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In wet soils, zones of saturation naturally develop in the vicinity of impermeable 
straita, surface ponds and subterranean cavities. Hydrology must be then concerned 
with transient flow through coexisting unsaturated and saturated zones. The models of 
advancing saturated zones necessarily involve a nonlinear free boundary problem. 

A closed-form analytic solution is presented for a nonlinear diffusion model under 
conditions of ponding at the surface. The soil water diffusivity is restricted to the 
special functional form D(e) = a/@ - O)‘, where 0 is the water content field to be 
dekrmined and a, b are positive constants. The explicit solution depends on a 
parameter C (determined by the data of the problem), according to two cases: 
1 <: C < C1 or C 2 C1, where C, is a constant which is obtained as the unique 
solution of an equation. This result complements the study given in P. Broadbridge, 
Water Resources Research, 1990, 26, 2435-2443, in order to established when the 
explicit solution is available. The behavior of the bifurcation parameter C1 as a 
function of the driving potential is studied with the corresponding limits for small and 
large values. Moreover, the sorptivity is proven to be continuously differentiable 
function of the variable C. 0 1998 Elsevier Science Limited. All rights reserved 

Key words: free boundary problem, mixed saturated-unsaturated flow, nonlinear 
absorption model. 

1 INTRODUCTION In the saturated zone we have’ 

Following refs lT6, we consider a homogeneous soil which 
initially has some uniform volumetric water content 19,. At 
times t > 0, water is supplied at the surface x = 0 under 
pressure head qo. Then, a mixed saturated-unsaturated 
flow problem representing absorption of water by a soil 

*‘(x, t) = 9’0 - *‘o-*‘s 
px; 0 <x < s(t); (2) 

s(t) 

and, the following free boundary problem eqns (3)-(7) 
arises for the unsaturated zone7: 

with a constant pond depth at the surface is presented. At 
every time t the zone of saturation extends from x = 0 to x = 
s(t) (the free boundary), and the unsaturated zone extends 
for x > s(t). By assuming the Darcy’s law and neglecting the 
gravity, the water flux is given by 

v= -K(Y)$ (1) - D(0) g (s(t) + , t) = KS 
*0-q, 
P) t>o, 

s(t) 
(5) 

where * is the soil water matric potential and K is the 
hydraulic conductivity. ecx, 0) = e( + ~0, t) = e,, x > s(t), t > 0, (6) 

*Corresponding author. s(0) = 0 (7) 
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where 

spatial coordinate 
time 
volumetric water content 
initial volumetric water content 
volumetric water content at saturation 
soil water matric potential 
pond depth 
soil water potential at x = s(T), q’s < * < *a 
hydraulic conductivity 
hydraulic conductivity at saturation 

soil water diffusivity -(D= Kg) 

From now on we consider the free boundary problem 
eqns (3)-(7), where the position s(t) of the free boundary 
and the water field 0(x,t) must be determined. We restrict 
our attention to the special functional form of the soil water 
diffusivity expressed by 

D(e) = (b :,,* (8) 

where a and b are positive constants. With this form of 
diffusivity, the nonlinear diffusion eqn (4) may be tmns- 
formed in a linear one. Following ref. 2, we normalize the 
water content variable as follows 

and we consider 

I 
b-0 

cF es-en 
n > 1 parameter; 

AS = (0, _ e,):(C _ l)KS length scak 

a 

tS = C(C - l)K,2 
time scale; (10) 

x* = c dimensionless length; 
S 

t 
t, = r dimensionless time. 

\ 1s 

Then, problem eqns (3)-(7) 
eqns (ll)-(15) 

g= &[ ;:;;?$J 

s* (0) = 0, 

0(X*, 0) = O( + 03, t*) = 0, 

is transformed into problem 

x* > s*(t*), t* > 0, (11) 

(12) 

x* > s*(t*), t* > 0, (13) 

+ @(s*(t*) t t*)=l, t* >o, (14) 

- (CdCg(s*(f*)+,t*) = “;*;*Y, t, > 0, 

(15) 

where 

s(tst*) s*(t*) = FE - 
s As 

(16) 

is the position of the free boundary. 
Now we define a dimensionless depth coordinate moving 

with the saturated-unsaturated interface 

y* =x* - s*(t*) > 0, t, = t* > 0; (17) 

hence, we have the dimensionless free boundary problem 
eqns (18)-(22) 

(18) 

s*(O) =o, (19) 

o(y*, 0) = @I( + cc), t*) = 0, y* > 0, t* > 0, (20) 

@(O,t*)=l, t*>o, (21) 

- ;y;g(o+,t*) = “y*;*Y, t, > 0, (22) 

where 

qO* = F dimensionless pond depth 
S 

!PS* = ? dimensionless soil water potential at the 
S 

moving saturated - unsaturated interface. 

The goal of the paper is to solve the dimensionless free 
boundary problem eqns (18)-(22). We will show an expli- 
cit to this problem which depends on a parameter C, 
according to two cases: 1 < C < Ci or C Z Cr, where Ci 
is a constant (the bifurcation parameter) obtained as the 
unique solution of the following equation: 

Q(;fi)=;, C>l, 

where Q is a real function defined by 

Q(x) = &kexp(x*)erfc(x), x > 0, 

and 6 > 0 is a parameter defined in eqn (43). 

(23) 

(24) 

2 CLOSED-FORM ANALYTIC SOLUTION OF THE 
FREE BOUNDARY EQNS (lS)-(22). 

In order that the two boundary conditions eqns (3) and (5) 
are compatible, s(t) must be of the form 

s(t) = nz&, (25) 

m being an unknown constant. By eqns (2) and (5), the 
unknown m is related to the unknown sorptivity S by the 
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following expression 

m= 2Ks (*o - %) 
s ’ 

(26) 

and v(s(t), t) = S/2$ is the infiltration rate, where v is 
related to + through the :Darcy eqn (1). The sorptivity S 
is a basic hydraulic property relating cumulative intake I(t) 
(expressed as a length) to the square root of time for a one- 
dimensional sorption into a soil without gravity, i.e. 
I(t) = S& (Ref. 8). It has been shown in4V5 that the domi- 
nant parameter governing the dynamics of infiltration at 
small times is the sorptivity S. Since S ia measure of the capil- 
lary uptake or removal of water, is essentially a property of the 
medium with some resemblance to perm?ability. When v is in 
cm s-l and t in s, the unit of S is cm s- 2 (Ref. 4). 

Then, in terms of dimensionless variables we have 

s,(L) = m, & 

where 

(27) 

me= 
2K, (%I - %> (0, - 0,) C(C - 1) = m 

S F- a A&. s 
(28) 

To linearize the diffusion eqn (4) we define the variables3 

C(C - 1) 
cc= C-0’ 

r(C-O(v,tx))dv, 

r=t,; 

and we obtain the problem eqns (30)-(33) 

a~ a% + Y ap 
e7= Q 2fiax' 

p(o+J)=c, 7>0, 

- dm$(o+ 

x > 0, 7 > 0, (30) 

(31) 

s* 
‘?“=Q r>o, (32) 

CL OX 

(29) 

p(x, 0) = c - 1 = /.&( + co, 7), x > 0, 7 > 0, (33) 

where 

S 
Y= 3+ S(%* - %*), s, KS/T_ (34) 

Now we assume a similarity solution 

cL=g(+), 4= K. 
J; 

(35) 

Then the problem eqns (30)-(33) reduces to the problem 
eqns (36)-(39) 

;gwcb + r> + g”(4) ??= 0, 4 ’ 0, (36) 

g(+w)=C-1, (37) 

(38) 

g(o+)=c. (39) 

The solution to the conditions eqns (36)-(38) is given by 

(40) 

where the coefficient y is unknown. 
The extra boundary condition eqn (39) is consistent with 

this solution provided that 

i= gfixp( $erfc(z). (41) 

Since S and y verify the following relation (another method 
is given in Remark 3 and Appendix A) 

Y+da 
> 

3 Y 2 ~~0, c > 1 (42) 

where 

we have that the above eqn (41) in variable y = y(C) is 
given by 

c> 1. (44) 

In studying eqn (44), we shall consider two cases respec- 
tively corresponding to choose the sign (+) or (-). 

Case I: (sign + in the expression of S as a function of 7) 
The eqn (44) may be written as 

L=HdM3Q( z>, y 2 R,(C), C > 1. C 
(45) 

where HI is defined by 

c> 1. (46) 

The function HI satisfies the following properties 

(i) HI(YO(C), ‘3 = i, C > 1, 

(ii) H1(+w,C)=l, C> 1, (47) 

(iii) TCy, C) > 0, y > ye(C), C > 1 
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Now we define the real function 

FI (~9 C> = 
1 

ml (-I, 0 
Y~Yo(C), c> 1. 

which satisfies the following properties 

(i) ~(Yo(C), C) = g, C > 1, 

(ii) F,(+m,C)= $, C> 1, 

I (iii) 3-y, C) < 0, y > ye(C), C > I 

Then, we have that the eqn (45) is equivalent to 

My,C)=Q(;), Y’Yo(C), C> 1. 

Since Q satisfies the properties 

(i) Q(O) = 0, 

(ii) Q(+m)= 1, 

(iii) Q’(0) = R, Q’(X) > 0, x > 0, 

(iv) Q”(x) < 0, x > 0 

(48) 

(49) 

(50) 

(51) 

we conclude that eqn (50) admits a unique solution in the 
variable y if and only if 

F,(Yo(~ C) = ; 2 Q *M(C)52 

where the real function M is defined by 

M(C)=CQ(F)=CQ(;fi), c>l. 

(52) 

The function M satisfies the following properties 

(9 
(ii) 

(iii) 

(iv) 

(v) 

Therefore, 

M’(C) > 0, C > 1, 

M( 1) = Q(0) = 0, 

M(+=‘)= +m, (53) 
M(C) < C, C > 1, 

lim M(C)= 1. 
C-+m c 

there exist a unique constant Ci > 1 such that 

M(C,)=CiQ( ;dm) =2 (54) 

and 

M(C)I2*KCsCi. 

Moreover, by using eqn (53)iv we deduce 

c, >2 (55) 

Case 2: (sign - in the expression of S as a function of r) 
The eqn (44) may be written as 

1=MM3Q(;), Y~Yo(C), C> 1. 
C 

(56) 

where Hz is defined by 

HN)=1(IJ~), y~y,,(C), 

c> 1. (57) 

which satisfies the following properties 

I (i) H2(-yo(C), C) = ;, C > 1, 

(ii) H2(+m,C)=0, C> 1, 

(iii) F(% C) < 0, y > Ye(C), C > 1 

(58) 

Now we define the real function 

F2(-r, (3 = 
1 

CH,(-Y> C)’ 
y 2 “/o(C), c > 1. 

which satisfies the following properties 

(i) F~(Yo(O C) = $, C > 1, 

(59) 

(ii) F2(+m,C)= +m, C> 1, (60) 

(iii) 2(% C) > 0, y > To(C), C > 1 

Hence, the eqn (56) is equivalent to 

FW)=Q(;)~ Y 2 Ye(C), c ’ 1. (61) 

Taking into account the properties of functions Q and F2, 
we deduce that eqn (59) admits a unique solution in the 
variable y if and only if 

Ye(C) 
Fz(ro(C),C)= ; 5 Q 2 * 

( > 
M(C)z2,C> 1eC~Ci. 

Then, we have obtained the following result: 

Theorem 1. Assume that C = (b - 0,)/(13, - 19,) > 1. 
Then, there exists a bifurcation parameter Cl = C,(6) = 
Cl (a, KS, fo - q’,, OS - 0,) > 1, which is the unique solution 
of the eqn (23). We have: 

I) If 1 < C 5 Ci: There exist a unique rl(C) 2 ye(C) 
such that 

, \ 

;=;(I++- ($2)Q(F): (62) 

and, the solution of the problem eqns (36)-(39) is given by 

g1(+) = c - 1+ 73n) sd;~c~xp( 

(63) 

where 

n(C)+j/~ * (64) 
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II) IfC I Cl: There exist a unique y*(C) I TO(C) such that 

;=;(I-@!g)Q(T); (65) 

and, the solution of the problem eqns (36)-(39) is given by 

g2(4) = c - 1+ s2(zc)c~xp( 9) 

xeqp), 4>0, (66) 

where 

G 
S2(C)= y- 

( 
72(C) - ,JzxTG 

) 
. (67) 

Remark 1. For the case C = Cl, we have that M(Ct) = 2, 
that is 

1 
IQ YO(Cl) -_= 

Cl 2 ( ) 
2 . (68) 

Then, yo(C1) satisjies the two equations eqns (45) and (55) 
because 

Hl(-yo(C), C) = H~(Yo(C), C> = ;, C ’ 1. 

Remark 2. For C = C1 both solutions gl and g2 coincide 
because 

Yl(cl)=Y2(c1)=Yo(c,)=8~~, (69) 

& 
S(Cl) = Sl(Cl) = S2(Cl) = y-Yo(C1) = ;&m 

= &t%=%@, - fmc, - 1). (70) 

Therefore, the solution of the problem eqns (36)-(39) is 
given by 

g(4) = Cl - 1+ 
$$a) sw~cl~xp( 

mfpp), 4>0. (71) 

The sorptivity S as a funct:ion of the variable C is given by 

I S,(C) = g(rl(c) + Jr:(c) -r’,cc$ 1 < Cl 

where ye(C) is defined in eqn (43), and rl(C) and y2(C) are 
defined by eqns (62) and (65) respectively. 

The function S = S(C) is continuously differentiable. 

Moreover, we have 

s(l+)= +@J, s(+@J)=o. (72) 

Proof. We get S,(C, ) = S2(Cc) because of eqn (70). By 
elementary but tedious computations we obtain 

$!(C,) = %(c:) = &&zq) 

x ;cl(cl -:)- 1) ( 
On the other hand, by elementary computations we get eqn 

(72). 

Remark 3. An alternative method to prove Theorem I 
was suggested by an anonymous referee and it is shown in 
the Appendix. 

Finally, we invert the relations eqns (35), (29), (10) and 
(9) to obtain the parametric solution to the problem eqns 
(3)-(7), which depends on C. 

Corollary 2. There exists a bifurcation parameter 
Cl = C1(6) = CI(a, K,, q. - 9,, es - 6,) > 1, for the solu- 
tion of problem (3)-(7) which is given by: 

(I) Case 1 < C I Cl. We have 

edx, 7) = (0, - 4x i 1 cc- 1) - ( ) 1 +e,, X>O, 

g’ 5 
7 > 0, (73) 

x=X,yl,(x,T)+mlfi, x>O, 7>0, (74) 

t=ts7, x>o, 7>0, (75) 

sl(x, T) = ml fi, x > 0, r > 0, (the free boundary) 

(76) 

with 

ml = 
‘&(*O - %> (0, -0,) 

Sl CC) 

2Ks (+o - 9,) = 
S,(C) ’ 

x 

Yl*(X, 7) = &) ogl + dv J ( ) 
= J; 

{ 
(C - 1)x+ St(C)C 

Jm=T lb J 
a 

Xexp(q).[(--++F) 

(77) 
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-+(-(*+q2) 
- yIo,,c Yl(C) 0 +Gxp(- &)]}, X>O, 7>0. 

(78) 

(II) Case C 2 Cl. We have 

e,cx, 7) = @, - el)C 

i I 

1 - 
cc- 1) 

( ) 

+&a, x>o, 

g2 +r 

7 > 0, (79) 

X=hY2*(XJ)+m,Jt,7, x>o, 7>0, (80) 

t = t,r, x > 0, 7 > 0, (81) 

s2(x, 7) = m2 fi, x > 0, 7 > 0, (the free boundary) 

(82) 

with 

m2= 2K, (90 - %) (0s - 0,) 

S2(C) 

= 2K, (%I - q 

Sz(C) ’ 
(83) 

Xerfc(y)++exp(-+)I}, 

x > 0, 7 > 0. (84) 

Remark 4. For the case C = Cl, the two parametric solu- 
tions coincide one each other, that is 

ed~, 4 = e,(x, 7) = (0, - en)cl 

+ e,, x > 0, 7 > 0, 

x=Asydx,7)+mfi, x>O, 7>0, 

t = ts7, x > 0, 7 > 0, 

(85) 

(86) 

(87) 

s(x, T) = mfi, x > 0, 7 > 0, (the free boundary) 

(88) 

with 

(89) 

-,xp - - 
; 2j;+ u 

_ Yo(cl&_fc YO(CI) 

24 > 2 

Yo(C1) 2 
2 )) 

++p(-+)]}, X>O, T>O. 

(90) 

3 BEHAVIOR OF THE BIFURCATION 
PARAMETER Cl UPON THE DATA 

We shall study the bifurcation parameter C1, the unique 



Solution of free boundary problem 719 

5 

4.5 

4 

3.5 

~~. 

3 

2.5 

1 2 3 4 5 

Fig. 1. The bifurcation parameter Cl versus variable which are 
related by the eqn (23). 

solution of the eqn (23), as a function of the variable 6 
defined by eqn (43). See Fig. 1 and Table 1. 

Table 1. Values for CI as a function of 6 

6 Cl 

0.0001 799.77 
0.001 173.23 
0.005 60.027 
0.01 38.256 
0.1 9.1978 
1 3.037 
2 2.4751 
3 2.2771 
4 2.1809 
7 2.0713 
8 2.0561 
10 2.0371 

Lemma 3. We have that C1 = C1 (6) satisjies the following 
properties: 

i 

(9 Cl > 2; (ii) s,,, V6>0; 

(iii) lim C,(6) = + CO; 
+o+ 

(iv) liy Ci(6) = 2. m 

(91) 

Moreover, we have that the inverse function 6 = &Cl) is 
given explicitly by 

6=&c-l g ,Cl>Z 
( > 

where Q-l is the inverse function of Q. 

Proof. 

(i) is the condition eqn (55). 
(ii) By using eqn (51) we have 

(iii) If the limit of C,(6) is finite when 6 - O+ we have 
a contradiction with eqn (23) because its left hand side 
goes to 0 and its right hand side goes to a positive 
number. Therefore eqn (91)iii holds. 
(iv) If lim,++, Ci(6) = + ~0 then we have a contradic- 
tion with eqn (23) because its left hand side goes to 1 
when 6 goes to + w (because of eqn (51)ii) while its 
right hand side goes to 0. Then, the limit of C,(6) is 
finite ( 2 2) when 6 goes to + ~0. Then, by eqn (51)ii, 
we get eqn (91)iv. 

Analogously, we can study the bifurcation parameter Ci 
as a function of the driving potential e defined by 

e=*‘O-\ks (92) 

Theorem 4. The function C1 = C,(e) satisjies the follow- 
ing properties: 

c, > 2; (ii) ac1 ~ < 0, Ve > 0; 
ae 

(iii) lim Cl(e) = + co; 
c-o+ (iv) lim Cl(e) = 2. 

c-r+m 

(93) 

Proofi By taking into account the Lemma 4, and the param- 
eters 6 and E are related by the following expression 

6= fi, with cc= 6 (es - ‘%) 
a 

the results (i)-(iv) hold. 
From Theorem 5 we obtain the following conclusions: 

(i) It is clear that only the ‘ + ’ branch, in relation eqn 
(42), occurs when the driving potential E = q. - 9’s 
goes to zero because of eqn (93)iii). Therefore, the 
‘-’ branch has not physical meaning. 
(ii) For the other cases (the driving potential 
E = q. - ‘I”s is positive) the two branches (‘+’ and 
‘-‘) in relation (42) have a physical meaning. 
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APPENDIX A 

We shall show a new proof of Theorem 1 by studying a 
single trascendental equation for the sorptivity S. If we sub- 
stitute eqn (34) in eqn (41), we obtain for the unknown S the 
following equation 

F(S, C) = Q*(S, C), S > 0 (C > 1 : parameter) 

where 

(Al) 

F ( S  c)= MC)& 1 as2(C- 1) 
7 cs =c+ 4s2c 

, s>o, C>l 

and 

642) 

) s>o, C>l 

with 

y(S,C)= s+ 
&S2(C - 1) 

&l 4s 
) s>o, C>l (A4) 

By elementary computations we deduce that the functions 
Q* and F satisfy the following properties. 

Lemma 5. We have: 

0) 

Q*(O,C)=Q*(+“,C)=l, C> 1 

(ii) 

<Oif S<S*, C>l 

$$s, C) = 0 if S=S*, C>l 

>Oif S>S*, C> 1 

where 

J;; s&Kij 
s*=s*(c)= -+C)= 2 (A5) 

is the minimum point of function Q* with respect to S, for 
all C > 1. 

(iii) Q*(S*, C) = Q Ye(C) 

( ) 
2 ) C>l. 

Lemma 6. We have: 

(i)F(O, C) = + m, C > 1; (ii)F( + ~0, C) = -$ C > 1; 

(A6) 

(iii)$(S, C) < 0, S > 0, C > 1; (iv)F(S*, C) = g, 

c> 1. 

Theorem 7. The eqn (Al) for the sorptivity S with a 
parameter C b 1, admits a unique solution $ > S* ij 
l<C<C, or, S;<S* if C>Cl, where Cl is the 
unique solution of the eqn (23). 

Proof. Functions F and Q* satisfy the following rela- 
tions: 

(a)F(S*,C)>Q*(S*,C)og>Q Ye(C) 

( > 
- @ 

2 

(b) F(S*, C) < Q*(S*, C) e ; < Q 
( > 

q e 

M(C)>20C>C,. 

Therefore, for a fixed C, we have that if 1 < C < Ci the 
abscisa ST of the intersection point of the graphs of the 
functions F and Q* is to the right of the minimum point 
S*(S; > S*), in other case this point S; is to the left of the 
minimum point (Si < 9). 

Now, we can relate the solutions ST and S; of the eqn (Al) 
according to the two cases 1 < C < C, and C > Ct respec- 
tively, which are given by the above Theorem 8, with the 
expressions eqns (64) and (67) obtained in Theorem 1. 

Theorem 8. We have 

(i) St=S,(C)= J!! 2 (rl(C)+ @XG)> 

l<C<C, 

fi 
(ii) S; = S2(C) = 2 

( 
72(C) - j/a 

> 
, 

c > Cl 

(iii) Si = Si = S(C,) = & 
HOW = gm 

= J2(\ko - \k,)(8, - &)(C, - l), c= ct. 

Proof. ST and S; must satisfy the expression eqn (42). On 
the other hand, for l<C<C, we have 
ST > S* = ho(C). Then S; is given by the sign ‘ + ’ in 
eqn (42) (analogously for C > Ci we have S; is given by 
the sign ‘-’ in eqn (42)) because the functions 

g&)=x+ JGZ, g&)=x- $Gz, 

x > Ye(C) 

satisfy the following properties: 

&73(ro(C)> = g4ho(CN = YO(O? 

g3(+m)= +m, g4(+m)=Q 

g3’W > 0, g4’W < 0. 
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