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a b s t r a c t

We address the existence and uniqueness of the so-called modified error function
that arises in the study of phase-change problems with specific heat and thermal
conductivity given by linear functions of the material temperature. This function
is defined from a differential problem that depends on two parameters which are
closely related with the slopes of the specific heat and the thermal conductivity.
We identify conditions on these parameters which allow us to prove the existence
of the modified error function. In addition, we show its uniqueness in the space
of non-negative bounded analytic functions for parameters that can be negative
and different from each other. This extends known results from the literature and
enlarges the class of associated phase-change problems for which exact similarity
solutions can be obtained. In addition, we provide some properties of the modified
error function considered here.

© 2019 Elsevier Ltd. All rights reserved.

1. Introduction

This article is devoted to show the existence and uniqueness of an auxiliary function that arise in the study
of phase-change processes when some thermal coefficients are assumed to vary with the material temperature.
The function of interest is the solution to the following nonlinear differential system:

((1 + δy)y′)′ + 2x(1 + γy)y′ = 0 x ∈ (0, +∞), y(0) = 0, y(+∞) = 1, (1)

where δ, γ ∈ (−1, +∞), and y(+∞) := lim
x→+∞

y(x).
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Problem (1) was introduced by Oliver and Sunderland in [1] for the study of two-phase Stefan problems
on the semi-infinite line (0, +∞), with heat capacity and thermal conductivity given by

c(ϑ) := co

(
1 + α

ϑ − ϑo

ϑi − ϑo

)
and k(ϑ) := ko

(
1 + β

ϑ − ϑo

ϑi − ϑo

)
, (2)

respectively, where ϑ is the material temperature, co > 0 and ko > 0 are reference values for the specific
heat and the thermal conductivity, ϑi is a uniform initial temperature distribution, ϑo is a prescribed
constant temperature at the boundary x = 0, and α, β ∈ R (the values of α, β, co, and ko generally
differ from liquid to solid phases). In particular, they proposed a method to find similarity solutions
that relies on the assumption that problem (1) has a solution Φδγ for any δ, γ ∈ (−1, +∞). The
temperature in each phase is then obtained in terms of an auxiliary function Φδγ for some parameters
δ and γ that must be calculated and may be different from one phase to the other, see equations (23)-
(27) in [1]. The function Φδγ was called modified error function and it was obtained numerically by solving
problem (1).

The signs of δ and γ are closely related on how the thermal conductivity and the heat capacity vary with
the material temperature. We illustrate this in the following example: Consider a one-phase solidification
process for a material with phase-change temperature ϑf . Then, ϑo < ϑf and ϑi ≡ ϑf . According with [1],
it must be γΦδγ(λ) = α and δΦδγ(λ) = β, where λ ≡ s(t)

2
√

at
for all t > 0, x = s(t) is the location of the free

boundary at time t, and a is the coefficient of diffusion of the solid phase. Then, provided that α ̸= 0 and
β ̸= 0 we have sign(γ) = sign(α) and sign(δ) = sign(β) since the modified error function is non-negative
everywhere (see Theorem 2.1). We now observe that the slopes of c and k are given by coα

ϑi−ϑo
and koβ

ϑi−ϑo
,

respectively, see (2), where ϑi − ϑo > 0. Therefore, the heat capacity is increasing for γ > 0, decreasing
for γ < 0, and the analogous conclusion holds for the relation between the thermal conductivity and the
parameter δ.

The method described in [1] had already been considered by Cho and Sunderland in [2] for the analogous
Stefan problem with constant heat capacity, corresponding to γ = 0 in (1). The modified error function
for the case when γ = 0 and δ > 0 was studied by the authors in [3,4] (see also [5]), where existence and
uniqueness in the space of bounded analytic functions were proven and explicit approximations were provided
(see [6] for improved approximations). In particular, this paper extends the existence and uniqueness result
in [3] for the case δ < 0 (γ = 0).

Similar approaches to those introduced by Sunderland and collaborators were followed to find exact
similarity solutions in the cases when non-Dirichlet boundary conditions are prescribed at x = 0 or when
the physical domain is allowed to move, see e.g. [7–9]. In all cases it was assumed that α = β > 0,
or α = 0 and β > 0. Analogous methods were also used to determine solutions to problems with
more general thermal coefficients, see e.g. [10,11]. Other approaches to find similarity solutions to Stefan-
like problems with non-constant thermal properties and arbitrary initial and boundary conditions were
recently considered in, e.g., [12–16]. We refer to [1] for a discussion about the effects of including variations
with respect to the material temperature of thermal conductivity and heat capacity in phase-change
models.

In the next section we provide the existence and uniqueness of a solution Φδγ to problem (1) in the space
of bounded analytic functions, for some δ, γ ∈ (−1, +∞). In particular, δ and γ are allowed to be negative
and different from each other. In this manner we extend already known results for modified error functions
available in the literature.
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2. Existence and uniqueness of Φδγ

The following is the main result of the paper.

Theorem 2.1. Assume that

M(δ, γ) := max(1, 1 + δ)3/2 max(1, 1 + γ)1/2

min(1, 1 + δ)5/2 min(1, 1 + γ)1/2

(
2|δ| + |δ − γ| max(1, 1 + δ)

min(1, 1 + δ) min(1, 1 + γ)

)
< 1. (3)

Then problem (1) admits a unique bounded analytic solution Φδγ that satisfies

0 ≤ Φδγ(x) ≤ 1 for all x ≥ 0.

Proof. Let X be the Banach space of bounded analytic functions h : [0, +∞) → R, equipped with the
supremum norm ∥h∥∞ := sup{|h(x)| : x ≥ 0}. In addition, let

K := {h ∈ X : ∥h∥∞ ≤ 1, h ≥ 0, h(0) = 0}.

We notice that K is a non-empty closed subset of X.
Let h ∈ K. Consider the following auxiliary linear problem:

((1 + δh)y′)′ + 2x(1 + γh)y′ = 0 x ∈ (0, +∞), y(0) = 0, y(+∞) = 1. (4)

From this, we shall formulate the existence and uniqueness of a solution to (1) as a fixed point problem.
Let F ( · ; h) : [0, +∞) → R be given by

F (x; h) :=
∫ x

0
exp

(
−

∫ w

0

2z(1 + γh(z))
1 + δh(z) dz

)
1

1 + δh(w) dw.

Exploiting the inequalities

0 < min(1, 1 + υ) ≤ 1 + υh ≤ max(1, 1 + υ), for υ = δ or υ = γ, (5)

and taking into account that
∫ +∞

0 exp(−w2) dw =
√

π
2 , we obtain

0 ≤ F (x; h) ≤
√

π max(1, 1 + δ)1/2

2 min(1, 1 + δ) min(1, 1 + γ)1/2 =: M1(δ, γ) for all x ≥ 0.

Then F ( · ; h) is well-defined. Analogous computations allow us to observe

1
F (+∞; h) ≤ 2 max(1, 1 + δ) max(1, 1 + γ)1/2

√
π min(1, 1 + δ)1/2 =: M2(δ, γ). (6)

Hence, the map T : K → K given by

(T (h))(x) := F (x; h)
F (+∞; h) , (7)

is well-defined too. Then, we notice that a necessary and sufficient condition to be y ∈ K a solution to (1)
is that T (y) = y since y = T (h) solves (4) for each h ∈ K. The rest of the proof consists of proving that T

is a contraction from K into itself, provided (3) holds true. Then, the theorem will follow by Banach’s fixed
point theorem.

Initially, we note T (K) ⊂ K as a direct consequence of the definition of T . Let x ≥ 0 and h1, h2 ∈ K. We
have:

|(T (h1))(x) − (T (h2))(x)| ≤
⏐⏐⏐⏐ F (x; h1)
F (+∞; h1) − F (x; h2)

F (+∞; h1)

⏐⏐⏐⏐ +
⏐⏐⏐⏐ F (x; h2)
F (+∞; h1) − F (x; h2)

F (+∞; h2)

⏐⏐⏐⏐
≤ |F (x; h1) − F (x; h2)|

F (+∞; h1) + |F (+∞; h2) − F (+∞; h1)|
F (+∞; h1) .
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Then, using (6) we find

|(T (h1))(x) − (T (h2))(x)| ≤ M2(δ, γ)(I + J), (8)

where I := |F (x; h1) − F (x; h2)| and J := |F (+∞; h1) − F (+∞; h2)|.
Defining f(w) := exp(−2w) and wi :=

∫ w

0
z(1+γhi(z))

1+δhi(z) dz for w ≥ 0, i = 1, 2, and using the estimates (5),
we have

I ≤
⏐⏐⏐⏐∫ x

0

f(w1)
1 + δh1(w) − f(w2)

1 + δh1(w) dw

⏐⏐⏐⏐ +
⏐⏐⏐⏐∫ x

0

f(w2)
1 + δh1(w) − f(w2)

1 + δh2(w) dw

⏐⏐⏐⏐
≤ 1

min(1, 1 + δ)

∫ x

0
|f(w1) − f(w2)| dw + |δ|∥h1 − h2∥∞

min(1, 1 + δ)2

∫ x

0
f(w2) dw.

(9)

Let w ≥ 0. From the Mean Value Theorem we observe that f(w1) − f(w2) = −2f(ω)(w1 − w2), where ω is
a number in between w1 and w2. Furthermore, since f is decreasing we have that f(ω) ≤ f(min(w1, w2)) =
f(wk) for k = 1 or k = 2. Then,∫ x

0
|f(w1) − f(w2)| dw ≤ 2

∫ x

0
f(wk)|w1 − w2| dw

≤ |δ − γ|∥h1 − h2∥∞

min(1, 1 + δ)2

∫ x

0
w2 exp

(
− min(1, 1 + γ)

max(1, 1 + δ)w2
)

dw

≤
√

π|δ − γ| max(1, 1 + δ)3/2

4 min(1, 1 + δ)2 min(1, 1 + γ)3/2 ∥h1 − h2∥∞.

(10)

where we have used (5) and that
∫ +∞

0 w2 exp(−w2) dw =
√

π
4 .

From analogous arguments, we find∫ x

0
f(w2) dw ≤

√
π max(1, 1 + δ)1/2

2 min(1, 1 + γ)1/2 . (11)

Hence, using (10) and (11) on (9), we obtain I ≤ M3(δ)∥h1 − h2∥∞, where

M3(δ) :=
√

π max(1, 1 + δ)1/2

4 min(1, 1 + δ)2 min(1, 1 + γ)1/2

(
2|δ| + |δ − γ| max(1, 1 + δ)

min(1, 1 + δ) min(1, 1 + γ)

)
.

An identical argument yields J ≤ M3(δ, γ)∥h1 − h2∥∞. Hence, it follows from (8) and the above estimates
for I and J that

∥T (h1) − T (h2)∥∞ ≤ 2M2(δ, γ)M3(δ, γ)∥h1 − h2∥∞ = M(δ, γ)∥h1 − h2∥∞,

Therefore, condition (3) ensures that T is a contracting map and the proof is finished. □

Remark 1. Theorem 2.1 improves the analogous result given by the authors in [3] for the case when δ > 0
and γ = 0. In fact, the result given in [3] holds true provided that δ > 0 satisfies
δ
2 (1+δ)3/2(3+δ)(1+(1+δ)3/2) < 1, whereas condition (3) in Theorem 2.1 just requires δ(1+δ)3/2(3+δ) < 1.

Fig. 1a depicts the set A of all ordered pairs (δ, γ) that satisfy condition (3) in Theorem 2.1. Figs. 1b and
1c show plots of the modified error function Φδγ for several choices of the parameters δ and γ, obtained by
solving numerically the boundary value problem (1) through the bvodes routine implemented in Scilab [17].
Note that condition (3) is sufficient but not necessary, therefore we show the plots of the modified error
function for parameters included and not included in the set A.

The next corollary closes the article and establishes that the modified error function Φδγ given by
Theorem 2.1 shares some essential features with the classical error function. The proof is analogous to the
one for Theorem 5.1 of [4] so that we shall omit it here.
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Fig. 1. Pairs (δ, γ) that satisfy condition (3) in Theorem 2.1 (left) and plots of the modified error function Φδγ for δ = 1.5 (middle)
and γ = −0.6 (right).

Corollary 2.1. Suppose that (3) holds true. Then the unique solution Φδγ to problem (1) given by
Theorem 2.1 is increasing. If in addition δ is non-negative, then Φδγ is also concave.
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