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a b s t r a c t

This article is devoted to the proof of the existence and uniqueness of the modified
error function introduced in Cho and Sunderland (1974). This function is defined
as the solution to a nonlinear second order differential problem depending on a real
parameter. We prove here that this problem has a unique non-negative analytic
solution when the parameter assumes small positive values.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

In 1974, Cho and Sunderland [1] studied a solidification process with temperature-dependent thermal
conductivity and obtained an explicit similarity solution in terms of what they called a modified error
function. This function is defined as the solution to the following nonlinear differential problem:

[(1 + δy(x))y′(x)]′ + 2xy′(x) = 0 0 < x < +∞ (1a)
y(0) = 0 (1b)
y(+∞) = 1 (1c)
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where δ ≥ −1 is given. Graphics for numerical solutions of (1) for different values of δ can be found in [1].
The classical error function is defined by:

erf(x) = 2√
π

∫ x

0
exp(−z2)dz, x > 0, (2)

and it is a solution to (1) when δ = 0. This makes meaningful the denomination modified error function
given for the solution to problem (1).

The modified error function has also appeared in the context of diffusion problems before 1974 [2,3]. It was
also used later in several opportunities to find similarity solutions to phase-change processes, e.g. see [4,5].
It was cited in [6], where several nonlinear ordinary differential problems arise from a wide variety of
fields are presented. Closed analytical solutions for Stefan problems with variable diffusivity is given in [7].
Temperature-dependent thermal coefficients are very important in thermal analysis, e.g. see [8]. Nevertheless,
to the knowledge of the authors, the existence and uniqueness of the solution to problem (1) has not been yet
proved. In general, the existence theorems for boundary value problems for second order ordinary differential
equations include certain continuity and bounded derivatives that are not guaranteed for problem (1), even
when it is reduced to a bounded domain (see, for example, [9–12]). This article is devoted to prove it for
small δ > 0 using a fixed point strategy.

2. Existence and uniqueness of solution to problem (1)

The main idea developed in this Section is to study problem (1) through the linear problem given by the
differential equation:

[(1 + δΨh(x))y′(x)]′ + 2xy′(x) = 0, 0 < x < +∞, (1a⋆)

and conditions (1b), (1c). The function Ψh in (1a⋆) is defined by:

Ψh(x) = 1 + δh(x), x > 0, (3)

where δ > 0, h ∈ K ⊂ X is given and:

X =
{

h : R+
0 → R / h is an analytic function, ∥h∥∞ < ∞

}
(4a)

K = {h ∈ X / ∥h∥∞ ≤ 1, 0 ≤ h, h(0) = 0, h(+∞) = 1} . (4b)

Hereinafter, we will refer to the problem given by (1a⋆), (1b) and (1c) as problem (1⋆). Let us observe that
K is non-empty closed subset of the Banach space X.

The advantage in considering the linear equation (1a⋆) is that it can be easily solved through the
substitution v = y′. Thus, we have the following result:

Theorem 2.1. Let h ∈ K and δ > 0. The solution y to problem (1⋆) is given by:

y(x) = Ch

∫ x

0

1
Ψh(η) exp

(
−2

∫ η

0

ξ

Ψh(ξ)dξ

)
dη x ≥ 0, (5)

where the constant Ch is defined by:

Ch =
(∫ +∞

0

1
Ψh(η) exp

(
−2

∫ η

0

ξ

Ψh(ξ)dξ

)
dη

)−1

. (6)
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Proof. Let us first observe that the constant Ch given by (6) is well defined, that is, that Ch ∈ R. In fact,
we have:

|C−1
h | ≥ 1

1 + δ

∫ +∞

0
exp(−η2)dη =

√
π

2(1 + δ)
. (7)

Now the proof follows easily by checking that the function y given by (5) satisfies problem (1⋆). □

The following result is an immediate consequence of Theorem 2.1.

Corollary 2.1. Let y ∈ K and δ > 0. Then y is a solution to problem (1) if and only if y is a fixed point
of the operator τ from K to X defined by:

τ(h)(x) = Ch

∫ x

0

1
Ψh(η) exp

(
−2

∫ η

0

ξ

Ψh(ξ)dξ

)
dη x > 0, (8)

with Ch given by (6).

Observe that τ(K) ⊂ K. We will now focus on analyzing when τ has only one fixed point. The estimations
summarized next will be useful in the following.

Lemma 2.1. Let h, h1, h2 ∈ K, δ > 0 and x ≥ 0. We have:

(a)
∫ x

0

⏐⏐⏐⏐⏐⏐
exp

(
−2

∫ η

0
ξ

Ψh1 (ξ) dξ

)
Ψh1 (η) −

exp
(

−2
∫ η

0
ξ

Ψh2 (ξ) dξ

)
Ψh2 (η)

⏐⏐⏐⏐⏐⏐ dη ≤
√

π
4 δ

√
1 + δ(3 + δ)∥h1 − h2∥∞,

(b) |Ch1 − Ch2 | ≤ 1√
π

δ
√

1 + δ(1 + δ)2(3 + δ)∥h1 − h2∥∞,

(c)
∫ x

0
1

Ψh(η) exp
(

−2
∫ η

0
ξ

Ψh(ξ) dξ
)

dη ≤
√

π(1+δ)
2 .

Proof. Let f be the real function defined on R+
0 by f(x) = exp(−2x). If h1 ≤ h2, it follows from the Mean

Value Theorem applied to function f that:⏐⏐⏐⏐exp
(

−2
∫ η

0

ξ

Ψh1(ξ)dξ

)
− exp

(
−2

∫ η

0

ξ

Ψh2(ξ)dξ

)⏐⏐⏐⏐
= 2 exp

(
−2

∫ η

0

ξ

Ψh3(ξ)dξ

) ⏐⏐⏐⏐∫ η

0

ξ

Ψh1(ξ)dξ −
∫ η

0

ξ

Ψh2(ξ)dξ

⏐⏐⏐⏐
≤ δ∥h2 − h1∥∞η2 exp

(
−η2

1 + δ

)
,

(9)

where h1 ≤ h3 ≤ h2. Now (a) follows from regular computations. When h1 ̸≤ h2, as the LHS in (a) can be
bounded for the same expression but applied to hm = min{h1, h2} and hM = max{h1, h2}, the proof runs
as before and it is completed having into consideration that ∥h1 − h2∥∞ = ∥hM − hm∥∞.

The proof of (b) follows from (a), and (c) can be obtained from regular computations. □

Theorem 2.2. Let δ1 > 0 be the only one positive solution to the equation:
x

2 (1 + x)3/2(3 + x)[1 + (1 + x)3/2] = 1. (10)

If 0 < δ < δ1, then τ is a contraction.

Proof. Let g be the real function defined by:

g(x) = x

2 (1 + x)3/2(3 + x)[1 + (1 + x)3/2] x ≥ 0. (11)
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Since g is an increasing function from 0 to +∞, we have that Eq. (10) admits only one positive solution δ1.
Let now h1, h2 ∈ K and x ≥ 0. From Lemma 2.1, (7) and:

|τ(h1)(x) − τ(h2)(x)|

≤ Ch1

∫ x

0

⏐⏐⏐⏐⏐⏐
exp

(
−2

∫ η

0
ξ

Ψh1 (ξ) dξ
)

Ψh1(η) −
exp

(
−2

∫ η

0
ξ

Ψh2 (ξ) dξ
)

Ψh2(η)

⏐⏐⏐⏐⏐⏐ dη

+ |Ch1 − Ch2 |
∫ x

0

1
Ψh2(η) exp

(
−2

∫ η

0

ξ

Ψh2(ξ)dξ

)
dη,

it follows that ∥τ(h1) − τ(h2)∥∞ ≤ γ∥h1 − h2∥∞, where γ = g(δ). Recalling that g is an increasing function,
it follows that τ is a contraction when 0 < δ < δ1. □

From a numerical computation it can be found that 0.203701 < δ1 < 0.203702. We are now in the position
to formulate our main result.

Corollary 2.2. Let δ1 be as in Theorem 2.2. If 0 < δ < δ1, then problem (1) has a unique non-negative
analytic solution.

Proof. It is a direct consequence of Corollary 2.1, Theorem 2.2 and the Banach Fixed Point Theorem. □

The modified error function Φδ arises when looking for similarity solutions for the Stefan problem
considered in [1]. It corresponds to a phase-change process with a temperature-dependent linear thermal
conductivity whose slope is related in this paper to the parameter δ. In particular, Corollary 2.2 imposes a
restriction to the value of this slope to ensure the existence and uniqueness of an analytic solution to the
Stefan problem in [1].
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