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1. Introduction

Free boundary problems (FBP) are of great importance, both physi-
cally and mathematically. FBP are boundary value problems for partial
differential equations where an unknown moving boundary must be
determined [1-4]. In this paper, we formulate a FBP for a nonlin-
ear diffusion—convection equation namely Rosen-Fokas-Yorstos equa-
tion [5,6]. This equation describes fluid diffusion with convective
effects in porous media and has multiple applications, for example, to
ground water hydrology, oil reservoir engineering and other biological
applications as the drug propagation in the arterial tissues.

In [7,8] a FBP on a finite interval is formulated and solved for a
nonlinear diffusion-convection equation which describe drug diffusion
in arterial tissues after the drug is released by an arterial stent and the
problem is reduced to a system of nonlinear integral equations.

We will study a one-dimensional FBP for the diffusion-convection
equation with a variable Dirichlet condition(which is the one novelty
with respect to [7,8]) at the fixed face x = 0 and a Stefan like condition
on the free boundary which has a convective term. The present paper is
organized as follows: In Section 2, we introduce the FBP and through
several transformations we map the FBP for the nonlinear diffusion—
convection equation into an equivalent FBP for the linear heat-diffusion
equation. In Section 3, we give an equivalent integral formulation
to problem which requires to solve a system of three coupled non-
linear Volterra integral equations. Section 4 is subdivided into two
subsections: in Section 4.1, fixed one unknown, we prove existence and
uniqueness of the solution, local in time, by using Banach fixed point
theorem, in Section 4.2 we use the Schauder fixed point theorem to
prove that there exists at least one solution of this unknown.

We can remark that sequential transformations used on Section 2
have been previously used in different physical context as modelled, in
particular, by moving boundary problems, for example [6,9-16].

* Corresponding author.

2. Free boundary problem

We consider the free boundary s = s(r) > 0, defined for ¢+ > 0, and
u(x, 1) which satisfy a diffusion—convection equation with the following
conditions:

u,=u2(Duxx—ux) , 0<x<s(®), t>0, (€8]
u0,0)= f(@), t>0, (2)
u(s@®),)=p>0, t>0, 3
Du, (s(t),t) —u(s(t),t) = —=35@), t>0 , @
u(x,0) =ug(x)>p, 0<x<b, 5)
500)=b (6)

where D is the diffusivity, u, is the initial concentration and f = f(¢)
is the concentration in the fixed face x = 0. We assume that:

3
fecloel. u € C0.b] up©0)=f0). u®)=p f0)> 7ﬂ @
Following [6-8] we will transform this problem in the one which is
governed by the Burgers equation. We have:

Lemma 1. (A) If u = u(x,t), s = s(t) is a solution to the problem (1)-(6)
then v = v(z,1), zy(t), z,(t) defined by:

v(z,t) = u(x,1), 8)

where

P

—d 9
) n (C)]

t
z(x,1) = C +/ (u(0,7) = Du,(0,7)) dr+/
0 0
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t
20(1) = 2(0,1) = C, +/ (f(r) - DM> d (10)
0 f(@)
2,(0) = 250, 1) = Cy + (B + D)t — % / v.(z,(0), D)dT an
0

with C, an arbitrary constant, is a solution to the problem given by the

Burgers equation
v, =Dv,, —2vv, , zp(t)<z<z|(t), t>0, 12)

with the following initial and boundary conditions:

v(zo(), )= f(t), t>0, (13)
v(z@®), )=, t>0, 14
0.(2, (1), 1) _
Dm—v(zl(t),t)— ﬂ+1z1(t), t>0, (15)
v(z,0)=vy(z), C;<zLC, , ae)
70 =C,, z,0)=C, a7
where
- o
vo(2) =up(g~' (), gx)=Cy + /0 o (18)
b
C2=C1+U0=C]+/ Ly 19)
o uo(m
and the constants b, C; and C, satisfy the following relation
G
b =/ vo(2)dz (20)
C

(B) Conversely if v = v(z,t), zy(t), z;(t) is the solution to the problem
(12)—(17) then u = u(x, 1), s = s(t) given by

u(x, 1) = v(z, 1), (21)

with

x(z,1) =/ v(n, )dn, (22)
z0(1)

z1(n)

5(1) = x(z(0),1) = / v(n, Hdn (23)

2(1)

is a solution to the problem (1)-(6).

Proof. (A) From (8), (9) and by (1) we have

g =L _ 1
X T uxn) T oz’

- _ _ _ pbzd
z, = u(x,t) — Du,(x,t) = v(z,t) = D TR

and

v (z,1)
v(z,t)

vz v2(z.t)
v2(z,1) v3(z1)’

w(x, 1) = v,(z.0) + v, (u(z, f— D%) .

u(x,1) =

Upy (X, 1) =

Then, from (1) we get (12) which is the Burgers equation for the
dependent variable v(z, 7).

Taking into account (9) the domain D = {(x,7)/0 < x < s(t),¢ > 0}
for u(x,t) is transformed into the domain D* = {(z,1)/zy(t) < z <
z,(1),t > 0} for v(z, 1), where zy(t) and z,(¢) are given by

t
zo(H) = z(0,1) = C; + /0 (u(0,7) — Du, (0, 7)) d=

1
u(n, 1)

If we derivate z; respect to variable 1 and we use (1) and the
conditions (2)-(6), we obtain the follow relation

t s(t)
z () = z(s(®),1) = C; + / (u(0,7) = Du,(0,7)) dt + / dn
0 0

2, = %sl(z).

Then, from (4) we have (15) and the expression (11) for z,(r), where
z;(0) = C +f0b u;(r’)dn = C,. Egs. (13) and (14) follows inmediatly from
(2) and (3) respgctively.
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For ¢t = 0 we have that

z=C +/0 @dﬂ = g(x),
then (5) is equivalent to v(z,0) = uy (g7'(2)) for C; < z < C, where
C,=C, + fob @d?]. Therefore (16) holds.

To prove (B) we consider (21), (22) and the (12)—(17) which are
satisfied by v = v(z,1), z(?), z,(t). We have

x, =v(z,t), x;,=Duv,— UZ(Z, 1).

Moreover, for z = zy(t) is x = 0 and for z = z,(r) is x = le(t)

g o VU Ddn =
s(t). Since

— 2 2 — — 2 2
U= Dulu—uu” +uy, U= U, Uy = U Ut ugu

then (12) yields (1).

The conditions (2), (3) and (5) follows inmediatly from (13), (14)
and (16) respectively.

To prove (4), from (23) we calculate $(r) and use (12) and (14). We
have
zy (1)

5(1) = v(z1 (1), Dz (1) = v(zo(1), D 2(1) +/ v (n,Ndn

zp(n)

v,(21(1), 1)
p

and (4) holds. [

=§-D = f — Du (s(t),1)

Remark 1. Eq. (9) is equivalent to the relations
1
z, = D)’ z, = u(x,t) — Du(x,1). (24)

Eq. (22) is equivalent to

x, = v(z,1), x,=Dv, —v*(z1). (25)

Now we introduce the Galilean Transformation given by
V(y,n=u(z1)-p,

to obtain the following result:

y=z-2pt t>0 (26)

Lemma 2. Under the transformation (26) the problem (12)—(19) is
equivalent to the following FBP:

V,=DV,, =2VV, , »@®<y<y@) . 1>0, @27
Vo@®,n=f®-p, 1>0, (28)
Vi, =0, t>0, (29)
pROOD_p0-Dop0 . o
V3,00 =W, C<y<G, (€29)
10 =Cp, »(0)=C) (32)
where

O =vy(») — B (33
Yolt) = Cy — 2t + /Ot (f(r) - D%) dr (34)
e / V0,21 35)

Proof. The Galilean transformation (26) leaves invariant the Burgers
equation (12). The free boundaries y,(r) and y,(t) given by (34)-(35)
are obtained from (10)-(11). The conditions (28)-(32) follows from
(13)-(17).

Conversely, if we define

v(z, ) =V (.0 +p,

from (27)-(35) we obtain (12)—(19) with z,(¢) and z,(r) given by (10)
and (11) respectively. []

z=y+2pt t>0,
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Let us now transform problem (27)-(35) in the one which is gov-
erned by a heat-diffusion equation using the Hopf Cole transformation
given by

wy, ) =COVy,Ony.n, y@O<y<y@, t>0, (36)
with
t
ci)=1 —/ wy(yl(r),r)d‘r, (37)
0
and

| y1(0)
n(y,1) = exp 5/ Vg, ndé ). (38)
y

We have the following result:

Theorem 1. Under transformation (36)—(38) problem (27)—(35) is equiv-
alent to the free boundary problem (39)-(47) given by:

w,=Dw,, , yO<y<y), t>0, (39)
y1(0)
w0, 1) = (f@) - p) <C(l)+%/ w(i,t)d§> , >0, (40)
yo()

wy,(H,)=0, t>0, 41
D i o pe

wy(yl(t) 1) _ pl—=p)—py (@) 40, (42)

pC() B+1
wy,0=F@y), C,<y<C , (43)
yo(O) =Cy, ,\’1(0) =G (44)
where
e e
F) = Volexp (3 / Vo(f)d'f> V) (1 -1 [ we om:)
y y
(45)

and the free boundaries y, = y,(t) and y, = y,(t) are given by:
" "w,(yo(7), 7)

H=C — 2/ d —D/ 2=~ (1-

e R A TG R oo (

t
W0 =Cy+ (1 —py+ 2D (’;+ D, <1— / wy(y.(n,r)dr). 47
0

L ) dr, (46)

Proof. To prove the equivalence of the two problems we will deduce
the inverse transformation to the relation (36) by considering the
definition (38), we have

| @
log (n(y, 1) = 3/ V(¢ ndé

y
then

1wy
D C@) -

Integrating on variable y, it follows that

(.1 = =5V, 00, 1) = -

cw+ 5 [ w(e nde
C(1)
Therefore, we have that the inverse relation to the generalized Hopf-
Cole transformation (36) is expressed by:

ny,n =

Vi = w0 . (48)

cw+ 5 /1w, nde

Under transformation (48) the Burgers equation (27) is mapped into the
linear heat-diffusion equation (39). The initial and boundary conditions
(40)-(44) are easily obtained from (28)-(32). The expressions (46)
and (47) for the free boundaries are obtained from (34) and (35)
respectively.

The converse is proved analogously. []
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3. Integral formulation

In this section, we give an integral formulation of the free boundary
problem (39)-(47). We have the following equivalence theorem.

Theorem 2. Let (7) and 0 < D < 2 be. The solution to the free boundary
problem (39)-(47) has the following integral representation
Cy
w(y, 1) =/ GO, 1¢, O)F(f)d§+D/ $1(DG(y, 15y, (7), )dT (49
C]

2 ["h(@) B " (1)
+5 T )G(y t;yo(7), T)dT — Df L, 7@

t
—D/O h(T)Ny(y, 1; yo(1), T)d,

Gy, 1, yo(7), T)d7

with
1 »1(®)
h(@®) =(f@®) - p) C(t)+5/ w,ndé |, (50)
Yo
» 11 " 4,0 5
— 0 (T
Vo) =C, —f /0 mdr—D/ﬂ e <l—m)d1, 51)
t
N0 =G+ (1= P+ 252 1n <1 —/ ¢]<r)dr> (52)
0
and ¢, ¢2 are defined by
¢ ()= (yl(l) 1), ()= (yo(t) 1) (53)

if and only if it satisfies the followmg system of two Volterra integral
equations:
b (t)— {/ Ny (),1;£,0F'(&)d¢&

+ D/ &1 (DG (y (1), 15y, (z), T)dT

+ jﬁﬁ)) G, (2). 1, (), D)t

- Dﬂ/ (l;z(( ))G 01(2). 15 yp(7), 7)d,

- /0 WEONGL .15 (o), r)dr}, 54

ha0=5 f(zt{ 0 ; { —p /’ﬁg / NGo(0), 158, 0 F' )

+D / 6,000, 1: (0 Oy (e

. P fi 36,000 1530, )

-Dp qu((:)) G,y ), 15 yp(7), T)dT

—/Ot H ()N (3o(0). 13 yo (7), r)dr}, (55)

where G, N are the Green and Neumann functions respectively, and K is
the fundamental solution to the heat equation, defined by

G(x,t,E,7) =K (x,1,&,7) — K (—x,1,&,7), (56)
N (x,t,&,7) = K(x,t,&, 1)+ K(—x,1,&, 1), (57)
1 _ =8P
K (x,t, f, T)= 2\/7[1)()‘*1’) exp ( 4D(1-7) ) r>7 (58)
0 t<rt

and y, , y, are given by (51) and (52) respectively. Moreover, function
h(t) = w(yy (1), t) must satisfy the integral relation

yo(®)

t 10
h@®) =(f@®) - p) <1 —/ ¢ (dT + l—l) w(y, I)dy> . (59)
0
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Proof. Let w(y,1), yo(t), y;(?) be the solution to the problem (39)-(47).
We integrate on the domain

Dy = {0 /3 <é<y (). e<t<t—e} (€>0)
the Green identity

D (Gw; — wG), - (Gw), =0 (60)

and we let ¢ — 0, to obtain the integral representation for w(y,7) [3,17]

1

(&)
w(yaf)=/c G(y7f;§,0)w(§,0)d§+D/0 we(y(2), )Gy, 15y, (7), T)d T
1
(61)

* w(yo(0). 7)
+ /0 %G(y,r;yo(n,r)dr

" we(yo(7), 7)
- Dﬁ/o @ Ot dr

t
+D/ w(yo(), )Gy, 15 yo(7), T)d 7.
0

By using the definitions of ¢, and ¢, given by (53), the definition of
h and boundary conditions we have (49). If we differentiate (61) in
variable y and we let y — yg(t) and y — i@, by using the jump
relations [17] we obtain the system of integral equations (54) and (55)
for ¢, and ¢,. Moreover, from (37) and (50) we have Eq. (59).

Conversely, the function w(y, t) defined by (49), where ¢, and ¢, are
the solutions of (54) and (55), satisfies the conditions (39), (42)-(44).
In order to prove the conditions (40) and (41) we define

sy () = w(y (1,0 and p, (1) = h(t) = wHp®), 1).

If we integrate the Green identity (60) over the domain D,, (¢ > 0)
and we let £ - 0, we obtain that

[ '
w(y,1) = / G(y,1;: ¢, 0w(&, 0)dE + D/ Gy, t;y,(1), D) (r)dT
el 0

t

t
—D/ Gy(y,t;yl(r),r)w(y,(f),r)df+/ G, 1,3, (2), DW( (1), )Y (D)d =
0 0
—/ G (3,15 9(0), T) [w(y(2), )Yy (r) — Dehy(7)] dt
0

t
+D / G0t (0 Dy (o), D). 62)
0
Then, if we compare this last expression (62) with (49) we deduce
that

s D, (7)
G(y, -
/0 .1 y0(2), 7) [f( ) Hp(7) 7

y <ﬁ+ W(yo(f),;()g(r) —ﬂ)> + D¢2(T)] dr
t t
+D/0 G,(y,1;y(7), r)uz(f)dT+D/0 G, (3, t; y1(7), Dy ()d
! . D¢ (n)(B+1)
_/0 Gy, 1;y1(1), D)y (7) [(1—ﬁ)—w dr =0. (63)

By taking y — vy (@® and y — vy *(t) in (63), and the jump relations
we obtain that x4, and y, must sat1sfy the following system of Volterra
integral equations:

t
== /0 { DG, 0.1:010).0) = GO (@, )
D¢, (r)(f+1)
x [(1=p) - 2LEED] Ly o), 64
+{DG, (01015300, 7) + G0, 15 30(2), 7)

8 [f(ﬂ D¢2(T)(f(r) h(L))]}”Z(T)dT

t
() = % + / { DG, 0, 30(2), 1) = GORO 1 302, ) (65)

[f(r) 4’2()(;@ ﬁ)]}ﬂz(r)
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+ {DGy(yo(t), 1, y1(1), 7) = G(yo(1), 15y, (7), )

D 1

Following [18], it is easy to see that there exist a unique solution
U = u, = 0 to the system of Volterra integral equations (64)-(65). Then
(40) and (41) are verified and the result holds. []

X [(1—ﬂ)—

4. Existence of the solution

In order to prove existence of solution w = w(y,t), y = y,(t) and
y = y;(®) of (39)—(47) and taking into account the result of Theorem 1
we will demonstrate that there exists at least a local solution ¢,, ¢, and
h to the coupled nonlinear integral equations (54), (55) and (59).

We will proceed in the following way: Fixed positive constants H,
R, S and o we define the set IT = II(H, R, S,0) given by

11 := {h e C'[0,01/h(t) > H,||h]| < R, ||| < S} (66)

where ||A||
c'io,sl.
For each fixed function h € I, = {h € C'[0,1]/h(t) > H,||h| <
R, ||h’|| < S} we will use the Banach fixed point Theorem in order
to prove that there exist unique solutions ¢;, ¢, € C°[0,6] to
the system of two Volterra integral equations (54) and (55). Then for
suitable H, R, S and o, by using Schauder’s fixed point Theorem we
will demonstrate that there exists at least a solution s € II; of (59).

= max,e[o, |2()|. Clearly IT is a compact and convex set in

4.1. Existence and uniqueness of ¢, ¢,

We consider the Banach space

C[0,6] = {¢*= <£1>/ ¢; i [0,6] >R, i=1,2, continuous}
2
with the norm
¢*

= iy 0l g )

o SM}

with ¢ and M positive numbers to be determinate.
We define the map y : Cy; , — Cy,, such that

y zl(wr),qsz(r»)
d <¢ >(') <xz<¢1<r),¢2(r>>

where

and the subset:

CM,o' = {Ee C[O, O']/

(&)
1@ 0.020) = 325 { [ voo.se0r @
1

1
+D/ D1 (DG, (3 (), 15, y1(7), T)d7T

h()
f() Y
" (D)

- Dp ) ——G,0(0), 15 yy(7), T)d 7,

t
—/ R (©)N (31 (1), 15 yo(2), T)df}, (67)
0

2/ @ { zh(l)
2f() - Dp f®

t
D / G, (yo(1), 1y, (), D)@ (T)dT

" h(»)
o f(@)

—Dﬂ/ (];2(( ))G o), 13 yp(7), T)dT

+ 52 G, (y, (1), 1; yo(2), 1)d 7

22(1(0, d, (1) = / No®, 18,0 F (£)d&

+ 82 [ —=G (.1 yp(0), D)dT
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t
—/ h'(T)N(yo(l),l;yo(T),T)dT}. (68)
0

We will prove that for suitable M and o, the map y is well defined and
it is also a contraction, therefore by the Banach fixed point Theorem it
has a unique fixed point.

Firstly, we give some preliminary results

Lemma 3. Let f(t)>
<M, (i=1,2).If

, 0< D <2and ¢; € C°[0,6], max,cpg 4 | ;)|

M MD
2(1+ﬁ)<1+ﬁ>oscz, 2(ﬁ+2T)55cl

then y, and y, defined by (51) and (52) satisfies

o) = 3o < (B 4222 ) I = 7| , Ve.r € 0,01, 69)
S <y <32 vielo.al, (70)
|y|(t) -n@|<A+p (1 + M2> lt—z| , Vr,t €[0,0], (71)

2 <ym< 3 2.Vt €[0,0]. (72)
Proof. It follows inmediatly from definitions (51)-(52) and assump-

tions on data. [
To prove the following Lemmas we need to use the classical inequal-
ity
—x2 n
exp (—’i ) 2
#S(%) ,a,x>0,t>7,neN. (73)
(T — T)E Zex

Lemma 4. Leto < 1 For each function h € II, under the hypothesis of
Lemma 3 and C, < % we have that following properties are satisfied

/C] ’ |F'(©)] [N (0),1:€,0)| d& < ||F'|| < A, (g, U, B, D), 74)
D/r |G, 010, £:31(0). )1 (7)| d < Ay(M. D, Uy C)) Vo, 75)
2 [ 16,0101 300, ‘r)fE i‘df < AJ(R.D,5.Cy,C)) o, 76
ﬂD/Ot Gy @), 15 yo(2), r)qu((r)) dr < Ay(M,D,C,,C)) \/o, a7
/Ot |7 @] [Ny (), 1; yo(7), )| d < A5(S, D)o, 78)
/:2 [F' @I N Go0).:6,0)|d& < [|F'|| < Ay (o, Up. $. D). (79)
D /0 t )Gy(yo(t),z; (o), r)¢1(r)| dr < Ay(D,M,C,,Cy)\/o. (80)
ﬁz/o G, (o). 1: yo (1), r)f( )‘d'r < Ag(R.M.D,B.Cp,C)) \Jo,  (81)
pD OI G (yo(1). 15 (), r)qu(f)) dr < A(M, D,C)) \/o, (82)
/l |7 (@)] [N o), 1: yo(1), 7)| d < A5(S, D)\/o, (83)
P <R 84)
where

A, (g, Uy, B, D)=exp(w) [ :_g . W] ’

Ay(M, D, Uy, C) = 1‘24\/5) [2M+C%2<23_€)3/2]’

AR D..C3.C) = —Z=(Ay; + Az

181/6

S/2(Cy + Gy’

3
Au = 3G, -C ( 24D >5 A =
3 2 e(C,—3C)2) 2
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MVD

Ay(M.D,C,,C)) = (As) + Az,
24/7
As(S.D) =2,
Dr

As(R,M,D,p,Cy) =

i

3
c
32
Ay(M.D.§.C,) = DM [2M+ =X (3—0) ]

Proof.
To prove (74) we consider

Cy oo
/C |F'@)] |IND (). 1:£,0)] dé < ||F’||/0 INGI().1:£.0)| dE < | ']
1
From (45) we have
F'(y) = exp (g / Vo(é)d§> [iw- 5w
y

then
17/l < exp (TAG=22) [[5]+ 5 voll

U
< exp (ellsptn) [ 1 ||u01|)|+ﬁ] -

A, (ug, Uy, B, D).

Following the proof given in [19,20] and taking C, < % we obtain
(75), (76), (77), (80), (81) and (82).
To prove (78) we take into account that

1

Vr(t—1)

[N (@), 1 y0(0), 7)| <

so, we obtain

t
/0 |1 @] [N @ 1300 )] de <24/ 5.

The inequalities (79) and (83) are proved in the same way as (74)
and (78) respectively. []

Lemma 5. Let y,; and y,, be the functions corresponding to ¢,, and ¢,, in
CO10, o] respectively, and y|, and y,, be the functions corresponding to ¢,
and ¢, in C°(0, 5] respectively with max, o 4 d),.j(t)‘ <M, ij=12
Under hypothesis Lemma 3 we have

o1 () =y 0] < 220 [l b1y = ¢z,

[¥o1(0) = ya(0)] < (ﬂ+2%)|z—r|,i=1,2, (85)

S <y X vieoli=1.2,
and

[y11() =y ()] < IH; oo —

5 $nll; -

3 Iyl,(t)—yl,(r)|<(1+/3)(1+ )It—rl i=1,2, (86)

2 <y vienoli=12
Proof. It follows inmediatly from definitions (51)-(52) and assump-
tions on data. []

Lemma 6. If we take ¢ < 1, % (ﬂ + ZDTM) o < 1 and we assume the
hypothesis of Lemma 5 then we have

G,
/ |F' @] ING10.1:6.0) = Nopp(). 1:£.0)] dé ®7)
G
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< 201 llic, e
DyF
t
D/Q )¢11(T)Gy(J’11(l),f;J’11(T)5T)—¢12(T)Gy(ylz(f),1§Y12(T),T)‘dT (88)

611 = b1all, Vo < Pi(ug. D. B, U0)|

& -

< Py(M, D,Cy)o ||y, — b1 < Py(M, D, Cy) )

t
2 [ hw
p /0 @)

< P(R,C1.Cy)|

t
1
D/’/Om

e 2k
¢ - ¢

>

G, (y11®), 1, y01 (1), T) — G, (¥12(0), 13 Yo (7), T)‘ dr (89)
Vo,

@1 (DG (11, 1501 (), T) = $2(D)G (12 (D), 15 Y2 (T), T)) dr

& -

(90)
< Py(D,M,C,,C,) | $T - qu
/ot |1 (@] [N 11 (0, 15 991 (7), 7) = N(p12(0), 1, ¥ (7), 7)| d 7 1)
< Ps(S,D.Cy,Cy) ‘ # -4
/Ccz |F' @] INGoi (0.1:£,0) = N(yo0),1:£.0)] d ©2)

WPl
PG

t
D/o )¢11(T)GY(YO1(I),t;)’u(T)a T)—¢12(T)Gy(,V02(f),1§Y12(T)’T)‘dT (93)

621 = 22|, \/;<P1(”0»DﬂUo)‘

& -

< P(D,M,C,,C)) | )
" h()
o f(7)

< Py(D, H,R.M.Cy)|

e
¢~

p |Gy(J’01(l), 13 301(7), T) — G, (¥ (1), 1 Yo (), T)| dr 94

>

& -

D /0 |21 (016, 01 (10,5301 (2. 7) = 22D, Bia (0.1 ¥ (), )| d 7 (95)

< P(M.D.Cy) ||6} - 45

o,

t
/0 |7 @) |N G110, 1,501 (2), ) = N (120, 1, ¥ (2), 7)| d 7 (96)

< By(S.D.C.Cy) |6} - 3

where

2
Pituo 0.1V = 3 (il +.9) exp (4 (ol +.)) + 2]

(97)
Vb (2 0 o (¢ 0
Py(M.D.Cy) = 12 |6M + 25 3) + e) , (98)
P3(R, B,C, Cy) = RB(Ps; + P3y), (99)
with
Py(Cp Cy) = —L | YEBGC)® | 2V3 Ve | _eV3 | (400
L2 TR | TT6(C,-301) 4 (C-3C))3 T (C+Cy) |
1246 1 9 (3G,-C)? 1
Pi(Cp, C) = Vzedl2 [(027301)3 T3t soa0r T o | (101)
Py(D,M,Cy,Cy) = D [M(Py; + P3,) + Py, (102)
where
_ V6 [ 1 1 ]
Pu(Cy, &) = \/> (C-3C))? + (G+C)? ] (103)
snep [ 3G, —C 3 ]
Py(S.D,C;,C) = ¢ , 104
3 )= [(Cz —3C)F (G +C)P (1od
2
Py(D.H.R.M.,C,) = fR {(2D)_1(Dn)_1/2 [% +2 (p+221) ]
(105)
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32 32
2 6M (6
P,(M.D.C)) = W[6M+ 3e) +C—12(;) ]

Proof. The inequalities (87)-(93) and (95)-(96) are obtained follow-
ing [20].
We will show the proof of (94), following [21]. We write

(106)

|Gy 01 0153101 (2). ©) = Gy (02 00,132 (0). )|
< | Ky 0101301 (0).7) = K, Gi0a0). £ 7002, 7)|
+ Ky =301 00,5701 (9, ) = K (30000, 5 7022, )]

Taking into account that

| K, 1 0.5 301 (0, 9) = K, 0 (0,5 700 (0), )|
< @D =) Ko 0.5 50109 [(301) = 301 (®)) = (3020 = 2 (®))]
+ [K O 030010, 0) = KGi0: 13020, 9] (3020 = 302 (0)|
< @Dt — ) K (1), 1 ¥, (7), T) | [(301® = y01(®)) = (302 = ¥ (D))]
+[1 = exp(m(t. 7)) (30o(0) = 30o(0)) |

where

(Y()l(t) - yOl(T))z - (Y()z(t) - )’02(7))2
4D(t — 1)
00 ® =301 ®) = (35020 = 70 ®)] [(301 () = yor () +
- 4D(t — 1)

m(t,7) =

(Y02 = ¥ ()]

We have
|(YO1(T) = y01(0) = (you0) = yOZ(T))‘

< D/, i 1= 75| 1w = esn] an
o [N

<—D)
- H

and

| (010 = 301 (®) + (300 = y(®) | <2 (5 + 22
<4 (ﬂ + 2D—M) o,

then

Im(t, 0] < £ |

(h+224)0,

o~

& -

and taking into account that |

4M 2DM

W (0 35 )e

If we assume that ¢ satisfies
( g+ 22M 2DM ) o<1,

we obtain that

|1 = expn(t, )] <2 m(t, )] < & (p+ 2220 )|

Im(1,7)| < =~

& -

Therefore

K01 0,15 301 (0. 7) = K, Gn 015 702 (0). 7| <
< @) KO 0,131 (0, ) [% v 2 (pey’ a] |#; - &

e

Using the mean value theorem we may write

n n
b=y

< @D (Dx(t - o) [ZH

| K (=301 0. 153001 (2). 7) = Ky (310000, 1 7002, )|

< |K(n(t,7),t;,0,7) <

it 1 )
4D%(t—1)>? 2D(t-1)
X |yo1(®) + ¥o1(7) = Yoo (1) = yoo (7))

where n = n(1,7) is between yy,(t) + yy,(z) and yy () + Y (7).
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Since

5

n n
¢ -

[¥01() + ¥01(7) = y02 () = ypa(2)] < 47D6 |

and
C, <n(t,7)<6C,
by using (73) we have

3/2 2

n2(t 7) 1 6 ISCI +1

K(n(t,7),1,0, - - <\ — =
it 0.0 <4Dz<r—r)2 2D(r—r>> «?) Tayz

then

| K301 00,7301 (9, 7) = K (=300 5 i (2), )|

3/2
<[ / 18C2+1 4_05‘
=\ eC? 4z H

Collecting the results we have

n n
¢ -9

|Gy 001 (00,1301 (21, ©) = Gy (32 (0. £ 1 (2). )|

+ 6 3/2 18C2+1 4p
eC? 4z H ‘

then

n n
¢ -9

B

t
h
ﬂ2/0 (r) |Gy(YOl(l),tQYO1(T),T)—Gy(yoz(z)’[;yoz(f)’r)|dr

@
< pﬁ(D,H,R,M,Cl)‘q;’I - & Vo

where

H

R 3/218C12+14D
eC? a4z H [

Then, (94) has been proved []

Py(D,H,R,M,C,) = fR {(2D)1(Dn)1/2 [2‘) +2(p+ ”’—M)z]

Theorem 3. Let hypothesis (7) be. Fixed 0 < C; < % and he Il. If ¢
satisfies the following inequalities

c<1, 2(1+ﬁ)<1+%>05€2, 107)
MD

(ﬂ+ZT>GSC|, 47M(ﬂ+ZDTM)O'S1, (108)

H, (Cy,Cy,Up, M, D,p,R,S,0) <1, (109)

Hy(Cy.Cy.Uy, M. D, B, R, S.0) < 1, (110

where M is given by

M(uO,UO,f,D,ﬂ,R)=1+< ! +ﬂ>2A1+2MR, (111)

2-D pB-D) 3-D
and
2 28
H, (C],Uo,f,M,D,ﬂ,R,S,o')={(ﬁ> |:A2+A3+A4+ D]
\/7[
w2 g a4 25 V. (112)
p3-D) VD
Hz(cl,Uo,f,M,D,ﬂ,R,S,a)z{ﬁ[P]+P2+P3+P4+P5]
20171
— [P+ P+ P+ P+ P 11
+ﬂ(3—D)[ 1+ P+ P+ Fo+ 7]}\/;’ (113)

then the map y : Cy, — Cy, is well defined and it is a contraction
map. Therefore there exists a unique solution ¢}, ¢; on Cy , to the system
of integral equations (54) and (55).
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Proof. Firstly, we demonstrate that y maps Cy, , into itself, that is

()]

Taking into account Lemma 4 we have

= max |x1(d1(®), b (1) + [nax [x2(d1 (), b)) < M

2 2
|}(](¢1(1),¢2(t))| < 3D {A] + [A2+A3+A4+ \/:_D:| \/;} N

2
|12<¢1(t>,¢2<r)>|sﬂ(3”f”D){ﬂR+A1+[A4+A5+A6+ 28 \/E},
zD
and then
- | IF1 ], 20f1R
X("b ) <M [2—13 * ﬂ(3—D)] G-D)

+ H(C,,C),Uy, M, D,f,R,S,0)
where H, is given by (112).
Selecting M by (111) and ¢ such that (116) holds, we obtain
X <¢*> <M.

Now, we will prove that

(5) -+ (%)

T () e (P2
where fpl_.(d:lz) , b= (¢22) € Cpr -
Taking into account Lemma 6 we have

() ()]

+ max |)(2 (11,12 () — 22 (21 (), 2 (t))‘

t€[0,0]

< H, (C),Cy. Uy, M, D, p. R, S,0) || ¢t — &3

o

c

= max |)(1 (D11, P12 ) = 11 (h21 ). Da (f))‘

t€[0,0]

2
S{E[P1+P2+P3+P4+P5]

2|10 . g
——— [P+ P, + P+ P, +P - 114
ﬂ(3—D)[ 1 4 5 6 7] \/; ¢2 4’1 . ( )

=H, (C,.C,,Up, M, D,B.R,S,0)||¢} — &7

By hypothesis (107)—-(111) we have that y is a contraction and there-

fore, there exists a unique fixed point ¢* = (i‘) such that y(¢*) = ¢*
2

this is

11(1 (1), b (1)) = 1 (1), 12(h1 (), hr (1) = P (1). [

Theorem 4. For each h € II,, under hypothesis of Theorem 3 there exists

a unique integral representation for w, y, and y, given by (49), (51) and

(52) respectively, where ¢, and ¢, are the unique solutions of (54) and

(55)

4.2. Existence of at least a solution of w,(yy,(?),t) = h(t)

In this subsection we assume that all the hypothesis of Theorem 3
are valid, which guarantee the existence and uniqueness of w = wy,
Yo = Yon, and y; =y, for each h € I1,.

Now we will prove that for suitable values of H, R, S and o there
exists h € II1(H, R, S, 0) such that
wp(Yor (), 1) = h(1) (115)

for 1 € [0, 6], where w), and y, are established for above theorem.
We define the map Z on IT such that foreach he IT C IT|, (6 < 1)

Z(h)(1) = wy(Yop(D), 1),

this is

t 1 Y1ir(®
Zn=0O-p|1 —/ ¢1p(v)dz + D / wy&,ndg ),  (116)
0

Yor(®)
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where ¢, wy,, ¥, and y,;, are the solutions obtained in above section.
We will use the Schauder’s fixed point theorem which states: For any
continuous function L mapping a compact convex set to itself there is x
such that L(xg) = x .

Lemma 7. If

S+ B @2Cy +3Up) <2D (117)

then, for h € II function Z(h) € C'[0, 5] and satisfies

Z(h)(®) > g (118)

iz < 2L DLE A0 o

|12/ < s2senaem L2y gy g[S+ m (24 5)] )
(120)

+ M7+ 8.

Proof. From definition of Z(h) and (7) we have Z(h)(t) > g Taking

into account (116) and the fact that
wp€, 1) < wp(ye@),1, yo) < &Ly (D)

we have
t
Zh)® < (fO)+p) <1 —/ $1(DdT + wy (3o, 1) (¥, () - .V()(t))> .
0

Since ||¢1,]| < M, o < 1 and taking into account Lemma 5 we obtain

C, +3U,
Nzmml < difll+ 5 <1 + M+ Z(W| —D> ,

or equivalently

2D/ +p A+ M)
(11 + B) (2Cy +3Up)”

If we derivate Z(h) respect to variable 7, we get

t . yip(0)
Zm)ym=rml1 —/ $ip(@dr + / wy (&, Ndé
0 Yon ()

Y1p(®)
+(fO) - P [—qsm(z) + 210, (on(0). 0, () + % / Wy (€, r)d:]

Yon(®)

IZWl < 55—

and using Egs. (39), (51) and (53) we obtain

| Y1)
: / wy(&.0)dé
Yon(®)

SO0 D030 + by (O = By 0]

t
(Z(h))'(t)=f'(t)<1—/ $rp(0)dT +

+ SO = [~puo) -
Z(h)(1)
70— p

Then we have

|(Z(h))/(t)| < ||f’|| M +UfN+ B [llZ(Dh)IIﬁ

M (2\\Z<h)u +14 12000 )]

<tz { L1 +<||f||+ﬂ>[ M (2 D)} masiem,
2D(I£I+A)(1+M)

2010 s 2,1
< D1/ FHRC,+305) { +AST+A [D +M (ﬂ )]}
+ M(fIl+5)
and the lemma holds. []

= £

0= P [ZE gy (0 (200 -

_ Zh0p )]
Df(n) :

Dy

Next, we define

B | 11 sl
El"”(z 2-D " G- D))A" 2= G-D)

(121)

and

p 2D (|If] + )
PT2D= (Il + ) (2C, +3Uy)"
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Lemma 8. We assume (117) and

EE, < 1. (122)
If we take
E;(1+E
H = E R= M , (123)
2 1 - E5E,
2
s=e (U eqsn+n]s+m(2+5)]} (124)
where M is given by
E
v~ Bt BE (125)
1 - EyE,
then Z, € I1.

Proof. From (111) we have
M = E, + E,R,

then by (119) we have
Ei1+M)=R & E;(1+E)+EE,R=R.

Therefore, if we define R =

have Z(h)(t) > g = H and by Lemma 7 we have ||(Z(h))'|| < S. This
yields Z(h) € IT and the proof is complete. []

—Ef(H’EE‘) we have || Z(h)|| < R. Moreover we

Remark 2. Assumption (122) is equivalent to

4DISI A1 + )
[2D = (I £1l + B) 2C, + 3Up)] 3 - D)

(126)

Theorem 5. We assume hypothesis of Lemma 8. There exists at least a
solution h* € IT such that Z(h*) = h*.

Proof. Taking into account above lemmas and using Schauder’s fixed-
point theorem we obtain that there exists at least a solution h* € IT
such that Z(h*) =h*. O

We can now formulate our main result.

Theorem 6. Fixed C; < % Let H, R, S and M given by (123), 8 and
125 respectively. If (117) and (126) hold,

s <1, 2(1+ﬂ)<1+%>6§€2, 127)
MD

(ﬁ+27)a<cl %(m%)asl (128)

H <1, H,<1 (129)

where H, and H, are given by (112)-(113) then there exists solution to
the free boundary problem (39)-(47) given by

C, t
w*(y,t)=/ G(y,t;é,O)F(é)d§+D/ ¢T(T)G(y,t;y’f(f),1)df (130)
Cy

t,

yo(r) T)dt

h*(7)
+ 52 | e )G(y ty5(0), T)dr — Dﬂ/

t
—D/O R (DN, (3, 15y (2), D)d T

f()

and

« 2 ! 1 ! 1
Vi =C - p / el D/O s (1= 5 ) ds@de (131)
Y =Cr+ (1= P+ D<”+”1n< / ¢ (T)dT) (132)

where ¢}, ¢ are the unique solutions to the system of two Volterra integral
equations (54) and (55) corresponding to h* a solution of Z(h) =
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5. Parametric solution to the problem (1) -(6)

Assuming hypothesis of Theorem 6, if we invert the transforma-
tions given by (8), (26) and (36) we obtain the explicit parametric
representation of the solution to free boundary problem (1)—(6) given
by

0

* ot
ur(x,1) = ; = (T )y*(t) +h (13%)
L= fydi(dr+ 5 [71 w*(& ndé
Y20t * t
e / w*(u, )y*(I) +8ldu (134)
HORI| 1 - [ pr@dr+ 5 [ wE ndé
with
Vo) <y < yi@), 0<t<o
and
y’l*(t)+2ﬂr * N3
S(t)=/ w*(u )y*m +pldu (135)
B8 | 1= [ pr@dr+ 5 [ wr(E ndé

where w* = w*(y,t) is given by (130), y;(t), y’l‘(t) are given by (131)
and (132) respectively, with s ¢ the unique solutions to (54) and
(55) corresponding to the solution A* to Eq. (115).
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