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Existence, Uniqueness and an Explicit Solution
for a One-Phase Stefan Problem for
a Non-classical Heat Equation

Adriana C. Briozzo and Domingo A. Tarzia

Abstract. Existence and uniqueness, local in time, of the solution of a one-
phase Stefan problem for a non-classical heat equation for a semi-infinite
material is obtained by using the Friedman-Rubinstein integral representa-
tion method through an equivalent system of two Volterra integral equations.
Moreover, an explicit solution of a similarity type is presented for a non-
classical heat source depending on time and heat flux on the fixed face z = 0.
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1. Introduction

The one-phase Stefan problem for a semi-infinite material is a free boundary prob-
lem for the classical heat equation which requires the determination of the tem-
perature distribution u of the liquid phase (melting problem) or of the solid phase
(solidification problem), and the evolution of the free boundary z = s(¢). Phase-
change problems appear frequently in industrial processes and other problems of
technological interest [2, 4, 6, 9, 12]. A large bibliography on the subject was given
in [20].

Non-classical heat conduction problem for a semi-infinite material was studied
in [3, 5, 10, 22, 23], e.g., problems of the type

U — Ugz = —F(uz(0,t)), z>0,t>0,
u(0,t) =0, t>0 (1.1)
u(z,0) = h(x), z>0
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where h(z),z > 0, and F(V),V € R, are continuous functions. The function F,
henceforth referred as control function, is assumed to fulfill the following condition

(H1)  F(0)=0.

As it was observed in [22, 23] the heat flux w(z,t) = uy(z,t) for problem (1.1)
satisfies a classical heat conduction problem with a nonlinear convective condition
at £ = 0, which can be written in the form

W — Wez = 0, z>0,t>0,
wz(0,t) = F(w(0,t)), t>0, (1.2)
w(z,0) =h'(z) >0, z>0.

The literature concerning problem (1.2) has constantly increased from the
appearance of the papers [13, 15, 17]. In [21] a one-phase Stefan problem for a
non-classical heat equation for a semi-infinite material was presented. The free
boundary problem consists in determining the temperature u = u(x,t) and the
free boundary z = s(t) with a control function F' which depends on the evolution
of the heat flux at the boundary z = 0, satisfying the following conditions

U — Ugy = —F(uz(0,1)), O<z<s(t),0<t<T,

u(0,t) = f(t) >0, 0<t<T, 13
u(s(t),t) = 0,us(s(t), 1) = — 5 (1), 0<t<T, (13)
u(z,0) = h(z) > 0, 0<z<b=s5(0) (b>0).

In Section 2 we present a result on the local existence and uniqueness in
time of the solution of the one-phase Stefan problem (1.3) for a non-classical heat
equation with temperature boundary condition at the fixed face x = 0. First,
we prove that the free boundary problem (1.3) is equivalent to a system of two
Volterra integral equations (2.4)-(2.5) [8, 14] following the Friedman-Rubinstein’s
method given in {7, 18](see also [19]). Then, we prove that the problem (2.4)-(2.5)
has a unique local solution in time by using the Banach contraction theorem.

In Section 3 we show an explicit solution of a similarity type for a one-phase
Stefan problem for a non classical control function F' which depends on time and
heat flux on the fixed face z = 0.

2. Existence and uniqueness of the non-classical
free boundary problem

We have the following equivalence:

Theorem 2.1. The solution of the free boundary problem (1.3) is given by

b ¢ |
wzt) = /0 Gz, t: €, 0)h(€)dE + /0 Ge(z, £;0,7) f(r)dr (2.1)

+/0 G(z, t;S(T),T)’U(T)dT—//D(t)’G(iL',t;E,T)F(V(T))dEdT ,
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s(t) =b— /0 v(T)dr (2.2)

where D(t) = {(z,7)/ 0 <z < s(1),0 <7 < t}, with f € C*[0,T), he C1[0,b],
h(b) =0, h(0) = f(0), F is a Lipschitz function over C°[0,T), and the functions
ve C0[0,T], V € COl0,T] defined by

v(t) = usz(s(t),8) , V() =us(0,¢) (2.3)

must satisfy the following system of two Volterra integral equations

b 7
o(t) = 2 /0 N(s(2), £ €, 0)k (¢)de
- /0 N(s(t),£:0,7) | (r)dr +2 /0 Ga(s(t), t;s(r), u(r)dr  (2.4)

+2 /0 IN(s(t),  5(r), 7) — N(s(£), :0,7)] F(V.(r))dr ,

b 4
V(t) = /0 N0, 65,00k (€)de
—/ N(0,t;0,7) f (T)dT+/t G:(0,¢; s(T), T)v(r)dr (2.5)
0 0

+ / N (0, 5(r),7) — N(0,40,7)] F(V(r))dr |
0

where G, N are the Green and Neumann functions and K is the fundamental
solution of the heat equation, defined respectively by
G (z,t,§,7) = K(z,t,¢,7) — K (—z,t,&,T) (2.6)
'N(x) t’ §,T) = K(x) t’ §’T) +K(—x’t’ £’T) (2'7)
1 _ (z=9)?
K (x1ta §a T) = { 2; n(t—T) xp ( 4(t_T)) t>7
0

where s (t) is given by (2.2).

(2.8)
t<T

In order to prove the local existence and uniqueness of solution v, V €&
CY[0,0] (o is a positive small number) to the system of two Volterra integral
equations (2.4)—(2.5) we will use the Banach fixed point theorem. Let us define
the Banach space:

CMm,o = {70_’= (3)/ v,V : [0, 0] — R, continuous, with ”E’

)

with the norm

= ”,,f= [vlly + 11Vl := max [o()] + max [V(t)]. (2.9)
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We define the map A : Cy o — Cwm o, such that

7 0=4(%0)= (Lm0 v) 0

where
A1(v(t), V() = Fi(v(t)) + 2/0 [N(s(t),t,s(r),7) — N(s(t),t,0,7)] F(V(r))dr
(2.11)
with

b , t .
Fy(v(®)) =2 /0 N(s(t), 1, £, 0)h (€)dé — 2 /0 N(s(t),t,0,7) f (r)dr

+2/(; Gz (s(t),t, s(t), T)v(T)dr
and
Ax(v(t), V(b)) = Fa(v(t)) -l-/o [N(0,¢t,s(T),7) — N(0,¢,0,7)] F(V(1))dr. (2.12)

with

b , t .
Fo(u(®)) = /0 N(0,2,€,0)k (€)dé — /0 N(0,t,0,7) f (r)dr (2.13)
+/0 G;(0,t,s(1), T)v(T)dT

Then we have the following property:

Theorem 2.2. If f € C*[0,7], h € C*[0,b], f(O) = h(0), h(b) =0 and F is a
Lipschitz function over C°[0,T], then the map A : Ciyro — Cur,o is well defined
and is a contraction map if o > 0 is small enough. Then there exists an unique
solution on Cy,o to the system of integral equations (2.4), (2.5).

3. Explicit solution of a one-phase Stefan problem for a
non-classical heat equation

Now, we consider a free boundary problem which consists in determining the
temperature u = u(z,t) and the free boundary z = s(t) with a control function F
which depends on time and the evolution of the heat flux at the boundary = =0,
satisfying the following conditions

pcuy — kugy = —yF(ug(0,t),t) , 0 <z < s(t), t >0, (3.1)
u(0,t) = f = Const. > 0, t > 0, (3.2)
u(s(t),t) =0, kug(s(t),t)=—pls(t), t>0, (3.3)

s(0) =0, (3.4)
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where the thermal coefficients k, p, ¢, {, v > 0 and the control function F' is given
by the expression

F(V,t) = A7° V (o >0). (3.5)

In order to obtain an explicit solution of a similarity type, we define

(1) = u(z,t), 1= %ﬁ (3.6)

where a? = k/pc is the diffusion coefficient.
After some elementary computations we obtain

o) =7 1- 22| o<n<m, (3.7)
where
E(:L')—erf(a:)+—/ fo(r)dr, A—sz 0, [N=1 (3.8)
and
fu(x) = exp(—z?) /0 " exp(r?)dr (3.9)

is Dawson’s integral [1] and 79 is an unknown positive parameter to be determined
which characterizes the free boundary given by

s(t) = 2anoV't. (3.10)

We remark that Dawson’s integral also appears in the explicit solution for the su-
percooled one-phase Stefan problem with a constant temperature boundary con-
dition on the fixed face [16].

Taking into account the Stefan condition we have that 1y = n9(A, Ste) must
be the solution of the following equa.tion

Ste
——ﬁ[exp(— r2) + 2\ fi(x)] = :z;[e'rf(a:) + —/ fi(z)dz] , >0 (3.11)

where Ste = IZ_ > 0 is the Stefan number and

erf(z) = % ‘/: exp(—2z2)dz. ‘ (3.12)
The equation (3.11) is equivalent to the equation
' Wi(z) = 2AWa(x) , = > 0 (3.13)
where functions W; and W5 are defined by
Wi(z) = Ste exp (—z?) — Vmerf(z)z (3.14)

Wa(z) =2z /Om fi1(r)dr — Ste fi(z). (3.15)
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Remark 3.1. If A = 0 (that is v = 0) in the free boundary problem (3.1)-(3.4)
we obtain the classical Lamé-Clapeyron [11] solution and there exists a unique
solution ngg of the equation (3.11) which is given now by

Fo(z) = % , 2> 0 (3.16)
where
Fo(z) = erf(x) exp(z?)z . (3.17)

Theorem 3.2. For each \ > 0 there exists a unique solution ng of Eq. (3.13). This
solution g = no(\) has the following properties

(i) m0(0%) =m0 >0

(ii) Mo(+00) = z4 < +00 (3.18)
(iii) mo = mo (X) is an increasing function on A
where noo 1S the unique solution of Equation (3.16) and z4 > 0 is the unique
positive zero of W.

Theorem 3.3. For each A\ > 0 the free boundary problem (3.1)—(3.4) has a unique
similarity solution of the type

u(z,t,\) = f [1 — E—%E:Z,T/)\,):\j] , 0<n= ﬁ—\/f < no(A) (3.19)
s(t,A) = 2a no(A\)V' (3.20)

where
E(n,\) =erf(n) + %/o fi(r)dr (3.21)

and no = no(N\) is the unique solution of Eq. (3.13), with noo < no(A) < z4.

Theorem 3.4. The explicit solution (3.19), (3.20) of the problem (3.1)—(3.4) has
the following properties: -

. s )
aE (no(A), A) v/t
(i) u(z,t,A) > uo(z,t), VO<z <s0(t),t>0
(iii) s(t,A) > so(t), VE>0

(i) uz(0,t,A) = <0,Vt>0

_ erf(n) _ =z
where uo(x,t)—f[l—moo—)} , O<n—m<noo, t>0
so(t) = s(t,0) = 2anoovt
- u(z, t, A) 1 [ 2 M)+ 22 £l
WS @ = @8 | Steax (~m0) + 27 ()
Tloo

n(z, t)]

(v) lim MEHN

A D 1 uniformly ¥ x € compact sets C [0, so(t)).
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interfaces in free boundary problems have been an active subject
in the last three decades and their mathematical understanding
continues to be an important interdisciplinary tool for the scientific
applications, on one hand, and an intrinsic aspect of the current
development of several important mathematical disciplines.
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