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An explicit solution for an instantaneous two-phase Stefan
problem with nonlinear thermal coefficients
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We consider a nonlinear heat conduction problem for a semi-infinite material x > 0, with
phase-change temperature 77, an initial temperature 7(>77) and a heat flux of the type-
q(t) = go/+/t imposed on the fixed face x = 0. We assume that the volumetric heat
capacity and the thermal conductivity are particular nonlinear functions of the temperature
in both solid and liquid phases.

We determine necessary and/or sufficient conditions on the parameters of the problem
in order to obtain the existence of an explicit solution for an instantaneous nonlinear two-
phase Stefan problem (solidification process).

Keywords: Stefan problem; free boundary problem; phase-change process; solidification;
similarity solution; Kirchoff transformation.

1. Introduction

We consider the two-phase Stefan problem (solidification process) with nonlinear thermal
coefficients for a semi-infinite region x > O with phase-change temperature 77, an initial
temperature 7> > T and an imposed heat flux of the type q(t) = go/+/t (g0 > 0) on
the fixed face x = 0. For ¢t > 0 we are going to determine if there exist a temperature
distribution u(x, t) and a free boundary x = y(¢), where

ui(x,t) <1y, 0<x <y,
ulx,t) =11, x = y(t), (1.1
uy(x,t) > Ty, x> y@).

The modelling of this type of system is a problem of great mathematical and industrial
significance. Phase-change processes appear frequently in industrial processes and other
problems of technological interest (Tarzia, 2000).
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The problem to be considered is given as follows:

d d d
Cran=l = 2l kiw)Zt|, 0<x<y@), >0 (12)
ot ox ox
d d d
Cou) 22 = L Kpu) 22|, x> y(@®), >0, (1.3)
ot ox ox
y(0) =0, (1.4)
ur(x,0)=7T,>17T;, x>0, (1.5)
ur(y(),t) =ux2(y(®),t) =T, t>0, (1.6)
0 d /
K1) — Ka(up) o2 = Ly'(t), on x=y(t), t>0, 1.7)
ox ox

K1 (u1(0, t))%(o, t) = t>0, (1.8)

g0
Ji
where x is spatial coordinate, ¢ is time, u; (x, t) is temperature distribution for phase i, T is
phase-change or freezing temperature, 75 is initial temperature, L is volumetric latent heat,
C;(u;) is volumetric heat capacity for phase i, K;(u;) is thermal conductivity for phase i,
y(t) is the free boundary (solid-liquid interface) at time ¢, go is a positive given constant
which characterizes the heat flux on x = 0; here i = 1 is the solid phase, i = 2 is the liquid
phase.

We assume that the volumetric heat capacity and the thermal conductivity for each
phase i (i = 1, 2) are related as follows:

Ki(ui)co

Ci(ui) = 3 (1.9)
1 @—T)/(T-T1)
koa? | bi — — / Ki(T\ + (T — T))z) dz
ko Jo
with the assumption that
—————1 & d b
K2(z)dz < by, (1.10)
ko(T — 1) Jr,
where a;, b; i = 1,2) are positive constants and ko, co are scales for the thermal

conductivity and volumetric heat capacity respectively. The nonlinear relations (1.9)
follow from the solidification of iron on a copper base (Tritscher & Broadbridge, 1994).
Furthermore, these relations imply that the material is of Storm’s type, that is to say
(Briozzo et al., 1999; Hill & Hart, 1986; Rogers, 1985; Storm, 1951)

! d (log C,-(u,-)) & =const.,, i=1,2.

VK @) C; (u;) du; Ki(u;) - v/ coko(T2 — T1)

The goal of this paper is to determine which conditions on the parameters of the
problem (in particular gg) must be satisfied in order to have an instantaneous phase-change
process. The heat flux condition of the type (1.8) was first considered in Tarzia (1981)
where an inequality for the coefficient go was found in order to have an instantaneous two-
phase Stefan problem with constant thermal coefficients, for both solid and liquid phases.
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Other problems in this direction are given by Briozzo & Tarzia (1998), Hill & Hart (1986),
Natale & Tarzia (2000), Rogers & Broadbridge (1986), Rogers (1985), Solomon et al.
(1983), Tarzia & Turner (1992).

In Section 2 we consider the associated nonlinear heat conduction problem
corresponding to the initial liquid temperature 7> and the heat flux condition on x = 0
of the type go/+/t for t > 0. The nonlinear condition between the thermal conductivity
heat capacity is supposed to be of the type (1.9). We give a necessary condition for the heat
flux input coefficient qg, that is,

Jeoko(T — T T2
go > 2 °(az 1)Q_1((kob2(T2—T1))_1 fT Kz(z)dz) (11D

2 1

in order to obtain an instantaneous phase-change process, where Q is the real function
defined by

Q(x) = V/axexp(x?)(1 —erf(x)), x>0 (1.12)

with the properties Q(0) = 0, Q(4+00) =1, Q’(x) > Ofor all x > 0.

In Section 3 we consider the nonlinear two-phase Stefan problem (1.2)—(1.8) and we
prove that it admits a similarity solution if the condition (1.11) for the coefficient gg is
satisfied.

In the text we will use the error function defined by

erf(x) = —% /: exp(—wz) dw.

2. A nonlinear heat conduction problem and its instantaneous phase-change process

We consider a semi-infinite slab x > 0 of a material that freezes at temperature 7,. We
suppose that it is initially hot at the uniform temperature 7, > T and it has nonlinear heat
transfer coefficients. However, what happens if a heat flux of the type go/+/? is imposed
at x = 0? Our interest is in finding relations among data corresponding to obtaining an
instantaneous phase-change process, that is, the temperature of the material at x = 0
must be less than 7 for all positive time. Then, we consider the following nonlinear heat
conduction problem corresponding to the initial phase (liquid phase) given by

C2(u)2—1: = %I:Kz(u)g—Z], x>0, t>0, 2.1)
ux,0)="7T, x>0, 2.2)
Kw®, )2 0,n=2 >0 2.3)

1)) = (O, I ,

where K> and C; satisfy the relation (1.9) with the assumption (1.10).

Then the question that follows is: which conditions must be satisfied by the parameters
q0, T1, T2, K and C» in order to have that the temperature (0, t) < T for all # > 0? If the
answer is affirmative then we can be sure that the phase-change is instantaneous (Solomon
et al., 1983; Tarzia, 1981; Tarzia & Turner, 1992).
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Below, we calculate the explicit solution to the problem (2.1)—~(2.3) for the liquid phase
and we demonstrate that this solution is constant at x = O for all . Then we can answer
affirmatively the previous question if (1.10) and (1.11) holds.

In order to obtain that explicit solution for the problem (2.1)~(2.3) we define the new
variables and parameters

X = X co t, = d W
* — ’ * — T
kOtS ts
ulx,t)— Ty q0
Up(Xy, ty) = ————— > 0, = st 2.4
(X, 1x) T, — T, q0x ,_C()k()(Tz 1) (2.4)
K> (u) Cr(u
Kox(uy) = ko ’ Cox(us) = 200 ),

where ¢, is a time scale. Following Broadbridge et al. (1993), Knight & Philip (1974), we
consider the Kirchhoff transformation given by

Us (Xnyt5)

v
1 CEnta) = 1t Gons 1)) = / Kn@dz, ()= fo Kn@dz (25

0
and we define the new variables

Xx 1
Xx, ty) = dz, x+«>0, ¢t >0,
X (s 1) ./0 az(bz — 1(z, 1)) i * (2.6)
T = t*’ ' E(X’ f) = T’(x*, t*), X > O, T > O-

Now we assume a similarity solution of the type

n(x, ) _ X
6 '’ 2T’

then the problem (2.1)—(2.3) reduces to the problem (2.8), (2.9) for the unknown function
g given by

1
g@) = 6 = ./o K34(2) dz, 2.7

20+18' @) +£"(¢) =0, ¢>0, (2.8)
2A
g+ =1, g0 = (2650, A= axos 2.9)
whose solution is given by
g(¢) = Alerf(¢ + A) —erf(M)]1+ B, ¢ > 0, (2.10)
4= Ab — )/ B_q1__ M- 0)v/7 (1 — erf(}))
~ Olexp(—A2) — /Al —erfO)]’ ~ 6lexp(—A?) — yEA(l —erf(A)]’
(2.11)

We obtain the following result.

THEOREM 1 The parametric solution to the problem (2.1)—(2.3) is given by

u@x, ) =Ty + (T — T)p"! (eA(erf (L n A) _ erf(x)) n 93), (2.12)
27
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where
L _ X X
xX=a p” [(bz B + Aerf(A))x 2Aﬁ[(2ﬁ+k)erf(2ﬁ+k)
+Lex (—(—)—(—+A)2>—Aerf(k)—ie (—Az)]} >0 >0
\/-7? p 2«/? \/-7? xp ’ X ’ T ]
t=t1, 1>0, (2.13)

where A, B are defined in (2.11). Moreover, we have that
u(0,1) < Ty, Vvt > 0 &< qo satisfies (1.11). (2.14)

Proof. If we invert the transformations (2.7), (2.6), (2.5) and (2.4) we obtain that

u(x, 1) = Tp + (T — Tl)u“(eg(z"?)), 2.15)

kotsT kotot X

iy f ar(bz — T(z, 7)) dz
4y €0 0

=/ by —0g( —=—\Y)dz, =1z, 0. 2.1
co Jo a2(2 g(zﬁ)) ‘ Tz 216

Then, if we replace the expression (2.10) for g = g(x/2+/7) in (2.15) and (2.16) we obtain
the parametric solution (2.12), (2.13) corresponding to the problem (2.1)—2.3).

Next, we wish to control whether the temperature on x = O satisfies the inequality
u(0,t) < Ty forall ¢ > 0. From (2.4) and (2.5), we have

us(0,t4)
u©,t) = (T, —T)u.0,6)+ 171 and 7(0, 1) = u(us(0, t,)) = / K74 (z) dz.
0

Then, taking into account (2.6), (2.7) and (2.10), (2.11) we have

0 exp(—A2) — Aby /T (1 — erf(A))
exp(—A2) — /TA(l — erf(}))

which is a constant for all positive time. Then u, (0, t,) is constant and therefore u (0, ¢) is
also a constant for all 7. On the other hand, we have the following equivalences:

u0,t) <Th <= g0) < 0= Q) > Zg—— & (1.11).
2

O

In the next section we will assume that the heat flux input coefficient g¢ satisfies
the inequality (1.11) and we will obtain the explicit solution to the free boundary
problem (1.2)—(1.8).
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3. Explicit solution for the instantaneous two-phase Stefan process with nonlinear
thermal coefficients

From now on we will consider the problem (1.2)—<(1.8) and we will prove that it is well
posed for ¢t > 0 when data satisfy condition (1.11) and assumption (1.10).

In order to obtain the explicit solution corresponding to the problem (1.2)—(1.8) we will
consider the same kind of transformations used for problem (2.1)—(2.3) and we define the
new variables and parameters

Cco t Cco ]
- ’ by = PR t = t ’
Xy =X ko, * 7 Y (te) = y( )‘/ kots

ui(x,t) -1 K;(u;)
1 9t - K ] = s f 3'1
Uis (Xxy 14) T, — T ix(Uix) ko (3.1)

Ci(u;i) L
Cia(Uis) = , L,=——
inliin) = — "= ool — 1)

By considering the Kirchhoff transformation given by

Ui (Xx,te) '4
Ni (Xx, 1) = Wi (Uin(Xs, 84)) = /0 Kix(z)dz, pi(¥)= /0 Kix(z)dz, i=1,2,
(3.2)

we have that the thermal diffusivity for each phase i (i = 1, 2) is given by D;,(u;) =
Kix(ui)/ Cix(ui) = a?(b; — pi)*. The one-dimensional diffusion equation with this class
of diffusivity was solved previously by Knight & Philip (1974), Reeves (1975). Now, in
order to linearize the nonlinear differential equations we define the new variables through
the Storm transformation given by Knight & Philip (1974), Storm (1951)

e e LALRRRECS
S /ym aeme & e [ @)
T=te, Hi(Xi,T)=ni(xs,8), =12, )
and the free boundary is now given by
y+(7) 1
s@=non= [ (3.4)

Owing to the condition on the free boundary and following (Tritscher & Broadbridge,
1994) we have that the interface between the two phases must move as y(#x) = 84/%, and
the flux of 7, on the free boundary takes the explicit form 872/0x. (¥« (t«), tx) = ¥ //txs
where the positive constants § and y must be determined. Now the free boundary S(7) may
be expressed in terms of the transformed coordinates as follows:

S(t) = 2(A1 — AM)A/T, Ay > A1 >0,

T >0, (3.9)
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where

5[ 1
M=aiqox, M =ary+ | —— tail«|, (3.6)
2| a1by
and a two-phase Stefan problem with convective terms in both heat equations and a
convective boundary condition on the fixed face are obtained. If we assume a similarity
solution of the following type:

g1(¢1) = mi(x1, ), 1= 2[ 3.7
w2(x2, T) X2 /
=22 - = 6= | Kan(z)dz, 3.8
82(¢2) 5 ¢ = e 2T K (z)dz (3.8)
then it reduces to the following problem:

2(¢1 + A1)g1(p1) + g1 (P1) = 0<¢1 <A1 — A, (3.9)
2(¢2 +A2)85(#2) + 87 (¢2) = 0 < ¢, (3.10)
g2(+00) = 1, 81(0) = 2qo4a1(b1 — £1(0)) (3.11)

(A — A ,(0)6
g1(A1 — A1) =g20)=0 §iti -2 _ 8,06 = L.,$, (3.12)

a1 by axb;

for the unknown functions g; and g;, and the unknown coefficients A; and A;, where

A1a1b1 —arbr)r[1 4+ a blL*]
b1(1 — a2b2L ) — a2b2

, 6= (A2 —azy)2azb;. (3.13)

The solution of (3.9)—(3.12) is given by

erf(¢1 + A1) — erf(4y)

B19) = bi— S, 0< g < A=,

erf(¢ + A2) — erf(A2)

) = s, <,

(3.14)

where

1 exp(—z ) 1
g(z) = erf(2) + ﬁT = g(z, x/_E)

and g(z, p) was defined in Briozzo et al. (1999) and we have the following useful
properties:
F(+oo) =1, F0O)=+00, (@ <0, Vz>O0. (3.15)
Then, the new unknown coefficients A; and A, must satisfy the system of equations

) a1b —

1) A= A — A1G (A,

®H 22 a2b2(1+afb1L*)[ 1 1G(41)]
62

Jmarbiazb;

(3.16)

(i) G4 = F(22),
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where

Ay =a?bi(1 — a2byLy) — alby, (3.17)

(1 + a}by L,) exp(—z?)

G = - L* ’ 0,
O dbilzon —et@) 0 7 518
_ exp(=2°)
F(2) = 1 efD)’ z>0.

In order to obtain the solution to our problem (3.16) we will first prove some preliminary
results.

LEMMA 2 The real function G = G(z), restricted to the domain (A, +00), has the
following properties:

@) GO = 2
T a2y
(i1) G(400) = —o0,
(i) G'(z) <0, z> AL (3.19)
(iv) G'(A1) = G'(+00) = —L,,
<0, M <2z<2,
(v) 3z0 > A/G"(R){=0, z=z,

>0, z> 2z

In order to solve the system (3.16) we define A2 = A2(A1) from (3.16 (i)). Then, we obtain
the following results.

LEMMA 3 The function A; = A2(x), defined for x > A1, has the following properties:

. azii
1) r2(A) = —,
ai

(ii)

Aa(+00) = {+00 if Ly < T (3.20)

0+ ifL* = Ty
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(1i1)
; ) 1
<0 if L, > —57
ay by
) 1 1
>0 1fO<L*<max{O,—2——T-},
asby aib;
1 R’
Mx)=1>0 if G'x) > 5
L 1 _ 1 1 1
=0 if G(x) ==} andif max 0, 5— — 55— < L« < ——,
<0 if G(x) < =—
{ Aq
(3.21)

where G is the real function defined in (3.18). Furthermore, in the case when L, > 1/ a%bz
we have that

A(x) >0 A <x < AT, (3.22)

where A7 is the unique solution to the equation

Al) = , — , A, 3.2
g(A1) g(x [A1+a%b2]ﬁ) x> Ap (3.23)

Proof. (i) This follows from elementary computations.
(ii)) We have

b —
A(400) = lim o x(l _ A, G(x)).
x—>+00 ayby (1 + ajb1 L«) X

Then if we take into account that lim,_, 4 o0 G(x)/x = —L,, we obtain (3.20) from
conditionson A;j and 1 + A{L,.
(ii1) We have

Ay (x) =

“1b12 [1-2:G'(0)].
azby(1 + ajbiLy) 5

In order to prove the results (iii) we must analyse all cases by considering the sign of
1 — A;G'(&x). Taking into account (3.17) we can complete this proof. Furthermore, in
the case when L, > 1/a2b,, we have obtained that A>(+00) = —oo and Ay(x) < O.
As we are only interested in A3(x) > 0, we can solve this inequality and we obtain the
equivalence (3.22), where A7 is the unique solution to the equation (3.23). a

COROLLARY 4 The composition real function ¥ = F o A3, defined in (A1, +00), has the
following properties:

1
. a2b2
(i) ¥(too) = 1
1 if L, =

a% b
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(-(=))
eXpl{ — a—
() T(r) = a‘x .
{ — erf ( 2 1)
ai
For the case when L, > 1/a2b2 we have that ¥ (A7) = 1.
(iii) We have

( 1
<0 if Ly 2 —,

a%bz
. 1 1
>0 if 0 <L, <max 0,—-2———2— ,
ayb,  aib;

3

¥'x)=1>0 if G'(x)>

1 1 1
=0 if G(x)= »andifmax{O,————}<L*<—

3 .
ayby a%bl a%bz

2| | ]

<0 if G'(x) <

Taking into account that L, is from a physical point of view the inverse of the Stefan
number we can obtain now the existence theorem for the solution in order to have an
instantaneous phase-change process for problem (1.2)—(1.8) as a function of this important
physical number.

Then, taking into account the above lemmas and corollary we have the following.

LEMMA 5_If go satisfies the inequality (1.11), then (3.16) admits a unique solution /Tl,
A2 = A2(A1) when

L 1 L 1 1
—————— =Ly > —5— or 0<———=L*<max{0,—2———2—}
co(T, — T1) asbs co(Tr — TY) a?b,  a?b

and at least one solution ;ﬁ, fz = A2 (;lvl) when
1 1 L 1
TR < <=
asby  aib co(ln—T1)  a3hs

Proof. We consider the results of Lemmas 2, 3 and Corollary 4. If

max {0,

1 1
L,> —— or 0<L*<max{0,_—___.}

azb; a3by a’b

the equation (3.16) (ii) admits a unique solution /Tl when
62
ﬁ ai1braxby

or equivalently, when qo satisfies the inequality (1 11). When we have the complementary
condition max{0, 1 /a by —1 /a b1} <L, <1 /a b, we obtain at least one solution Al, if
qo satisfies the inequality (1.11).

Next, we replace this solution A1 in (3.16) (i) and obtain Az = A2 (Al) O

Y (A1) < G(Ay)
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Then, we have obtained the following theorem in terms of the original data of the
problem (1.2)—(1.8).

THEOREM 6 If go satisfies the inequality (1.11) then, an explicit solution to the
problem (1.2)—(1.8) is given by

et (5 +11) - et
by

Z(A1) — erf(A))

up(x,t) = Ty 4+ (Tr — T

0<x1 <S8(1), T>0,

erf (% + Az) - erf():})

1 —erf(Az)

. (3.24)

up(x, ) =Ty + (T2 — T !

x2>0, >0,
with

kotsT

___2\/:“” (57“1) [ml)— i
Z(A1) — erf(A7)

erf(i2)

erfc(xz)]x

(2R ) i o o

¢ =1y, r >0, (3.25)

7+k1):|, O0<x1 <S(r), >0,

X = [azbz + 6a;

where y(t) = +/Ko/cod+/t is the free boundary, and the coefficients 7 and 3 are given by

. Maiby —aboioll +a?biL]  ~ o~
v = la; —— 22 : 121 *], 8 = (A2 — a2¥)2azb;, (3.26)
albl(l — a2b2L*) - a2b2

where ;ﬁ and fz =AM (;ﬁ) are the solution of the system (3.23).Moreover this solution is
unique when

L 1 L 1
— =Ly, 22— o 0<——— =L, <max {0, — — — 1.
oz —T1) 7 alb ol —T1) = { aby a2b }

Proof. From (3.14) and Lemma 5 the solution to the problem (3.9)—(3.12) is given by

erf(¢1 + A1) — erf(/Ay) ~
= b ~ , O A —A ’
g1(¢1) 1 S0 — et <¢1 <Ay 1

_erf(pn + A2) — erf(A2)
g2 = —— = #2>0,

(3.27)
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where /Tl, 5:2 = Ag(/Tl) are the solutions to the system (3.16).

Now, we invert the Storm transformations (3.3) and (3.1) in order to obtain the explicit
solution (3.24) in the original variables. And, from (3.7), (3.8), (3.3) and (3.1) we complete
the parametric solution. O

4. Conclusion

A nonlinear heat conduction problem for semi-infinite material x > 0, with phase-change
temperature T, an initial temperature T>(>T;) and a heat flux of the type g (t) = qo/+/t
imposed on the fixed face x = 0 is considered. Volumetric heat capacity and thermal
conductivity are taken to be nonlinear functions of the temperature in both solid and liquid
phases.

Necessary and/or sufficient conditions on the parameters of the problem are established
in order to obtain an instantaneous nonlinear two-phase Stefan problem (solidification
process) and the explicit solution is given.

Before that, the explicit solution to the corresponding nonlinear heat conduction
problem for the initial (liquid) phase is obtained which has a constant value for all time
on the fixed face x = 0. An inequality on the parameter gg is obtained in order to get that
this constant is less than 71, that is, a free boundary separating both phases is starting from
x =0.
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