http://refhub.elsevier.com/S1468-1218(17)30140-2/sb2
http://refhub.elsevier.com/S1468-1218(17)30140-2/sb3
http://refhub.elsevier.com/S1468-1218(17)30140-2/sb3
http://refhub.elsevier.com/S1468-1218(17)30140-2/sb3
http://refhub.elsevier.com/S1468-1218(17)30140-2/sb4
http://refhub.elsevier.com/S1468-1218(17)30140-2/sb4
http://refhub.elsevier.com/S1468-1218(17)30140-2/sb4
http://refhub.elsevier.com/S1468-1218(17)30140-2/sb5
http://refhub.elsevier.com/S1468-1218(17)30140-2/sb5
http://refhub.elsevier.com/S1468-1218(17)30140-2/sb5
http://refhub.elsevier.com/S1468-1218(17)30140-2/sb6
http://refhub.elsevier.com/S1468-1218(17)30140-2/sb6
http://refhub.elsevier.com/S1468-1218(17)30140-2/sb6
http://refhub.elsevier.com/S1468-1218(17)30140-2/sb7
http://refhub.elsevier.com/S1468-1218(17)30140-2/sb7
http://refhub.elsevier.com/S1468-1218(17)30140-2/sb7
http://refhub.elsevier.com/S1468-1218(17)30140-2/sb8
http://refhub.elsevier.com/S1468-1218(17)30140-2/sb8
http://refhub.elsevier.com/S1468-1218(17)30140-2/sb8
http://refhub.elsevier.com/S1468-1218(17)30140-2/sb9
http://refhub.elsevier.com/S1468-1218(17)30140-2/sb9
http://refhub.elsevier.com/S1468-1218(17)30140-2/sb9
http://refhub.elsevier.com/S1468-1218(17)30140-2/sb10
http://refhub.elsevier.com/S1468-1218(17)30140-2/sb10
http://refhub.elsevier.com/S1468-1218(17)30140-2/sb10


A.N. Ceretani et al. / Nonlinear Analysis: Real World Applications 40 (2018) 243–259 259

[11] B. Calusi, L. Fusi, A. Farina, On a free boundary problem arising in snow avalanche dynamics, ZAAM - J. Appl. Math.
Mech. 96 (4) (2016) 453–465.

[12] G. Chen, H. Shahgholian, J.L. Vazquez, Free boundary problems: the forefront of current and future developments, Phil.
Trans. R. Soc. A 373 (2015) 20140285.

[13] D.A. Tarzia, Explicit and approximated solutions for heat and mass transfer problems with a moving interface,
in: Mohamed El-Amin (Ed.), Advanced Topics in Mass Transfer, InTech Open Acces Publishers, Rijeka (Croacia), 2011.

[14] I. Figueiredo, J. Rodrigues, L. Santos (Eds.), Free Boundary Problems. Theory and Applications, in: International Series
of Numerical Mathematics, vol. 154, Birkhäuser Verlag, Basel, 2007.
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