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We prove the existence and uniqueness, local in time, of the solution of a one-phase Stefan
problem for a non-classical heat equation for a semi-infinite material with a convective
boundary condition at the fixed face x = 0. Here the heat source depends on the tempera-
ture at the fixed face x = 0 that provides a heating or cooling effect depending on the prop-
erties of the source term. We use the Friedman–Rubinstein integral representation method
and the Banach contraction theorem in order to solve an equivalent system of two Volterra
integral equations. We also obtain a comparison result of the solution (the temperature
and the free boundary) with respect to the one corresponding with null source term.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

The one-phase Stefan problem for a semi-infinite material for the classical heat equation requires the determination of
the temperature distribution u of the liquid phase (melting problem) or of the solid phase (solidification problem), and
the evolution of the free boundary x = s(t). Phase-change problems appear frequently in industrial processes and in other
problems of technological interest [1,2,6,8–12,18,21]. A large bibliography on the subject was given in [28]. Motivated by
[30] the free boundary problem which we want to consider consists in determining the temperature u = u(x, t) and the free
boundary x = s(t) which satisfy the following conditions
ðiÞut � uxx ¼ �Fðuð0; tÞÞ; 0 < x < sðtÞ;0 < t < T;

ðiiÞuxð0; tÞ ¼ gðtÞ½uð0; tÞ � f ðtÞ�; f ðtÞP 0; 0 < t < T;

ðiiiÞuðsðtÞ; tÞ ¼ 0; 0 < t < T;

ðivÞuxðsðtÞ; tÞ ¼ �_sðtÞ; 0 < t < T;

ðvÞuðx;0Þ ¼ hðxÞP 0; 0 6 x 6 b;

ðviÞsð0Þ ¼ bðb > 0Þ:

8>>>>>>>><
>>>>>>>>:

ð1Þ
Here, the control function F depends on the evolution of the temperature at the extremum x = 0 in which a convective
boundary condition is imposed. In condition (1ii), the function g(t) is the thermal transfer coefficient depending on time
and f(t) is the temperature of the external fluid which also depends on time.

The non-classical heat Eq. (1i) can be thought as motivated by the modelling of a system of temperature regulation in
isotropic mediums, with a non-uniform source term which provides a cooling or heating effect depending upon the proper-
ties of F related to the course of the temperature u(0, t). For example when
. All rights reserved.
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Fð0Þ ¼ 0 and uð0; tÞFðuð0; tÞ < 0 if uð0; tÞ – 0; ð2Þ
the source term is a cooler if u(0, t) < 0 and a heater if u(0, t) > 0 .
In the particular case of a bounded domain, a class of problems when the heat source is uniform and belongs to a given

multivalued function from R into itself, was studied in [20] regarding existence, uniqueness and asymptotic behavior. Other
references on the subject are in [15,16,19].

Non-classical heat conduction problem for a semi-infinite material was studied in [3,7,20,31,32], e.g. problems of the type
ut � uxx ¼ �Fðuxð0; tÞÞ; x > 0; t > 0;
uð0; tÞ ¼ 0; t > 0;
uðx;0Þ ¼ hðxÞ; x > 0;

ð3Þ
where h(x), x > 0, and FðVÞ; V 2 R, are continuous functions. In this case, the heat source depends on the heat flux at the
boundary x = 0. The function F, henceforth referred as control function, is assumed to fulfill the following condition
Fð0Þ ¼ 0:
As observed in [31,32] the heat flux w(x, t) = ux(x, t) for problem (3) satisfies a classical heat conduction problem with a non-
linear convective condition at x = 0, which can be written in the form
wt �wxx ¼ 0; x > 0; t > 0;
wxð0; tÞ ¼ Fðwð0; tÞÞ; t > 0;
wðx;0Þ ¼ h0ðxÞP 0; x > 0:

8><
>: ð4Þ
The literature concerning the classical problem (4) has increased rapidly since the publication of the papers [22,24,25]. In
[29] a one-phase Stefan problems for a non-classical heat equation for a semi-infinite material with a source term that de-
pends on the heat flux at x = 0 was shown. In [4,5] an existence and uniqueness result, local in time, is obtained for two dif-
ferent one-phase Stefan problems for the non-classical heat equation.

The goal of this paper is to prove in Section 2 the existence and uniqueness, local in time, of the solution to the one-phase
Stefan problem (1) for a non-classical heat equation for a semi-infinite material with a convective boundary condition at the
fixed face x = 0 . First, we prove that the non-classical Stefan problem (1) is equivalent to a system of two Volterra integral
equations (8) and (9) [17,23] following the Friedman–Rubinstein’s method given in [13], [14, pp. 220–221] , [26] for the clas-
sical Stefan problem through a Volterra integral equation. Then, we prove, by using the Banach contraction theorem, that the
system (8), (9) (i.e. the non-classical free boundary (1)) has a unique local solution. The mean difference of our result with
respect to the analysis by Friedman [13], [14, p. 221] is the dimension of the Volterra integral equation. Another difference is
the boundary condition at the fixed face x = 0: convective in our case and Dirichlet in [13], [14, p.216]. We remark that the
convective boundary condition has an important physical meaning and it is, in general, not usually considered in
mathematics.

In Section 3 we consider a source term which verifies the condition (2). We obtain a comparison result of the temperature
and the free boundary of the non-classical Stefan problem (1) with respect to the temperature and the free boundary cor-
responding to the classical problem (43), which is our previous problem (1) with null source term. This result can be inter-
preted as the source term accelerates the fusion process in our case; another similar result for the only heat transfer process
can be found in [3].

2. Existence and uniqueness of solutions

Let be f ; g 2 C0ðRþ0 Þ; h 2 C1½0; b�; hðbÞ ¼ 0; h0ð0Þ ¼ gð0Þ½hð0Þ � f ð0Þ�; F is a Lipschitz function over C0
Rþ0
� �

with a Lipschitz
constant L > 0.

We have the following equivalence for the existence of solutions to the non-classical free boundary problem (1).

Theorem 1. The solution to the free boundary problem (1) is given by the following expression
uðx; tÞ ¼
Z b

0
Nðx; t; n;0ÞhðnÞdnþ

Z t

0
Nðx; t; 0; sÞgðsÞ½WðsÞ � f ðsÞ�dsþ

Z t

0
Nðx; t; sðsÞ; sÞwðsÞds

�
Z Z

DðtÞ
Nðx; t; n; sÞFðWðsÞÞdnds ð5Þ
and
sðtÞ ¼ b�
Z t

0
wðsÞds; ð6Þ
where D(t) = {(x,s)/0 < x < s(s),0 < s < t}, and the functions w, W defined by
wðtÞ ¼ uxðsðtÞ; tÞ;WðtÞ ¼ uð0; tÞ; ð7Þ
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must satisfy the following system of two Volterra integral equations:
wðtÞ ¼ 2
Z b

0
h0ðnÞGðsðtÞ; t; n;0Þdnþ 2

Z t

0
gðsÞ½WðsÞ � f ðsÞ�NxðsðtÞ; t;0; sÞdsþ 2

Z t

0
wðsÞNxðsðtÞ; t; sðsÞ; sÞds

þ 2
Z t

0
GðsðtÞ; t; sðsÞ; sÞFðWðsÞÞds; ð8Þ

WðtÞ ¼
Z b

0
hðnÞNð0; t; n; 0Þdnþ

Z t

0
gðsÞ½WðsÞ � f ðsÞ�Nð0; t;0; sÞdsþ

Z t

0
wðsÞNð0; t; sðsÞ; sÞds

�
Z Z

DðtÞ
Nð0; t; n; sÞFðWðsÞÞdsdn; ð9Þ
where G, N are the Green and Neumann functions and K is the fundamental solution to the heat equation, defined respectively by
Gðx; t; n; sÞ ¼ Kðx; t; n; sÞ � Kð�x; t; n; sÞ; ð10Þ

Nðx; t; n; sÞ ¼ Kðx; t; n; sÞ þ Kð�x; t; n; sÞ; ð11Þ

Kðx; t; n; sÞ ¼
1

2
ffiffiffiffiffiffiffiffiffiffi
p t�sð Þ
p exp � ðx�nÞ2

4ðt�sÞ

� �
t > s

0 t 6 s

8<
: ð12Þ
and s(t) is given by(6).
Proof. Let u(x, t) be the solution to the problem (1) and we integrate on the domain Dt,e = {(n,s)/0 < n
< s(s),e < s < t � e}(e > 0), the Green identity
ðNun � uNnÞn � ðNuÞs ¼ NFðuð0; sÞÞ: ð13Þ
Now we let e ? 0, to obtain for u(x, t) the integral representation [4,13,14,26]
uðx; tÞ ¼
Z b

0
Nðx; t; n; 0ÞhðnÞdnþ

Z t

0
Nðx; t; 0; sÞgðsÞ½WðsÞ � f ðsÞ�dsþ

Z t

0
Nðx; t; sðsÞ; sÞunðsðsÞ; sÞds

�
Z Z

DðtÞ
Nðx; t; n; sÞFðuð0; sÞÞdnds;
which is the integral representation (5) for u(x, t) by using the definitions of w(t) and W(t) given by (7). Moreover, if we dif-
ferentiate (5) in variable x and we let x ? 0+ and x ? s(t)�, by using the jump relations [13], we obtain the system of integral
equations (8) and (9) for w and W.

Conversely the function u(x, t) defined by (5), where w and W are the solutions of (8) and (9), satisfy the conditions (1)(i),
(ii), (iv) and (v). In order to prove condition (1) (iii), we define w (t) = u(s(t), t). Taking into account that u satisfy the conditions
(1)(i), (ii), (iv) and (v), if we integrate the Green identity (13) over the domain Dt,e (e > 0) and we let e ? 0, we obtain that
uðx; tÞ ¼
Z b

0
Nðx; t; n; 0ÞhðnÞdnþ

Z t

0
Nðx; t; sðsÞ; sÞwðsÞdsþ

Z t

0
Nðx; t; 0; sÞgðsÞ½WðsÞ � f ðsÞ�ds

�
Z t

0
w sð Þ Nnðx; t; sðsÞ; sÞ þ Nðx; t; sðsÞ; sÞwðsÞ½ �ds�

Z Z
DðtÞ

Nðx; t; n; sÞFðWðsÞÞdnds: ð14Þ
Then, if we compare this last expression (14) with (5) we deduce that
Z t

0
wðsÞ½Nnðx; t; sðsÞ; sÞ þ Nðx; t; sðsÞ; sÞwðsÞ�ds � 0; ð15Þ
for 0 < x < s(t), 0 < t < r. We let in (15) x ? s(t) and by using the jump relations we have that w must satisfy the integral
equation
1
2

wðtÞ þ
Z t

0
wðsÞ½NnðsðtÞ; t; sðsÞ; sÞ þ NðsðtÞ; t; sðsÞ; sÞwðsÞ�ds ¼ 0:
Then we deduce that
jwðtÞj 6 C
Z t

0

jwðsÞjffiffiffiffiffiffiffiffiffiffiffi
t � s
p ds 6 C2

Z t

0

dsffiffiffiffiffiffiffiffiffiffiffi
t � s
p

Z s

0

jwðgÞjffiffiffiffiffiffiffiffiffiffiffiffis� gp dg ¼ C2
Z t

0
jwðgÞjdg

Z t

g

ds
½ðt � sÞðs� gÞ�

1
2
¼ pC2

Z t

0
jwðgÞjdg;
where C = C(t), therefore by using the Gronwall inequality we have that w(t) = 0 over [0,r], that is the (1iii) holds. h
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Then, we use the Banach fixed point Theorem in order to prove the local existence and uniqueness of solution w,
W 2 C0[0,r] to the system of two Volterra integral Eqs. (8) and (9), where r, is a positive small number (0 < r 6 T) to be
determined. Consider the Banach Space:
CR;r ¼ ~v ¼
w

W

� �	 

w;W : ½0;r� ! R; continuous;withk~vkr 6 R

�
;

where
k~vkr :¼ max
t2½0;r�

jwðtÞj þmax
t2½0;r�

jWðtÞj: ð16Þ
We define the map B : CR,r ? CR,r, such that
~~vðtÞ ¼ Bð~vðtÞÞ ¼
B1ðwðtÞ;WðtÞÞ
B2ðwðtÞ;WðtÞÞ

� �
;

where
B1ðwðtÞ;WðtÞÞ ¼ 2
Z b

0
h0ðnÞGðsðtÞ; t; n;0Þdnþ 2

Z t

0
gðsÞ½WðsÞ � f ðsÞ�NxðsðtÞ; t;0; sÞds

þ 2
Z t

0
wðsÞNxðsðtÞ; t; sðsÞ; sÞdsþ 2

Z t

0
GðsðtÞ; t; sðsÞ; sÞFðWðsÞÞds ð17Þ
and
B2ðwðtÞ;WðtÞÞ ¼
Z b

0
hðnÞNð0; t; n; 0Þdnþ

Z t

0
gðsÞ½WðsÞ � f ðsÞ�Nð0; t;0; sÞdsþ

Z t

0
wðsÞNð0; t; sðsÞ; sÞds

�
Z Z

DðtÞ
Nð0; t; n; sÞFðWðsÞÞdsdn: ð18Þ
Firstly, we have some preliminary Lemmas.

Lemma 2. Let w 2 C 0[0,r], maxt 2[0,r]jw (t)j 6 R and 2 Rr 6 b then s(t) defined by (6) satisfies
jsðtÞ � sðsÞj 6 Rjt � sj; 8s; t 2 ½0;r�; ð19Þ

jsðtÞ � bj 6 b
2
; 8t 2 ½0;r�: ð20Þ
To prove the following Lemmas we need the classical inequality
exp �x2

aðt�sÞ

� �
ðt � sÞ

n
2
6

na
2ex2

� �n
2
; a; x > 0; t > s; n 2 N ð21Þ
and we define
kfkt :¼maxs2½0;t�jf ðsÞj: ð22Þ
Lemma 3. Let r 6 1; R P 1; g 2 C0ðRþ0 Þ; h 2 C1½0; b�; hðbÞ ¼ 0; h0ð0Þ ¼ gð0Þ½hð0Þ � f ð0Þ�; F a Lipschitz function over C0ðRþ0 Þ
with a Lipschitz constant L > 0. Under the hypothesis of Lemma 2 we have the following properties
Z b

0
jh0ðnÞjjGðsðtÞ; t; n;0Þjdn 6 kh0k; ð23Þ

Z t

0
jgðsÞ½WðsÞ � f ðsÞ�jjNxðsðtÞ; t;0; sÞjds 6 A1 kgkt;R; kfkt;

1
b

� �
t; ð24Þ

Z t

0
jwðsÞjjNxðsðtÞ; t; sðsÞ; sÞjds 6 A2 R;

1
b

� � ffiffi
t
p

; ð25Þ

Z t

0
jGðsðtÞ; t; sðsÞ; sÞjjFðWðsÞÞjds 6 A3ðL;RÞ

ffiffi
t
p

; ð26Þ

Z b

0
jhðnÞjjNð0; t; n;0Þjdn 6 khk; ð27Þ
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Z t

0
jgðsÞ½WðsÞ � f ðsÞ�jjNð0; t;0; sÞjds 6 A4ðkgkt ;R; kfktÞ

ffiffi
t
p

; ð28Þ

Z t

0
jwðsÞjjNð0; t; sðsÞ; sÞjds 6 A5ðRÞ

ffiffi
t
p

; ð29Þ

Z Z
DðtÞ
jNð0; t; n; sÞjjFðWðsÞÞjdnds 6 A6ðb; L;RÞ

ffiffi
t
p
; ð30Þ
where the constants Ai (i = 1, . . . , 6) are increasing functions on their arguments.
Proof. Inequality (23) holds because
Z 1

0
jGðsðtÞ; t; n;0Þjdn 6

Z 1

0
jNðsðtÞ; t; n;0Þjdn 6 1:
To prove (24) we have
jNxðsðtÞ; t;0; sÞj ¼ jKxðsðtÞ; t;0; sÞ � Kxð�sðtÞ; t;0; sÞj 6
jsðtÞj exp �ðsðtÞÞ2

4ðt�sÞ

� �
2
ffiffiffiffi
p
p
ðt � sÞ

3
2
6

jsðtÞj exp �b2

16ðt�sÞ

� �
2
ffiffiffiffi
p
p
ðt � sÞ

3
2
6 a1

1
b

� �
:

Then (24) holds. To prove (25) we have
jNxðsðtÞ; t; sðsÞ; sÞj ¼ j � 2Kxð�sðtÞ; t; sðsÞ; sÞ þ GxðsðtÞ; t; sðsÞ; sÞj

j � 2Kxð�sðtÞ; t; sðsÞ; sÞj ¼ jsðtÞ þ sðsÞjffiffiffiffi
p
p
ðt � sÞ

3
2

exp
�ðsðtÞ þ sðsÞÞ2

4ðt � sÞ

 !
6 a2

1
b

� �
and
jGxðsðtÞ; t; sðsÞ; sÞj ¼ jKxðsðtÞ; t; sðsÞ; sÞ þ Kxð�sðtÞ; t; sðsÞ; sÞj

¼ t � sð Þ�
3
2

4
ffiffiffiffi
p
p ðsðtÞ � sðsÞÞ exp

�ðsðtÞ � sðsÞÞ2

4ðt � sÞ

 !
� ðsðtÞ þ sðsÞÞ exp

�ðsðtÞ þ sðsÞÞ2

4ðt � sÞ

 !�����
�����

6
1

4
ffiffiffiffi
p
p Rðt � sÞ�

1
2 þ 3b

2

3eb2

� �3
2

 !
;

then (25) holds.
We obtain (26) by using jGðsðtÞ; t; sðsÞ; sÞj 6 1ffiffiffiffiffiffiffiffiffiffiffi

pðt�sÞ
p and F, a Lipschitz function. The inequality (27) can be proved in the

same way as (23). To prove (28), we have
Z t

0
jNð0; t;0; sÞjjgðsÞ½WðsÞ � f ðsÞ�jds 6 kgktðRþ kfktÞ

Z t

0
jNð0; t;0; sÞjds ¼ kgktðRþ kfktÞffiffiffiffi

p
p 2

ffiffi
t
p

and inequality (29) holds because jNð0; t; sðsÞ; sÞj 6 1ffiffiffiffiffiffiffiffiffiffi
pðt�sÞ
p andffiffip
Z t

0
jwðsÞjjNð0; t; sðsÞ; sÞjds 6 2R tffiffiffiffi

p
p :
In order to prove (30) we have
Z Z
DðtÞ
jNð0; t; n; sÞjjFðWðsÞÞjdnds ¼

Z t

0

Z sðsÞ

0

����
����Nð0; t; n; sÞjjFðWðsÞÞjdnjds 6 LR

Z t

0

jsðsÞjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pðt � sÞ

p ds 6 3bLR
ffiffi
t
pffiffiffiffi

p
p

and therefore the thesis holds. h
Lemma 4. Let s1 and s2 be the functions corresponding to w1 and w 2 in C0[0,r] respectively with maxt2[ 0,r]j w i(t)j 6 R, i = 1, 2.
Then we have
js2ðtÞ � s1ðtÞj 6 tkw2 �w1kt ;

jsiðtÞ � siðsÞj 6 Rjt � sj; i ¼ 1;2;
b
2 6 siðtÞ 6 3b

2 ; 8t 2 ½0;r�; i ¼ 1;2:

8><
>: ð31Þ
Lemma 5. Let be g 2 C0ðRþ0 Þ; h 2 C1½0; b�; F a Lipschitz function over C0ðRþ0 Þ. Under the hypothesis of Lemma 4 we have
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Z t

0
jw1ðsÞNð0; t; s1ðsÞ; sÞ �w2ðsÞNð0; t; s2ðsÞ; sÞjds 6 A7

1
b
;R

� �
tkw1 �w2kt ; ð32Þ

Z Z
D1ðtÞ

Nð0; t; n; sÞFðW1ðsÞÞdnds�
Z Z

D2ðtÞ
Nð0; t; n; sÞFðW2ðsÞÞdnds

�����
����� 6 ½A8ðL;RÞkw1 �w2kt þ A9ðb; LÞkW1 �W2kt �

ffiffi
t
p
;

ð33Þ

where DiðtÞ ¼ ðn; sÞ=0 < n < siðsÞ;0 < s < tf g; i ¼ 1;2;

Z b

0
jh0ðnÞjjGðs1ðtÞ; t; n;0Þ � Gðs2ðtÞ; t; n; 0Þjdn 6 A10ðkh0kÞ

ffiffi
t
p
kw1 �w2kt ; ð34Þ

Z t

0
Nxðs1ðtÞ; t;0; sÞgðsÞ½W1ðsÞ � f ðsÞ� � Nxðs2ðtÞ; t;0; sÞgðsÞ½W2ðsÞ � f ðsÞ�j jds;6 A11ðkgkt;

1
b
ÞtkW1 �W2kt

þ A12ðkgkt ;
1
b
;R; kfktÞtkw1 �w2kt; ð35Þ

Z t

0
Nð0; t;0; sÞgðsÞ½W1ðsÞ � f ðsÞ� � Nð0; t;0; sÞgðsÞ½W2ðsÞ � f ðsÞ�j jds 6 A13ðkgktÞ

ffiffi
t
p
kW1 �W2kt ; ð36Þ

Z t

0
jGðs1ðtÞ; t; s1ðsÞ; sÞFðW1ðsÞÞ � Gðs2ðtÞ; t; s2ðsÞ; sÞFðW2ðsÞÞjds 6 A14ðLÞkW1 �W2kt þ A15ðR; L;

1

b2Þkw1 �w2kt

 � ffiffi
t
p

ð37Þ
and
 Z t

0
jw1ðsÞNxðs1ðtÞ; t; s1ðsÞ; sÞ �w2ðsÞNxðs2ðtÞ; t; s2ðsÞ; sÞjds 6 A16 R;

1
b

� � ffiffi
t
p
kw1 �w2kt : ð38Þ
Proof. To prove (32) we have
jw1ðsÞNð0;t;s1ðsÞ;sÞ�w2ðsÞNð0;t;s2ðsÞ;sÞj6 jw1ðsÞ�w2ðsÞjjNð0;t;s1ðsÞ;sÞjþ jw2ðsÞjjNð0;t;s1ðsÞ;sÞ�Nð0;t;s2ðsÞ;sÞj:
Taking into account that
jNð0; t; s1ðsÞ; sÞj 6
exp �b2

16 t�sð Þ

� �
ffiffiffiffi
p
p
ðt � sÞ

1
2
6

8

eb2

� �1
4 1ffiffiffiffi

p
p

and
jNð0; t; s1ðsÞ; sÞ � Nð0; t; s2ðsÞ; sÞj 6
3b

4
ffiffiffiffi
p
p 24

eb2

� �3
2

tkw1 �w2kt
then
 Z t

0
jw1ðsÞNð0; t; s1ðsÞ; sÞ �w2ðsÞNð0; t; s2ðsÞ; sÞjds 6 A7

1
b
;R

� �
tkw1 �w2kt :
To prove (33) we have
Z Z
D1ðtÞ

Nð0; t; n; sÞFðW1ðsÞÞdnds�
Z Z

D2ðtÞ
Nð0; t; n; sÞFðW2ðsÞÞdnds ¼

Z Z
D1ðtÞ

Nð0; t; n; sÞ FðW1ðsÞÞ � FðW2ðsÞÞð Þdnds

þ
Z Z

D1ðtÞ
Nð0; t; n; sÞFðW2ðsÞÞdnds�

Z Z
D2ðtÞ

Nð0; t; n; sÞFðW2ðsÞÞdnds:
Because
Z Z
D1ðtÞ

Nð0; t; n; sÞðFðW1ðsÞÞ � FðW2ðsÞÞÞdnds

�����
����� 6 3b

2
ffiffiffiffi
p
p L

ffiffi
t
p
kW1 �W2kt
and
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Z Z
D1ðtÞ

Nð0; t; n; sÞFðW2ðsÞÞdnds�
Z Z

D2ðtÞ
Nð0; t; n; sÞFðW2ðsÞÞdnds

�����
����� 6

Z t

0
jFðW2ðsÞÞj

Z s2ðsÞ

s1ðsÞ
Nð0; t; n; sÞdn

�����
�����ds

6
LRffiffiffiffi
p
p t

3
2kw1 �w2kt
then (33) holds. To prove (34) we have
jGðs1ðtÞ; t; n;0Þ � Gðs2ðtÞ; t; n; 0Þj 6 jKðs1ðtÞ; t; n; 0Þ � Kðs2ðtÞ; t; n;0Þj þ jKð�s1ðtÞ; t; n;0Þ � Kð�s2ðtÞ; t; n;0Þj
and by the mean value theorem there exists d = d(t) between s1(t) and s2(t) such that
jKðs1ðtÞ; t; n;0Þ � Kðs2ðtÞ; t; n; 0Þj ¼ js1ðtÞ � s2ðtÞjKðdðtÞ; t; n;0Þ
jdðtÞ � nj

2t
then
 Z b

0
js1ðtÞ � s2ðtÞjKðdðtÞ; t; n; 0Þ

jdðtÞ � nj
2t

dn 6 tkw1 �w2kt

Z b

0

jdðtÞ � nj
exp ðdðtÞ�nÞ2

4t

� �
4
ffiffiffiffi
p
p
ðt � sÞ

3
2

dn 6

ffiffi
t
p
kw1 �w2ktffiffiffiffi

p
p :
In the same way we have
Z b

0
jKð�s1ðtÞ; t; n;0Þ � Kð�s2ðtÞ; t; n;0Þjdn 6

ffiffi
t
p
kw1 �w2ktffiffiffiffi

p
p :
Then
 Z b

0
jh0ðnÞjjGðs1ðtÞ; t; n;0Þ � Gðs2ðtÞ; t; n;0Þjdn 6 2kh0k

ffiffi
t
p
kw1 �w2ktffiffiffiffi

p
p :
To prove (35) we consider that
Z t

0
jNxðs1ðtÞ; t;0; sÞgðsÞ½W1ðsÞ � f ðsÞ� � Nxðs2ðtÞ; t;0; sÞgðsÞ½W2ðsÞ � f ðsÞ�jds

6

Z t

0
fjNxðs1ðtÞ; t; 0; sÞjjgðsÞjjW1ðsÞ �W2ðsÞj � Nxðs2ðtÞ; t;0; sÞgðsÞ½W2ðsÞ � f ðsÞ�gds

þ
Z t

0
jNxðs1ðtÞ; t; 0; sÞ � Nxðs2ðtÞ; t;0; sÞjjgðsÞjjW2ðsÞ � f ðsÞjds:
We apply the mean value theorem and therefore there exists c = c(t) between s1(t) and s2(t) such that
jNxðs1ðtÞ; t;0; sÞ � Nxðs2ðtÞ; t; 0; sÞj ¼ js1ðtÞ � s2ðtÞjjNxxðcðtÞ; t;0; sÞj;

jNxxðcðtÞ; t;0; sÞj 6
exp �c2ðtÞ

4ðt�sÞ

� �
2
ffiffiffiffi
p
p
ðt � sÞ

3
2
þ

c2 exp �c2ðtÞ
4ðt�sÞ

� �
4
ffiffiffiffi
p
p
ðt � sÞ

5
2
6

24

eb2

� �3
2 1

2
ffiffiffiffi
p
p þ 40

eb2

� �5
2 9

16
ffiffiffiffi
p
p b2

:

Then we have
Z t

0
jNxðs1ðtÞ; t;0; sÞ � Nxðs2ðtÞ; t;0; sÞjjgðsÞjjW2ðsÞ � f ðsÞjds 6 A12ðkgkt ;

1
b
;R; kfktÞtkw1 �w2kt
and, using (24) we get (35). In order to prove (36) we have
Z t

0
jNð0; t;0; sÞgðsÞ½W1ðsÞ � f ðsÞ� � Nð0; t;0; sÞgðsÞ½W2ðsÞ � f ðsÞ�jds 6

Z t

0
jNð0; t;0; sÞjjgðsÞjjW1ðsÞ �W2ðsÞjds

6 kgktkW1 �W2kt
2
ffiffi
t
pffiffiffiffi
p
p :
In order to prove (37) we have
jGðs1ðtÞ; t; s1ðsÞ; sÞFðW1ðsÞÞ � Gðs2ðtÞ; t; s2ðsÞ; sÞFðW2ðsÞÞj 6 jGðs1ðtÞ; t; s1ðsÞ; sÞjjFðW1ðsÞÞ � FðW2ðsÞÞj
þ jGðs1ðtÞ; t; s1ðsÞ; sÞ � Gðs2ðtÞ; t; s2ðsÞ; sÞjjFðW2ðsÞÞj:
We obtain that
jGðs1ðtÞ; t; s1ðsÞ; sÞjjFðW1ðsÞÞ � FðW2ðsÞÞj 6
Lffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

pðt � sÞ
p kW1 �W2kt



4058 A.C. Briozzo, D.A. Tarzia / Applied Mathematics and Computation 217 (2010) 4051–4060
and, following [4] we have
Z t

0
jGðs1ðtÞ; t; s1ðsÞ; sÞFðW1ðsÞÞ � Gðs2ðtÞ; t; s2ðsÞ; sÞFðW2ðsÞÞjds

6
2L

ffiffi
t
pffiffiffiffi
p
p kW1 �W2kt þ

R3L
ffiffi
t
pffiffiffiffi
p
p kw1 �w2kt þ

6
e

� �3
2 R2t

b2 ffiffiffiffi
p
p kw1 �w2kt :
To finish the thesis, the result (38) can be found in [27]. h
Theorem 6. Let be g; f 2 C0ðRþ0 Þ; h 2 C1½0; b�, h (b) = 0, h
0
(0) = g(0)[h (0) � f (0)], F is a Lipschitz function over C0ðRþ0 Þ. The map

B: CR,r ? CR,r is well defined and it is a contraction map if r satisfies the following inequalities
r 6 1;2Rr 6 b; ð39Þ

MðR;1
b
; kgkr; kfkr; L;rÞ 6 1; ð40Þ

H kh0k;1
b
; kgkr; b; L;R;r

� �
< 1; ð41Þ
where R is given by
R ¼ 1þ khk þ 2kh0k ð42Þ
and
M ¼ 2
X6

i¼1

Ai

ffiffiffiffi
r
p

;

H ¼ 2
X16

i¼7

Ai

ffiffiffiffi
r
p

;

where Ai(i = 1, . . . , 16) given in Lemmas 3 and 5 are increasing functions on their arguments. Then there exists a unique solution on
CR,r to the system of integral Eqs. (8) and (9).
Proof. Using Lemma 3 and selecting R by (42) and r such that (39), (40) hold that we have that B maps CR,r into itself. Using
Lemma 5, by selecting r such that (41) holds B becomes a contracting mapping on CR,r and therefore it has a unique fixed
point.

Having proved the existence of a solution~vðtÞ ¼ ðwðtÞ;WðtÞÞ of the system of integral Eqs. (8) and (9) (with s(t) defined by
(6)), we proceed to prove that every solution to the system of integral equations (8) and (9) must coincide with ~vðtÞ in their
common interval of existence following [13,14]. Suppose ~v�ðtÞ ¼ ðw�ðtÞ;W�ðtÞÞ; 0 6 t 6 r� is another solution to (8) and (9)
and we assume that r* 6 r; then we must prove that ~vðtÞ ¼ ~v�ðtÞ for all 0 6 t 6 r*. For this reason, we can define the
constant R in the previous analysis by
R� ¼maxðR; k~v�kr� Þ;
where k~v�kr� is defined as (16). Therefore we get that there exists �r 6 r� which satisfies the inequalities (39)–(41) with R*
instead of R, which guarantee that the map B : CR� ;�r ! CR� ;�r is a contraction. Following the same method developed in [13],
[14, pp. 222–223] the uniqueness holds. h
Remark 1. We have proved the local existence and uniqueness of the solution of a vectorial Volterra integral Eq. (17), (18), i.
e. of the non-classical free boundary problem (1). It is an open problem to prove the global existence and uniqueness of a
vectorial Volterra integral equation by using the method given in [13], [14, pp. 223–225] for a Volterra integral equation cor-
responding to a classical free boundary problem..
3. Comparison with null source term

We define
T ¼ supfr > 0=r verifies inequalitiesð39Þ—ð41Þg:
First, by using the maximum principle we obtain the following results:
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Theorem 7. Let be g, f 2 C0([0,T]), h 2 C1[0,b], h(b) = 0, h
0
(0) = g(0)[h (0) � f (0)], F is a Lipschitz function over C0([0,T]) such that

satisfies (2) Under the hypothesis of Theorem 6 we have that the solution u to the free boundary problem (1) satisfies that
u(x, t) P 0 for all 0 6 x 6 s (t), 0 6 t 6 T where s(t) is given by (6). Moreover s(t) is an increasing function of the time t.
Proof. We suppose that there exists 0 < t0 6 T such that u(0, t0) = 0 and u(0, t) > 0 for all 0 6 t < t0. Taking into account (2) we
have F(u(0, t)) < 0 for all 0 6 t < t0.

Then, if we consider the domain D = {(x, t)/0 < x < s(t), 0 < t < t0} by the minimum principle we have that
minfuðx; tÞ : ðx; tÞ 2 Dg is on the parabolic boundary of D. Since u(s(t), t) = 0 and u(x,0) = h(x) P 0 we have that the minimum
is obtained by u(0, t0) = 0 and by Hopf’s principle we get ux(0, t0) > 0 which is in contradiction with condition (1(ii)) which
gives ux(0, t0) = �g(t0)f(t0) < 0.

Therefore we have u(0, t) > 0, for all 0 6 t 6 T and then u(x, t) P 0 for all 0 6 x 6 s(t), 0 6 t 6 T. Similarly, we obtain that s(t)
is an increasing function because _sðtÞ ¼ �uxðsðtÞ; tÞ > 0 for all 0 6 t 6 T. h

Next, we compare the solution u, s of the non-classical Stefan problem (1) with the solution u0, s0 of the analogous clas-
sical Stefan problem without control function (i.e. F = 0).

Theorem 8. Let be g, f 2 C0([0,T]), h 2 C1[0,b], h (b) = 0, h0(0) = g (0)[h (0) � f (0)], F is a Lipschitz function over C0([0,T]) such that
satisfies (2). We assume that the hypothesis of Theorem 6 hold. Then, the solution u, s of the problem (1) satisfies that it
s (t) P s0(t) for all 0 6 t 6 T and u (x, t) P u0(x, t) for all 0 6 x 6 s0(t), 0 6 t 6 T where u0, s0 is the solution of the following Stefan
problem with null source term
ðiÞut � uxx ¼ 0; 0 < x < s0ðtÞ;0 < t < T
ðiiÞuxð0; tÞ ¼ gðtÞ½uð0; tÞ � f ðtÞ�; f ðtÞP 0; 0 < t < T;

ðiiiÞuðsðtÞ; tÞ ¼ 0; 0 < t < T;

ðivÞuxðsðtÞ; tÞ ¼ �_sðtÞ; 0 < t < T;

ðvÞuðx;0Þ ¼ hðxÞP 0; 0 6 x 6 b;

ðviÞsð0Þ ¼ bðb > 0Þ:

8>>>>>>>><
>>>>>>>>:

ð43Þ
Proof. We suppose that there exists 0 < t0 6 T such that s(t) > s0(t), for all 0 < t < t0 and s(t0) = s0(t0). We define
v(x, t) = u(x, t) � u0(x, t), 0 6 x 6 s0(t), 0 6 t < t0. Function v satisfies the following Stefan problem
ðiÞv t � vxx ¼ �Fðuð0; tÞÞ > 0; 0 < x < s0ðtÞ;0 < t < t0;

ðiiÞvxð0; tÞ ¼ gðtÞvð0; tÞ; 0 < t < t0;

ðiiiÞvðs0ðtÞ; tÞ ¼ uðs0ðtÞ; tÞ > 0; 0 < t < t0;

ðivÞvxðs0ðtÞ; tÞ ¼ �uxðs0ðtÞ; tÞ þ _s0ðtÞ; 0 < t < t0;

ðvÞvðx;0Þ ¼ 0; 0 6 x 6 b;

ðviÞs0ð0Þ ¼ bðb > 0Þ:

8>>>>>>>><
>>>>>>>>:

ð44Þ
From (44)(iv) we have
vxðs0ðt0Þ; t0Þ ¼ �uxðsðt0Þ; t0Þ þ _s0ðt0Þ ¼ �_sðt0Þ þ _s0ðt0ÞP 0
and
vðs0ðt0Þ; t0Þ ¼ 0;
which is a contradiction because by Hopf’s’ principle we have vx(s0(t0), t0) < 0. Therefore we have s(t) P s0(t) for all 0 6 t 6 T.
Now we will prove that u(x, t) P u0(x, t) for all 0 6 x 6 s0(t), 0 6 t 6 T. We suppose that there exists 0 < t1 6 T such that

u(0, t) > u0(0, t), for all 0 < t < t1 and u(0, t1) = u0(0, t1). Then the function v(x, t) = u(x, t) � u0(x, t), 0 6 x 6 s0(t), 0 6 t 6 t1 satisfies
v(0, t1) = 0 and v(0, t) > 0 for all 0 < t < t1. Moreover, we have vx(0, t1) = g(t1)v(0, t1) = 0 which is a contradiction because v have
a minimum on (0, t1). Then v(0, t) > 0 for all 0 < t 6 T and v have a minimum on the boundary. Therefore u(x, t) P u0(x, t) for all
0 6 x 6 s0(t), 0 6 t 6 T. h
Remark 2. From Theorem 8 we can deduce that when we have a source F (which is a heater for condition (2)) then the
fusion process is more rapid and effective than in the case in which the source is null. A similar result only for the heat trans-
fer process has been obtained in [3].
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