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Abstract We consider a new Stefan-type problem for the classical heat equation with a latent heat and phase-
change temperature depending of the variable time. We prove the equivalence of this Stefan problem with
a class of boundary value problems for the nonlinear canonical evolution equation involving a source term
with two free boundaries. This equivalence is obtained by applying a reduction to a Burgers equation and a
reciprocal-type transformations. Moreover, for a particular case, we obtain a unique explicit solution for the
two different problems.

1 Introduction

In [10], a systematic searchwas undertaken viaLie–Bäcklund transformations for classes of nonlinear evolution
equations which are reducible to a canonical form as originally set down in [17] which incorporates a source
term. This nonlinear equation was shown in [17] to admit reduction to Burgers equation and an explicit pulse
solution with compact support together with an analytic description of interaction between pulses were thereby
derived. In [10], an extension of the Fokas–Yortsos equation with convective term of [15,19] was derived via
the Lie–Bäcklund analysis and which incorporates a novel reaction term. This nonlinear evolution equation
was shown to be relevant to themodelling of unsaturated flow in a soil with a volumetric extractionmechanism.
In [10], a reciprocal transformation was used to solve a nonlinear boundary-value problem incorporating a
source term descriptive of transient flow in a finite layer of soil subject to a constant flux boundary condition
to compensate for water extraction.

Here by contrast, our concern is with a class of moving boundary problems pertinent to soil mechanics.
An inverse procedure is adopted whereby a class of boundary value problems for the canonical nonlinear
evolution equation of [17] involving a source term is shown to be amenable to analytic solution by application
of a reciprocal link to a Stefan-type problem for the classical heat equation.

It is recalled that moving boundary problems of Stefan-type have their origin in the analysis of the melting
of solids and the freezing of liquids (see e.g. [12–14,20,36,37] and the literature cited therein). The standard
Stefan problems concern moving boundary problems for the classical linear heat equation where the heat
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balance requirement on the moving boundary separating the phases leads to a nonlinear boundary condition
on the temperature.

In [1,2,8,9,11], a novel integral representation version of the Hopf–Cole transformation was used to treat
certain classes of Stefan-type problems for Burgers equation. Reciprocal-type transformations on the other
hand have been previously applied to solve a wide range of nonlinear moving boundary problems such as arise
in nonlinear heat conduction, the analysis of the melting of metals, sedimentation and other physical contexts
[16,21–32]. It is remarked that the results in [28–30] obtained via application of reciprocal transformations
concern moving boundary problems for certain solitonic equations, namely the Dym, potential mkdV as well
as the extended Dym equation derived via geometric considerations in [33]. In the present work, the integral
representation of [11] is allied with a reciprocal-type transformation to reduce to canonical form a class of
moving boundary problems relevant to the soil mechanics context as described in [10].

Although in classic formulation of Stefan problems the latent heat is considered constant, there are several
works in the literature that assume variable latent heat [3–7,18,35,38–41]. In particular, wemention [38] where
the latent heat was considered as a linear function of the position of the interface s = s(t) that is L = γ s(t)
with γ a constant, and when setting the movement of the shoreline to be s(t) = 2λ

√
t it is obtained the time

dependence L = L(t) = L0
√

t .
In following Sect.2 we give a connection between a Stefan problem with variable latent heat term and

time-dependent temperature on the free boundary, and a moving boundary problem for the Burgers equation.
In Sect. 3 we use the reciprocal-type transformation to prove the equivalence between the moving boundary
problem governed by Burgers equation and a free boundary problem governed by the nonlinear evolution
equation with source term and two free boundaries. Then we give a parametric expression to solution of this
problem through the solution to the Stefan problem. Finally in Sect. 4 we solve the canonical Stefan problem
for a particular latent heat and phase change temperature variable in time and we obtain an explicit solution of
the similarity type. At last, we express the parametric solution to the nonlinear evolution problem with source
and two free boundaries.

2 A canonical connection

Here, a connection is established between a classical Stefan-type problem but with variable latent heat term
and a class of moving boundary problems for the nonlinear transport equation incorporating a source term of
[17]. The canonical Stefan problem to be considered here adopts the form

Tt = Tyy, 0 < y < S(t), t > 0
−Ty(S(t), t) = L(t)Ṡ(t), t > 0
T (S(t), t) = Tm(t), t > 0
Ty(0, t) = −q, q > 0 , t > 0
S(0) = 0 .

(2.1)

On introduction of the integral representation of [11], namely

x∗ = −1/δ

[
ln |C(t) −

∫ y

S(t)
T (y′, t)dy′|

]
y

, (2.2)

with C(t) > 0, C(0) = 0, δ > 0 and

T = δC(t)x∗(y, t) exp

[
−δ

∫ y

S(t)
x∗(σ, t)dt

]
(2.3)

then it may be shown that (see, in extensive [27]) the relations (2.2) and (2.3) link the classical heat equation
Tt = Tyy to the Burgers equation

x∗
t = x∗

yy − 2δx∗x∗
y (2.4)

if it is required that
Ċ + Ty |y=S(t) + ṠT |y=S(t) = 0. (2.5)

Thus, in view of the moving boundary conditions in (2.1) it is seen that C(t) is here determined via the
relation

Ċ(t) = [ L(t) − Tm(t) ]Ṡ(t). (2.6)
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The boundary requirements on y = S(t) in the Stefan problem (2.1), in turn, become for the associated
Burgers equation (2.4)

(x∗
y − δx∗2)|y=S(t) = −L(t)Ṡ(t)/δC(t) (2.7)

and
x∗|y=S(t) = Tm(t)/δC(t), (2.8)

respectively. The condition on fixed face y = 0 becomes

x∗
y (0, t) − δx∗2(0, t) =

−q exp
(
δ
∫ 0

S(t) x∗(σ, t)dσ
)

δC(t)
(2.9)

and the initial condition S(0) = 0.

3 Application of a reciprocal transformation

Here we will consider the nonlinear evolution equation with source term [17], namely

∂�

∂t
= ∂

∂x∗

(
�x∗

�2

)
+ 2δ (3.1)

We obtain the following result:

Theorem 3.1 If (x∗(y, t), S(t)) is solution of the problem given by (2.4),(2.6)–(2.9) then the function

�(x∗, t) = 1

x∗
y (y, t)

satisfies the following problem governed by the nonlinear evolution equation with source term, given by

∂�

∂t
= ∂

∂x∗

(
�x∗

�2

)
+ 2δ , X∗

0(t) < x∗ < X∗
1(t) , t > 0 (3.2)

with the conditions

(i) 1
�(X∗

1(t),t)
− δX∗

1
2(t) = − L(t)

δC(t)

(
�(X∗

1(t), t)Ẋ∗
1(t) + �x∗ (X∗

1 (t),t)
�2(X∗

1(t),t)
+ 2δX∗

1(t)
)

, t > 0

(i i) 1
�(X∗

0 (t),t)
− δX∗

0
2(t) = −q exp

(∫ t
0 H(τ )dτ

)
δC(t) , q > 0 , t > 0

(i i i) Ċ(t) = [ L(t) − Tm(t) ]
[
�(X∗

1(t), t)Ẋ∗
1(t) + �x∗ (X∗

1(t),t)
�2(X∗

1(t),t)
+ 2δX∗

1(t)
]

,

(3.3)

where the moving boundaries X∗
0 and X∗

1 are given by

X∗
0(t) = −

∫ t

0

(
�x∗(X∗

0(τ ), τ )

�3(X∗
0(τ ), τ )

+ 2δ
X∗
0(τ )

�(X∗
0(τ ), τ )

)
dτ , X∗

1(t) = Tm(t)/δC(t) , t > 0 (3.4)

and

H(t) = − T 3
m(t)

L(t)C2(t)
+ δ

Tm(t)

L(t)

1

�(X∗
1(t), t)

− δ

�(X∗
1(t), t)

+ T 2
m(t)

C2(t)
+ δ

�(X∗
0(t), t)

− δ2X∗
0
2
(t) (3.5)

Proof Let
ρ(y, t) = x∗

y (y, t) (3.6)

and we define

�(x∗, t) = 1

ρ(y, t)
. (3.7)
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From (2.4) we known that
dx∗ = ρdy + (ρy − 2δρx∗)dt, (3.8)

and from (3.7), we have

ρy = −�x∗

�2 x∗
y = −�x∗

�3 (3.9)

then
dx∗ = �−1dy − (�x∗/�3 + 2δx∗/�)dt (3.10)

thus the reciprocal transformation is given by

dy = �dx∗ + (
�x∗/�2 + 2δx∗) dt. (3.11)

and we have
∂y

∂x∗ = �,
∂y

∂t
= �x∗

�2 + 2δx∗. (3.12)

Therefore (3.2) follows. From (3.6) we can write

x∗(y, t) =
∫ y

0
ρ(σ, t)dσ + M(t) (3.13)

then

xt (y, t) =
∫ y

0
ρt (σ, t)dσ + M ′(t) =

∫ y

0

(
x∗
σσ (σ, t) − 2δx∗(σ, t)x∗

σ (σ, t)
)
σ

dσ + M ′(t) (3.14)

which implies that
M ′(t) = x∗

yy(0, t) − 2δx∗(0, t)x∗
y (0, t) (3.15)

therefore

x∗(y, t) =
∫ y

0
ρ(σ, t)dσ +

∫ t

0

[
x∗

yy(0, τ ) − 2δx∗(0, τ )x∗
y (0, τ )

]
dτ. (3.16)

For y = 0, we obtain

x∗(0, t) =
∫ t

0

[
x∗

yy(0, τ ) − 2δx∗(0, τ )x∗
y (0, τ )

]
dτ, (3.17)

if we notice X∗
0(t) := x∗(0, t) and taking into account (3.6) -(3.8) we have

X∗
0(t) = −

∫ t

0

(
�x∗(X∗

0(τ ), τ )

�3(X∗
0(τ ), τ )

+ 2δ
X∗
0(τ )

�(X∗
0(τ ), τ )

)
dτ. (3.18)

From (2.8) we obtain
X∗
1(t) := x∗(S(t), t) = Tm(t)/δC(t). (3.19)

Then the nonlinear evolution equation with source term [17], given by (3.2) is obtained in the domain
X∗
0(t) < x∗ < X∗

1(t), t > 0.
To prove (3.3)(i), we consider condition (2.7) which is equivalent to

1

�(X∗
1(t), t)

− δX∗2
1(t) = −L(t)Ṡ(t)/δC(t). (3.20)

Now we must write Ṡ(t) as a function of the new variables and free boundaries. From (3.16) we obtain

X∗
1(t) = x∗(S(t), t) =

∫ S(t)

0
ρ(σ, t)dσ +

∫ t

0

[
x∗

yy(0, τ ) − 2δx∗(0, τ )x∗
y (0, τ )

]
dτ (3.21)

then

Ẋ∗
1(t) = Ṡ(t)

�(X∗
1(t), t)

+ x∗
yy(S(t), t) − 2δx∗(S(t), t)x∗

y (S(t), t) (3.22)
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and taking into account

x∗
yy(S(t), t) − 2δx∗(S(t), t)x∗

y (S(t), t) = −�x∗(X∗
1(t), t)/�3(X∗

1(t), t) − 2δX∗
1(t)/�(X∗

1(t), t)

we obtain
Ṡ(t) = �(X∗

1(t), t))Ẋ∗
1(t) + �x∗(X∗

1(t), t)/�2(X∗
1(t), t) + 2δX∗

1(t). (3.23)

We replace Ṡ(t) in (3.20) to obtain (3.3) (i).
Next, we will deduce (3.3)(ii). From (2.9) we have

1

�(X∗
0(t), t)

− δX∗
0
2
(t) =

−q exp
(
δ
∫ 0

S(t) x∗(σ, t)dt
)

δC(t)
. (3.24)

We define

R(t) = exp

(
−δ

∫ S(t)

0
x∗(σ, t)dt

)

then

ln(R(t)) = −δ

∫ S(t)

0
x∗(σ, t)dt

and

R′(t)
R(t)

= −δx∗(S(t), t)Ṡ(t) − δ

∫ S(t)

0
x∗

t (σ, t)dt = −δx∗(S(t), t)Ṡ(t) − δ

∫ S(t)

0

(
x∗
σσ (σ, t) − 2δx∗(σ, t)

)
dσ

= −δx∗(S(t), t)Ṡ(t) − δx∗
y (S(t), t) + δ2x∗2(S(t), t) + δx∗

y (0, t) − δ2x∗2(0, t)

= −δX∗
1(t)Ṡ(t) − δx∗

y (S(t), t) + δ2X∗
1
2
(t) + δx∗

y (0, t) − δ2X∗
0
2
(t)

= −δ2
X∗
1(t)C(t)

L(t)

[
δX∗

1
2
(t) − 1

�(X∗
1(t), t)

]
− δ

�(X∗
1(t), t)

+ δ2X∗
1
2
(t) + δ

�(X∗
0(t), t)

− δ2X∗
0
2
(t).

Using (3.4) we obtain

R′(t)
R(t)

= H(t)

with H , given by (3.5), and integrating it results

ln(R(t)) − ln(R(0)) =
∫ t

0
H(τ )dτ

or equivalently

R(t) = exp

(∫ t

0
H(τ )dτ

)

because R(0) = 1. Therefore (2.9) is equivalent to (3.3)(ii).
The condition (3.3)(iii) yields immediately from (2.6) when Ṡ(t) is replaced by the expression (3.23). ��
Reciprocally through the reciprocal transformation given by

dy = �dx∗ + (�x∗/�2 + 2δx∗)dt (3.25)

we will prove that if �(x∗, t) satisfies (3.2)–(3.5) then the pair (x∗(y, t), S(t)) is solution to the problem
(2.4),(2.6) -(2.9) where

S(t) =
∫ X∗

1(t)

X∗
0(t)

�(σ, t)dσ. (3.26)
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Theorem 3.2 If �(x∗, t), X∗
0(t), X∗

1(t) satisfy (3.2)-(3.5) then the pair (x∗ = x∗(y, t), S(t)) with both com-
ponents are defined by (3.25) and (3.26), respectively, is solution to the problem (2.4),(2.6)–(2.9).

Proof From (3.25) we have

dx∗ = 1

�
dy − (

�x∗/�3 + 2δx∗/�
)

dt. (3.27)

Taking ρ(y, t) = 1
�(x∗,t) we have

dx∗ = ρdy + (ρy − 2δx∗ρ)dt (3.28)

which implies
x∗

y = ρ , x∗
t = ρy − 2δρx∗ (3.29)

whence
x∗

t = x∗
yy − 2δx∗x∗

y .

Moreover, from (3.25) we have

y =
∫ x∗

X∗
0(t)

�(σ, t)dσ + N (t) (3.30)

then
∂y

∂t
= −�(X∗

0(t), t)Ẋ∗
0(t) +

∫ x∗

X∗
0(t)

�t (σ, t)dσ + N ′(t) (3.31)

and taking into account (3.2), (3.4) and the fact that

∂y

∂t
= �x∗/�2 + 2δx∗ (3.32)

we obtain N ′(t) = 0 which implies that N (t) is a constant which we take null. Therefore, for x∗ = X∗
0(t)

results y = 0 and for x∗ = X∗
1(t) we obtain y = S(t) defined by (3.26).

Derivating in (3.26) we have

Ṡ(t) = �(X∗
1(t), t)Ẋ∗

1(t) − �(X∗
0(t), t)Ẋ∗

0(t) +
∫ X∗

1 (t)

X∗
0(t)

�t (σ, t)dσ (3.33)

= �(X∗
1(t), t)Ẋ∗

1(t) − �(X∗
0(t), t)Ẋ∗

0(t) + �x∗(X∗
1(t), t)

�2(X∗
1(t), t)

+ 2δX∗
1(t) − �x∗(X∗

0(t), t)

�2(X∗
0(t), t)

− 2δX∗
0(t)

(3.34)

and taking into account (3.3)(i) and (3.4) we obtain

Ṡ(t) = −δC(t)

L(t)

(
1

�(X∗
1(t), t)

− δX∗
1(t)

)
(3.35)

which is equivalent to (2.7). The condition (2.6) yields immediately from (3.3)(iii) and (3.33), and (2.8) is
obtained from (3.4) and the fact that x∗(S(t), t) = X∗

1(t).

To prove (2.9) we define P(t) = exp
(∫ t

0 H(τ )dτ
)
where H is defined by (3.5). We have

ln(P(t)) =
∫ t

0
H(τ )dτ (3.36)

then

P ′(t)
P(t)

= − T 3
m(t)

L(t)C2(t)
+ δ

Tm(t)

L(t)
x∗

y (S(t), t) − δx∗
y (S(t), t) + δ2X∗

1
2
(t) + δx∗

y (0, t) − δ2X∗
0
2
(t) (3.37)
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and taking into account (2.7) and (2.8) its obtain

P ′(t)
P(t)

= −δx∗(S(t), t)Ṡ(t)− δx∗
y (S(t), t)+ δ2X∗

1
2
(t)+ δx∗

y (0, t)− δ2X∗
0
2
(t) = d

dt

(
−δ

∫ S(t)

0
x∗(σ, t)dσ

)

(3.38)
thus

ln(P(t)) − ln(P(0)) = −δ

∫ S(t)

0
x∗(σ, t)dσ

or equivalently

P(t) = exp

(
−δ

∫ S(t)

0
x∗(σ, t)dσ

)
.

Therefore (3.3)(ii) is equivalent to

1

�(X∗
0(t), t)

− δ(X∗
0(t))

2 = −q P(t)

δC(t)

this is

x∗
y (0, t) − δx∗2(0, t) = −q P(t)

δC(t)

that is to say (2.9). ��
In conclusion we have that the solution to the problem (3.2)–(3.5) can be obtained from the solution to the

Stefan problem (2.1) T = T (y, t), S = S(t) as established by the following theorem:

Theorem 3.3 The solution to the problem (3.2)–(3.5) is obtained from the solution to the Stefan problem (2.1)
T = T (y, t), S = S(t) and its parametric expression is given by:

�(x∗, t) = δ[C(t) − ∫ y
S(t) T (u, t)du]2

Ty(y, t)[C(t) − ∫ y
S(t) T (u, t)du] + T 2(y, t)

X∗
0(t) < x∗ < X∗

1(t) , t > 0 (3.39)

x∗ = T (y, t)

δ[C(t) − ∫ y
S(t) T (u, t)du] , 0 < y < S(t), t > 0 (3.40)

where

C(t) =
∫ t

0
[L(τ ) − Tm(τ )]Ṡ(τ )dτ, t > 0, (3.41)

X∗
0(t) = T (0, t)

δ[C(t) − ∫ 0
S(t) T (u, t)du] , X∗

1(t) = Tm(t)

δC(t)
. (3.42)

In the next section we will solve the Stefan problem (2.1).

4 Explicit solution for a canonical one-phase Stefan problem with latent heat and phase-change
temperature variable in time

In [34], Salva and Tarzia in the context of Stefan problemswith variable latent heat introduced a novel similarity
solution of the classical heat equation (2.1)1, namely

T = 2
√

t η(ξ) (4.1)

with ξ = y/2
√

t and
1

2
η′′(ξ) + ξη′(ξ) − η(ξ) = 0 (4.2)
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with general solution

η(ξ) = A[ e−ξ2 + √
πξ erf ξ ] + Bξ (4.3)

where A, B are arbitrary constants. Thus,

T = 2
√

t [ A(e−ξ2 + √
π ξ erf ξ) + Bξ ] (4.4)

where the boundary condition (2.1)4, on y = 0 in the Stefan problem (2.1) requires that
[

A(−2ξ e−ξ2 + √
π

(
erf ξ + ξ

2√
π

e−ξ2
)

+ B

]
|ξ=0 = −q (4.5)

so that B = −q . Here, the moving boundary in (2.1) is taken as S(t) = 2γ
√

t whence the condition (2.1)2,
on reduction, yields

A = − γ√
π erfγ

(
1√
t

)
L(t) + q√

π erfγ
(4.6)

so that L(t) ∼ √
t . The condition (2.1)3 on the moving boundary y = S(t) shows that

2
√

t
[

A(e−γ 2 + √
π γ erf γ ) − qγ

]
= Tm(t) (4.7)

so that Tm(t) ∼ √
t , with the result that L(t) and Tm(t) are related according to

Tm(t)/2
√

t + qγ

e−γ 2 + √
π γ erf γ

= −γ L(t)/
√

t + q√
π erf γ

. (4.8)

If we take
L(t) = L0

√
t, Tm(t) = Tm0

√
t, L0 > Tm0 (4.9)

then

A = q − L0γ√
πerfγ

(4.10)

and the solution to (2.1) is given by

T (y, t) = q − L0γ√
πerfγ

(
2
√

te− y2

4t + √
π y erf

y

2
√

t

)
− qy (4.11)

where γ must be solution of
Tm0/2 + q/γ

e−γ 2 + √
π γ erf γ

= −γ L0 + q√
π erf γ

. (4.12)

which is equivalent to
G(γ ) = F(γ ) (4.13)

where

G(x) = q − L0x, F(x) =
(

Tm0

2
+ L0x2

)
ex2√π erfx, x > 0 (4.14)

satisfy

G(0) = q > 0, G(+∞) = −∞, G ′(x) < 0, x > 0

F(0) = 0 > 0, G(+∞) = +∞, F ′(x) > 0, x > 0.

From properties of functions F and G we obtain that there exists a unique γ , 0 < γ <
q
L0

that (4.13)
holds.

We are in a position to establish the following result
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Theorem 4.1 There exists a unique solution to the Stefan problem

Tt = Tyy, 0 < y < S(t), t > 0
−Ty(S(t), t) = L0

√
t Ṡ(t), t > 0

T (S(t), t) = Tm0

√
t, t > 0

Ty(0, t) = −q, q > 0, t > 0
S(0) = 0

(4.15)

which is given by

T (y, t) = q − L0γ√
πerfγ

(
2
√

te− y2

4t + √
π y erf

y

2
√

t

)
− qy, 0 < y < s(t), t > 0 (4.16)

and
S(t) = 2γ

√
t (4.17)

where γ is the unique solution to (4.12).

Corollary 4.2 The coefficient γ which characterizes the free boundary S(t) = 2γ
√

t satisfies the physical
condition

q > L0γ + √
π

Tm0

2
erf γ. (4.18)

Remark 4.3 It is recalled that in standard Stefan problems wherein L and Tm are constants, γ is determined
through the boundary conditions by a transcendental equation.

Remark 4.4 At fixed face y = 0 the temperature is time dependent and is given by

T (0, t) = 2(q − L0γ )√
πerfγ

√
t . (4.19)

From theorems (3.3) and (4.1) we can establish the following existence and uniqueness result:

Theorem 4.5 There exists a unique solution to the problem

∂�

∂t
= ∂

∂x∗

(
�x∗

�2

)
+ 2δ , X∗

0(t) < x∗ < X∗
1(t) , t > 0 (4.20)

with the conditions

(i) 1
�(X∗

1 (t),t)
− δX∗

1
2(t) = − L0

δγ (L0−Tm0 )
√

t

(
�(X∗

1(t), t)Ẋ∗
1(t) + �x∗ (X∗

1(t),t)
�2(X∗

1(t),t)
+ 2δX∗

1(t)
)

, t > 0

(i i) 1
�(X∗

0(t),t)
− δX∗

0
2(t) = −q exp

(∫ t
0 H(τ )dτ

)
δγ (L0−Tm0 )t , q > 0 , t > 0

(i i i) γ√
t

= �(X∗
1(t), t)Ẋ∗

1(t) + �x∗ (X∗
1(t),t)

�2(X∗
1(t),t)

+ 2δX∗
1(t) , t > 0

(4.21)

where the moving boundaries X∗
0 and X∗

1 must satisfy

X∗
0(t) = −

∫ t

0

(
�x∗(X∗

0(τ ), τ )

�3(X∗
0(τ ), τ )

+ 2δ
X∗
0(τ )

�(X∗
0(τ ), τ )

)
dτ , X∗

1(t) = Tm0

δγ (L0 − Tm0)
√

t
, t > 0 (4.22)

and

H(t) = − T 3
m0

L0γ 2(L0 − Tm0)
2 +δ

Tm0

L0

1

�(X∗
1(t), t)

− δ

�(X∗
1(t), t)

+ T 2
m0

γ 2(L0 − Tm0)
2t

+ δ

�(X∗
0(t), t)

−δ2X∗
0
2
(t)

(4.23)
which is given by
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�(x∗, t) = δ
2(y, t)

Ty(y, t)
(y, t) + T 2(y, t)
, X∗

0(t) < x∗ < X∗
1(t) , t > 0 (4.24)

x∗ =
q−L0γ√

πerfγ

(
2
√

te− y2

4t + √
π y erf y

2
√

t

)
− qy

δ
(y, t)
, 0 < y < S(t), t > 0. (4.25)

where T is given by (4.16)


(y, t) = γ (L0 − Tm0)t + 2q

(
y2

4t
− γ 2

)
t (4.26)

−2
q − L0γ√

πerfγ

[√
π

2

(
erf

y

2
√

t
− erfγ

)
+ √

π

(
y2

4t
erf

y

2
√

t
− γ 2erfγ

)
+ y

2
√

t
e− y2

4t − γ e−γ 2
]

t

and the free boundaries are

X∗
0(t) = C0

δ
√

t
, X∗

1(t) = C1

δ
√

t
(4.27)

with

C0 =
2 q−L0γ√

πerfγ

γ (L0 − Tm0) − 2qγ 2 + 2 q−L0γ√
πerfγ

(√
π

2 erf γ + √
πγ 2 erf γ + γ e−γ 2

) , C1 = Tm0

γ (L0 − Tm0)
.

(4.28)

Proof Here, with L(t) and Tm(t) given by (4.9), on insertion in (2.6), integration shows that C(t) is linear in
t is this

C(t) = γ (L0 − Tm0)t. (4.29)

Moreover, by considering (4.16), (4.17) and

∫
xerf(x)dx = x2

2
erf(x) + 1

2
√

t
exp(−x2)x − erf(x)

4

we obtain
∫ y

S(t)
T (σ, t)dσ = −2q

(
y2

4t
− γ 2

)
t+

+ 2A

[√
π

2

(
erf

y

2
√

t
− erfγ

)
+ √

π

(
y2

4t
erf

y

2
√

t
− γ 2erfγ

)
+ y

2
√

t
e− y2

4t − γ e−γ 2
]

t.

(4.30)

Taking into account (4.19), (4.29) and (4.30) we obtain (4.24) and (4.25) where function


(y, t) := C(t) −
∫ y

S(t)
T (σ, t)dσ = γ (L0 − Tm0)t + 2q

(
y2

4t
− γ 2

)
t (4.31)

−2
q − L0γ√

πerfγ

[√
π

2

(
erf

y

2
√

t
− erfγ

)
+ √

π

(
y2

4t
erf

y

2
√

t
− γ 2erfγ

)
+ y

2
√

t
e− y2

4t − γ e−γ 2
]

t.

Rewritten (3.42), we obtain (4.27)
��
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5 Conclusions

The equivalence of a new Stefan-problem with latent heat and phase-change temperature with a nonlinear
evolution equation with a source term and two free boundaries is obtained. For a particular case a unique
explicit solution for both free boundary problems are also obtained.
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