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Abstract. We consider the non-classical heat equation in the n-dimensional domain

D = R
+ × R

n−1 for which the internal energy supply depends on the heat flux on the

boundary S = ∂D. The problem is motivated by the modeling of temperature regulation

in the medium. Using the Green function for the domain D, the solution is found for

an integral representation depending on the heat flux V on S which is an additional

unknown of the problem. We obtain that V must satisfy a Volterra integral equation of

second kind at time t with a parameter in R
n−1. Under some conditions on data, we

show that there exists a unique local solution which can be extended globally in time.

This work generalizes the results obtained in the one-dimensional case.

1. Introduction. The aim of this paper is to study a problem on the non-classical

heat equation, in the semi-n-dimensional space domain D for which the internal energy

supply depends on the heat flux on the boundary S. In order to facilitate the notation

we denote a point in R
n as follows: (x, y) ∈ R×R

n−1. The domain D and its boundary

S are defined by

D = R
+ × R

n−1 = {(x, y) ∈ R
n : x = x1 > 0, y = (x2, · · · , xn) ∈ R

n−1}, (1.1)

S = ∂D = {0} × R
n−1 = {(x, y) ∈ R

n : x = 0, y ∈ R
n−1}. (1.2)
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Problem 1.1. Find the temperature u at (x, y, t) such that it satisfies the following

conditions:

ut −Δu = −F (ux(0, y, t)), x > 0, y ∈ R
n−1, t > 0

u(0, y, t) = 0, y ∈ R
n−1, t > 0,

u(x, y, 0) = h(x, y), x > 0, y ∈ R
n−1,

where Δ is the Laplacian in R
n.

This problem is motivated by modeling the temperature in an isotropic medium with a

non-uniform source that provides a cooling or heating system, according to the properties

of F with respect to development of heat flow at the boundary S. For example, assuming

that

V F (V, t) > 0, ∀V �= 0, F (0) = 0, (1.3)

then it is a cooling source when ux(0, y, t) > 0 and a heating source when ux(0, y, t) < 0

[6, 8].

Some references on the subject include [1], [18], [19], where the following semi-one-

dimension of this nonlinear problem has been considered. The non-classical one-dimen-

sional heat equation in a slab with fixed or moving boundaries was studied in [16]. See

also other references on the subject, including [7], [10]-[13]. To our knowledge, this is the

first time that the solution to a non-classical heat conduction of the type of Problem 1.1

is given. Other non-classical problems can be found in [2].

Section 2 provides the basic solution to the n-dimensional heat equation, which will

be used in Section 3 to show that, under certain conditions on data F and h of Problem

1.1, there exists a unique local solution, which can be globally extended in time.

We also give in Lemma 3.4 several observations concerning the forcing function V0,

describing the flux on the boundary S. In Section 4 we study some particular cases of

this problem. In Section 5 we also give a general conclusion.

2. Basic solutions for the n-dimensional heat equation. In this section we

recall results on the integral representation of solutions of some classical problems of

heat distribution in n-dimensional cases. For the convenience of the reader we will

provide a proof for the generalization of classical one-dimensional results (see Lemma 2.1

and Lemma 2.2). We end this section with a technical Lemma 2.4, which contains some

mathematical formulas useful for the study of our Problem 1.1.

It is classical that, by using the partial Fourier’s transform, the solution of the following

Cauchy problem for the n-dimensional heat equation

ut −Δu = 0, (x, y) ∈ R
n, t > 0 (2.1)

u(x, y, 0) = h(x, y), (x, y) ∈ R
n (2.2)

is known as Poisson’s formula, given by the expression [9, 14]

u(x, y, t) =

∫
Rn

K(x, y, t; ξ, η, 0)h(ξ, η)dξdη (2.3)
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where K is the fundamental solution of an n-dimensional heat equation defined by

K(x, y, t; ξ, η, τ ) =
exp

[
− (x−ξ)2+‖y−η‖2

4(t−τ)

]
(
2
√
π(t− τ )

)n , (x, y) ∈ R
n, (ξ, η) ∈ R

n, t > τ, (2.4)

with ξ = ξ1 ∈ R, η = (ξ2, · · · , ξn) ∈ R
n−1 and ‖y − η‖ =

√∑n
i=2(xi − ξi)2.

Lemma 2.1. The solution of the problem

ut −Δu = 0, x > 0, y ∈ R
n−1, t > 0 (2.5)

u(0, y, t) = 0, y ∈ R
n−1, t > 0 (2.6)

u(x, y, 0) = h(x, y), x > 0, y ∈ R
n−1, (2.7)

is given by the following formula:

u(x, y, t) =

∫
D

G1(x, y, t; ξ, η, 0)h(ξ, η)dξdη (2.8)

where G1 is the Green’s function for the n-dimensional heat equation with homogeneous

Dirichlet’s boundary conditions, given the following expression:

G1(x, y, t; ξ, η, τ ) = K(x, y, t; ξ, η, τ )−K(−x, y, t; ξ, η, τ )

=
exp

[
−‖y−η‖2

4(t−τ)

]
(
2
√
π(t− τ )

)n−1G(x, t, ξ, τ ), (2.9)

where K is given by (2.4) and G is the Green’s function for the one-dimensional case

given by

G(x, t, ξ, τ ) =
e−

(x−ξ)2

4(t−τ) − e−
(x+ξ)2

4(t−τ)

2
√
π(t− τ )

t > τ.

Proof. Define h̃ on R
n by

h̃(ξ, η) =

⎧⎨
⎩

h(ξ, η) if (ξ, η) ∈ R
+ × R

n−1

−h(−ξ, η) if (ξ, η) ∈ R
− × R

n−1,

so the solution of the Cauchy problem

ut −Δu = 0 in R
n, t > 0,

u(x, y, 0) = h̃(x, y), in R
n,

is given by

u(x, t) =

∫
Rn

K(x, y, t; ξ, η, 0)h̃(ξ, η)dξdη =

∫
R+×Rn−1

K(x, y, t; ξ, η, 0)h(ξ, η)dξdη

−
∫
R−×Rn−1

K(x, y, t; ξ, η, 0)h(−ξ, η)dξdη.
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With the change of the variables ξ1 = −ξ in the integral on R
− × R

n−1 and ξ1 = ξ in

the integral on R
+ × R

n−1, we get

u(x, t) =

∫
R+×Rn−1

[K(x, y, t; ξ1, η, 0)−K(x, y, t;−ξ1, η, 0)]h(ξ1, η)dξ1dη.

As

K(x, y, t;−ξ1, η, 0) = K(−x, y, t; ξ1, η, 0),

we deduce the formula (2.8) taking into account (2.9) and G1(0, y, t; ξ, η, τ ) = 0; thus

u(0, y, t) = 0.

So u is the solution of the problem (2.5)-(2.7). �

Lemma 2.2. The solution of the problem

ut −Δu = 0, x > 0, y ∈ R
n−1, t > 0 (2.10)

ux(0, y, t) = 0, y ∈ R
n−1, t > 0 (2.11)

u(x, y, 0) = h(x, y), x > 0, y ∈ R
n−1, (2.12)

is given by the following formula:

u(x, y, t) =

∫
D

N1(x, y, t; ξ, η, 0)h(ξ, η)dξdη (2.13)

where N1 is the Green’s function for the n-dimensional heat equation with homogeneous

Neumann’s boundary conditions, given by the following expression:

N1(x, y, t; ξ, η, τ ) = K(x, y, t; ξ, η, τ ) +K(−x, y, t; ξ, η, τ )

=
exp

[
−‖y−η‖2

4(t−τ)

]
(
2
√
π(t− τ )

)n−1N(x, t, ξ, τ ), (2.14)

where K is given by (2.4) and N is the Neumann’s function for the one-dimensional case

defined by

N(x, t, ξ, τ ) =
e−

(x−ξ)2

4(t−τ) + e−
(x+ξ)2

4(t−τ)

2
√
π(t− τ )

t > τ.

Proof. Define h̃ on R
n by

h̃(ξ, η) =

⎧⎨
⎩

h(ξ, η) if (ξ, η) ∈ R
+ × R

n−1

h(−ξ, η) if (ξ, η) ∈ R
− × R

n−1

so the solution of the Cauchy problem

ut −Δu = 0, in R
n, t > 0,

u(x, y, 0) = h̃(x, y), in R
n,
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is given by

u(x, t) =

∫
Rn

K(x, y, t; ξ, η, 0)h̃(ξ, η)dξdη =

∫
R+×Rn−1

K(x, y, t; ξ, η, 0)h(ξ, η)dξdη

+

∫
R−×Rn−1

K(x, y, t; ξ, η, 0)h(−ξ, η)dξdη.

With the change of the variables ξ1 = −ξ in the integral on R
− × R

n−1 and ξ1 = ξ in

the integral on R
+ × R

n−1, we get

u(x, t) =

∫
R+×Rn−1

[K(x, y, t; ξ1, η, 0) +K(x, y, t;−ξ1, η, 0)]h(ξ1, η)dξ1dη.

As K(x, y, t;−ξ1, η, 0)] = K(−x, y, t; ξ1, η, 0)], we deduce the formula (2.13) taking into

account (2.14). We have

N1,x(x, y, t; ξ, η, τ ) = − (x− ξ)

2(t− τ )
K(x, y, t; ξ, η, τ )− (x+ ξ)

2(t− τ )
K(−x, y, t; ξ, η, τ ),

and then N1,x(0, y, t; ξ, η, τ ) = 0 thus ux(0, y, t) = 0. So u is the solution of the problem

(2.10)-(2.12). �
Remark 2.3. In the proof of Lemma 2.1, we chose a function h̃ odd, whereas in

the proof of Lemma 2.2, we choose a function h̃ even. This is in order to obtain

G1(0, y, t; ξ, η, τ ) = 0 and to satisfy the boundary condition (2.6). If we keep, in the

proof of Lemma 2.2, the function h̃ odd, the boundary condition (2.11) cannot be satis-

fied without adding another term to (2.13).

The same problem occurs if, in the proof of Lemma 2.1, we take the function h̃ even,

instead of odd. Thus the boundary condition (2.6) cannot be satisfied without adding

another term to (2.8).

We now present the following technical Lemma 2.4, which contains mathematical

formulas useful for the study of our Problem 1.1.

Lemma 2.4. The functions G1 and N1 have the following fundamental properties:∫
Rn−1

exp

[
−‖y − η‖2

4(t− τ )

]
dη =

(
2
√
π(t− τ )

)n−1

(2.15)

∫
Rn−1

‖y − η‖2 exp
[
−‖y − η‖2

4(t− τ )

]
dη =

(n− 1)(t− τ )√
2

(
2
√
π(t− τ )

)n−1

(2.16)

∫
Rn−1

G1(x, y, t, ξ, η, τ )dη = G(x, t, ξ, τ ) (2.17)

∫
Rn−1

N1(x, y, t, ξ, η, τ )dη = N(x, t, ξ, τ ) (2.18)

∫
Rn−1

G1,x(0, y, t, ξ, η, τ )dη = Gx(0, t, ξ, τ ) =
ξ

2
√
π(t− τ )3/2

exp

[
− ξ2

4(t− τ )

]
(2.19)

∫ ∞

0

N1(x, y, t, ξ, η, τ )dξ =
1

(2
√
π(t− τ ))n−1

exp

[
−‖y − η‖2

4(t− τ )

]
(2.20)
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∫ ∞

0

G1,x(0, y, t, ξ, η, τ )dξ =
2

(2
√
π(t− τ ))n

exp

[
−‖y − η‖2

4(t− τ )

]
. (2.21)

∫ ∞

0

G1(x, y, t, ξ, η, τ )dξ =
1

(2
√
π(t− τ ))n−1

exp

[
−‖y − η‖2

4(t− τ )

]
erf

(
x

2
√
t− τ

)
, (2.22)

where

erf (ζ) =

(
2√
π

∫ ζ

0

e−X2

dX

)

is the error function.

Proof. Taking into account that∫
R

exp

[
− (yj − ηj)

2

4(t− τ )

]
dηj = 2

√
π(t− τ ) ∀j ∈ N, (2.23)

we have∫
Rn−1

exp

[
−‖y − η‖2

4(t− τ )

]
dη = Πn

i=2

∫ ∞

−∞
exp

[
− (yi − ηi)

2

4(t− τ )

]
dηi

=
(
2
√
π(t− τ )

)n−1

, (2.24)

and thus (2.15) holds.

Taking into account (2.23) and∫
R

(yi − ηi)
2 exp

[
− (yi − ηi)

2

4(t− τ )

]
dηi

=

∫
R

2(t− τ )z2 exp(−z2)
√
2(t− τ )dz = (t− τ )

√
2π(t− τ ),

we have∫
Rn−1

‖y − η‖2 exp
[
−‖y − η‖2

4(t− τ )

]
dη =

∫
Rn−1

(
n∑

i=2

(yi − ηi)
2

)
Πn

j=2 exp

[
− (yj − ηj)

2

4(t− τ )

]
dηj

=
n∑

i=2

∫
Rn−1

(yi − ηi)
2Πn

j=2 exp

[
− (yj − ηj)

2

4(t− τ )

]
dηj

= Πn
j=2,j �=i

(∫
R

exp

[
− (yj − ηj)

2

4(t− τ )

]
dηj

) n∑
i=2

(∫
R

(yi − ηi)
2 exp

[
− (yi − ηi)

2

4(t− τ )

]
dηi

)
,

and so (2.16) follows.

We also have∫
Rn−1

G1(x, y, t, ξ, η, τ )dη =
G(x, t, ξ, τ )(

2
√
π(t− τ )

)n−1

∫
Rn−1

exp

[
−‖y − η‖2

4(t− τ )

]
dη; (2.25)

then (2.17) follows using (2.15), and similarly for (2.18). We obtain (2.19) using (2.17).
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We have∫ +∞

0

e
−(x−ξ)2

4(t−τ) dξ = 2
√
t− τ

(∫ 0

−∞
e−X2

dX +

∫ x
2
√

t−τ

0

e−X2

dX

)

=
√
π(t− τ )

(
1 + erf

(
x

2
√
t− τ

))
(2.26)

and ∫ +∞

0

e
−(x+ξ)2

4(t−τ) dξ = 2
√
t− τ

(∫ +∞

0

e−X2

dX −
∫ x

2
√

t−τ

0

e−X2

dX

)

=
√
π(t− τ )

(
1− erf

(
x

2
√
t− τ

))
. (2.27)

By using (2.26) and (2.27), we obtain∫ +∞

0

N(x, t, ξ, τ )dξ = 1,

and, moreover, using the definition of (2.14), we deduce (2.20).

From (2.4) and (2.9), by derivation with respect to x, we obtain

K,x(x, y, t; ξ, η, τ ) =
−2(x− ξ)e−(x−ξ)2+‖y−η‖2

4(t− τ )(2
√
π(t− τ ))n

=
−(x− ξ)

2(t− τ )
K(x, y, t; ξ, η, τ )

G1,x(x, y, t; ξ, η, τ ) =
−(x− ξ)

2(t− τ )
K(x, y, t; ξ, η, τ ) +

(x+ ξ)

2(t− τ )
K(−x, y, t; ξ, η, τ ), (2.28)

then

G1,x(0, y, t; ξ, η, τ ) =
ξ

t− τ
K(0, y, t; ξ, η, τ ) =

ξ

(t− τ )
n+2
2 (2

√
π)n

e−
ξ2+‖y−η‖2

4(t−τ) . (2.29)

Thus

∫ +∞

0

G1,x(0, y, t; ξ, η, τ )dξ =
e−

‖y−η‖2
4(t−τ)

(t− τ )
n+2
2 (2

√
π)n

∫ +∞

0

ξe−
ξ2

4(t−τ) dξ =
2e−

‖y−η‖2
4(t−τ)

(2
√
π(t− τ ))n

,

as ∫ +∞

0

ξe−
ξ2

4(t−τ) dξ = 2(t− τ ), (2.30)

and (2.21) holds.

By using (2.26) and (2.27), we obtain∫ +∞

0

G(x, t, ξ, τ )dξ = erf

(
x

2
√
t− τ

)
, (2.31)

so by the definition of (2.9) we obtain (2.22), and close the proof of this lemma. �
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3. Existence and uniqueness of the solution to Problem 1.1. In this section,

we give first in Theorem 3.1 the integral representation (3.1) of the solution of our

Problem 1.1, but it depends on the heat flow on the boundary S, which satisfies the

Volterra integral equation (3.3) with initial condition (3.2). Then we prove, in Theorem

3.3, under some assumption on the data, that there exists a unique solution of the

Problem 1.1 locally in time which can be extended globally in time.

Theorem 3.1. The integral representation of the solution of the problem 1.1 is given by

the following expression:

u(x, y, t) = u0(x, y, t)−
∫ t

0

erf
(

x
2
√
t−τ

)
(2
√
π(t− τ ))n−1

[∫
Rn−1

exp

[
−‖y − η‖2

4(t− τ )

]
F (V (η, τ ))dη

]
dτ

(3.1)

where

u0(x, y, t) =

∫
D

G1(x, y, t; ξ, η, 0)h(ξ, η)dξdη, (3.2)

and the function V defined by V (y, t) = ux(0, y, t) for y ∈ R
n−1 and t > 0 (heat flux on

the surface x = 0) satisfies the following Volterra integral equation:

V (y, t) = V0(y, t)− 2

∫ t

0

1

(2
√
π(t− τ ))n

[∫
Rn−1

exp

[
−‖y − η‖2

4(t− τ )

]
F (V (η, τ ))dη

]
dτ

(3.3)

in the variable t > 0, with y ∈ R
n−1 being a parameter where

V0(y, t) =

∫
D

G1,x(0, y, t; ξ, η, 0)h(ξ, η)dξdη. (3.4)

Proof. As the boundary condition in Problem (1.1) is homogeneous, we have from [9]

u(x, y, t) =

∫
D

G1(x, y, t; ξ, η, 0)h(ξ, η)dξdη

+

∫ t

0

∫
D

G1(x, y, t; ξ, η, τ )[−F (V (η, τ ))]dξdηdτ, (3.5)

and therefore

ux(x, y, t) =

∫
D

G1,x(x, y, t; ξ, η, 0)h(ξ, η)dξdη

+

∫ t

0

∫
D

G1,x(x, y, t; ξ, η, τ )[−F (V (η, τ ))]dξdηdτ. (3.6)

Using (2.29) we obtain∫
D

G1,x(0, y, t; ξ, η, τ )F (V (η, τ ))dξdη

=

∫
Rn−1

F (V (η, τ ))e−
‖y−η‖2
4(t−τ)

(t− τ )
n+2
2 (2

√
π)n

(∫ +∞

0

ξe−
ξ2

4(t−τ) dξ

)
dη

=
2

(2
√
π(t− τ ))n

∫
Rn−1

F (V (η, τ ))e−
‖y−η‖2
4(t−τ) dη. (3.7)
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Thus taking x = 0 in (3.6) with (3.7), we get (3.3).

By (2.9) (the definition of G1), we obtain∫
D

G1(x, y, t; ξ, η, τ )F (V (η, τ ))dξdη

=
1

2(
√
π(t− τ ))n

∫
D

e
−‖y−η‖2
4(t−τ)

[
e−

(x−ξ)2

4(t−τ) − e−
(x+ξ)2

4(t−τ)

]
F (V (η, τ ))dξdη

=
1

2(
√
π(t− τ ))n

∫
R+

[
e−

(x−ξ)2

4(t−τ) − e−
(x+ξ)2

4(t−τ)

]
dξ

∫
Rn−1

e
−‖y−η‖2
4(t−τ) F (V (η, τ ))dη,

and using (2.26)-(2.27), we get

∫
D

G1(x, y, t; ξ, η, τ )F (V (η, τ ))dξdη =
erf

(
x

2
√
t−τ

)
(2
√
π(t− τ ))n−1

∫
Rn−1

e−
‖y−η‖2
4(t−τ) F (V (η, τ ))dη.(3.8)

Taking this formula in (3.5), we obtain (3.1). �

Lemma 3.2. The simplified form of the Volterra integral equation (3.3) is

V (y, t) =
1

t(2
√
π t)n

∫
R+

ξe−
ξ2

4t

(∫
Rn−1

e−
‖y−η‖2

4t h(ξ, η)dη

)
dξ

− 2

(2
√
π)n

∫ t

0

∫
Rn−1

F (V (η, τ ))

(t− τ )n/2
e−

‖y−η‖2
4(t−τ) dηdτ. (3.9)

Proof. Using (2.29) with τ = 0 in the Volterra integral equation (3.3), we obtain

(3.9). �

Theorem 3.3. Assume that h ∈ C(D), F ∈ C(R) and locally Lipschitz in R; then there

exists a unique solution of the problem 1.1 locally in time which can be extended globally

in time.

Proof. We know from Theorem (3.1) that, to prove the existence and uniqueness of

the solution (3.1) of Problem (1.1), it is enough to solve the Volterra integral equation

(3.9). So we rewrite it as follows:

V (y, t) = f(y, t) +

∫ t

0

g(y, τ, V (y, τ ))dτ (3.10)

with

f(y, t) =
1

t(2
√
π t)n

∫
R+

ξe−
ξ2

4t

(∫
Rn−1

e−
‖y−η‖2

4t h(ξ, η)dη

)
dξ (3.11)

and

g(t, τ, y, V (y, τ )) = − 2

(2
√
π)n

∫
Rn−1

F (V (η, τ ))

(t− τ )n/2
e−

‖y−η‖2
4(t−τ) dη. (3.12)

We have to check the conditions H1 to H4 in Theorem 1.1 page 87, and H5 and H6

in Theorem 1.2 page 91 in [15].

• The function f is defined and continuous for all (y, t) ∈ R
n−1 × R

+, so H1 holds.

• The function g is measurable in (y, t, τ, x) for 0 ≤ τ ≤ t < +∞, x ∈ R, y ∈ R
n−1, and

continuous in x for all (y, t, τ ) ∈ R
n−1 × R

+ ×R
+, g(y, t, τ, x) = 0 if τ > t, so H2 holds.
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• For all k > 0 and all bounded sets B in R, we have

|g(y, t, τ,X)| ≤ 2

(2
√
π)n

sup
X∈B

|F (X)|(t− τ )−n/2

∫
Rn−1

e−‖y−η‖
2

4(t−τ)
dη

≤ 2

(2
√
π)n

sup
X∈B

|F (X)|(t− τ )−n/2(2
√
π(t− τ ))n−1

=
1√
π

sup
X∈B

|F (X)| 1√
(t− τ )

;

thus there exists a measurable function m given by

m(t, τ ) =
1√
π

sup
X∈B

|F (X)| 1√
(t− τ )

(3.13)

such that

|g(y, t, τ,X)| ≤ m(t, τ ) ∀0 ≤ τ ≤ t ≤ k, X ∈ B (3.14)

and satisfies

sup
t∈[0,K]

∫ t

0

m(t, τ )dτ =
1√
π

sup
X∈B

|F (X)| sup
t∈[0,k]

∫ t

0

1√
t− τ

dτ

=
1

π
sup
X∈B

|F (X)| sup
t∈[0,k]

(
−2

√
(t− τ )|t0

)

=
1

π
sup
X∈B

|F (X)| sup
t∈[0,k]

√
t ≤ 2

√
k

π
sup
X∈B

|F (X)| < ∞,

so H3 holds.

• Moreover, we also have

lim
t→0+

∫ t

0

m(t, τ )dτ =
1√
π

sup
X∈B

|F (X)| lim
t→0+

∫ t

0

dτ√
t− τ

=
1√
π

sup
X∈B

|F (X)| lim
t→0+

(2
√
t) = 0,

(3.15)

and

lim
t→0+

∫ T+t

T

m(t, τ )dτ =
1√
π

sup
X∈B

|F (X)| lim
t→0+

(2
√
t) = 0. (3.16)

• For each compact subinterval J of R+, each bounded set B in R
n−1, and each t0 ∈ R

+,

we set

A(t, y, V (η)) = |g(t, τ ; y, V (η, τ ))− g(t0, τ ; y, V (η, τ ))|.

A(t, y, V (η)) =
2

(2
√
π)n

∫
J

∣∣∣∣
∫
Rn−1

e−
‖y−η‖2
4(t−τ)

F (V (η, τ ))

(t− τ )−n/2
− e

− ‖y−η‖2
4(t0−τ)

F (V (η, τ ))

(t0 − τ )−n/2
dη

∣∣∣∣ dτ
as the function τ 	→ V (η, τ ) is continuous and is in the compact B ⊂ R for all η ∈ R

n−1.

So by the continuity of F we get F (V (η, τ )) ⊂ F (B); that is, there exists M > 0 such

that |F (V (η, τ ))| ≤ M for all (η, τ ) ∈ R
n−1 × R

+. So

sup
V (η)∈C(J,B)

A(t, y, V (η))≤ 2M

(2
√
π)n

sup
V (η)∈C(J,B)

∣∣∣∣∣∣
∫
Rn−1

e−
‖y−η‖2
4(t−τ)√

(t− τ )
n dη −

∫
Rn−1

e
− ‖y−η‖2

4(t0−τ)√
(t0 − τ )

n dη

∣∣∣∣∣∣ .
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Using (2.15), we obtain

sup
V (η)∈C(J,B)

A(t, y, V (η)) ≤ 2M

(2
√
π)n

sup
V (η)∈C(J,B)

∣∣∣∣∣ (2
√
π(t− τ ))n−1

(
√
t− τ)n

− (2
√
π(t0 − τ ))n−1

(
√
t0 − τ)n

∣∣∣∣∣ ,
and thus

sup
V (η)∈C(J,B)

A(t, y, V (η)) ≤ M√
π

sup
V (η)∈C(J,B)

∣∣∣∣∣
√
t0 − τ −

√
t− τ√

(t− τ )(t0 − τ )

∣∣∣∣∣ .
Thus we deduce that

lim
t→t0

∫
J

sup
V (η)∈C(J,B)

A(t, y, V (η))dτ = 0.

So H4 holds.

• For all compact I ⊂ R
+, for all functions ψ ∈ C(I,Rn), and all t0 > 0,

|g(t, τ ;ψ(τ ))− g(t0, τ, ψ(τ ))| =
2

(2
√
π)n

∣∣∣∣∣∣
∫
Rn−1

F (ψ(τ ))

⎛
⎝ e−

‖y−η‖2
4(t−τ)

(t− τ )n/2
− e

− ‖y−η‖2
4(t0−τ)

(t0 − τ )n/2

⎞
⎠ dτ

∣∣∣∣∣∣
as F ∈ C(R) and ψ ∈ C(I,Rn); then there exists a constant M > 0 such that |F (ψ(τ ))| ≤
M for all τ ∈ I. Then we obtain, as for H4, that

lim
t→t0

∫
I

|g(t, τ ;ψ(τ ))− g(t0, τ, ψ(τ ))|dτ = 0.

So H5 holds.

• Now for each constant K > 0 and each bounded set B ⊂ R
n−1, there exists a measur-

able function ϕ such that

|g(y, t, τ, x)− g(y, t, τ,X)| ≤ ϕ(t, τ )|x−X|

whenever 0 ≤ τ ≤ t ≤ K and both x and X are in B. Indeed, as F is assumed to be a

locally Lipschitz function in R, there exists constant L > 0 such that

|F (x)− F (X)| ≤ L|x−X| ∀(x,X) ∈ B2.

Then we have

|g(y, t, τ, x)− g(y, t, τ,X)| =
2

(2
√
π)n

∣∣∣∣
∫
Rn−1

(t− τ )−n/2e−
‖y−η‖2
4(t−τ) (F (x)− F (X))dη

∣∣∣∣
≤ 2

(2
√
π)n

(∫
Rn−1

e−
‖y−η‖2
4(t−τ) dη

)
(t− τ )−n/2L|x−X|

≤ L√
π(t− τ )

|x−X|,

and thus ϕ(t, τ ) = L√
π(t−τ)

. We also have for each t ∈ [0, k] the function ϕ ∈ L1(0, t) as

a function of τ and∫ t+l

t

ϕ(t+ l, τ )dτ =
L√
π

∫ t+l

t

dτ√
t+ l − τ

=
L√
π
(2
√
l) → 0 with l → 0.

So H6 holds. All the conditions H1 to H6 are satisfied with (3.15) and (3.16).
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Thus from [15] (Theorem 1.1 page 87, Theorem 1.2 page 91 and Theorem 2.3 page 97)

there exists a unique local-in-time solution of the Volterra integral equation (3.3) which

can be extended globally in time. Then the proof of this theorem is complete. �
Now, we will make several observations concerning the forcing function V0(y, t) of the

Volterra integral equation (3.3) with respect to the initial temperature h(x, y).

Lemma 3.4. Let h be the initial temperature, and let V0 be defined by (3.2).

If h ∈ L∞(D), then we have
√
πt |V0(y, t)| ≤ ‖h‖∞, ∀y ∈ R

n−1, t > 0. (3.17)

If h verifies the following assumptions:

(1) h ∈ C0(D),

(2) there exist positive constants A and α such that

|h(x, y)− h(0, y)| ≤ Axα, ∀x ≥ 0, y ∈ R
n−1, (3.18)

then we have

lim
t→0

√
πtV0(y, t) = h(0, y), ∀y ∈ R

n−1. (3.19)

Proof. By using (3.2) and formulas (2.15) and (2.30), we have

|V0(y, t)| ≤ ‖h‖∞
(2
√
πt)nt

∫ +∞

0

ξe−
ξ2

4t dξ

∫
Rn−1

e−
‖y−η‖2

4t dη

=
‖h‖∞

(2
√
πt)nt

2t
(
2
√
π(t− τ )

)n−1

=
‖h‖∞√

πt
, ∀y ∈ R

n t > 0,

and therefore the inequality (3.17) holds.

By making the change of variable ξ = 2
√
tz in (3.2), we obtain

√
πtV0(y, t) =

1(
2
√
πt
)n−1

∫
Rn−1

[∫ +∞

0

h(2
√
tz, η)e−zdz

]
e−

‖y−η‖2
4t dη, (3.20)

and therefore by using the hypothesis (b) we derive

|h(2
√
tz, η)| ≤ |h(2

√
tz, η)− h(0, η)|+ |h(0, η)|

≤ |h(0, η)|+A
(
2
√
tz
)α

= |h(0, η)|+A2α(tz)
α
2

and
√
πtV0(y, t) = I1(y, t) + I2(y, t) (3.21)

where

I1(y, t) =
1(

2
√
πt
)n−1

∫
Rn−1

h(0, η)e−
‖y−η‖2

4t dη (3.22)

I2(y, t) =
1(

2
√
πt
)n−1

∫
Rn

[∫ +∞

0

[
h(2

√
tz, η)− h(0, η)

]
e−zdz

]
e−

‖y−η‖2
4t dη. (3.23)

Taking into account (2.15) and the Dirac delta, we have

lim
t→0+

I1(y, t) = h(0, y), ∀y ∈ R
n−1. (3.24)
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Moreover, we have

|I2(y, t)| ≤ A2αt
α
2(

2
√
πt
)n−1

∫
Rn−1

e−
‖y−η‖2

4t

(∫ +∞

0

z
α
2 e−zdz

)
dη

≤ B0(α)t
α
2 (3.25)

where B0 is a positive constant which depends only on parameter α > 0. Therefore

(3.19) holds. �

4. Particular cases. In this section we consider some particular cases with physi-

cally interesting phenomena and give their relations to the considered Problem 1.1.

(1) If the initial temperature is given by

h(x, y) = h0(x) ∀y ∈ R
n−1, (4.1)

from (3.2) with h = h0, we have

u0(x, y, t) =

∫
D

G1(x, y, t, ξ, η, 0)h(ξ, η)dξdη

=

∫ +∞

0

h0(ξ)

[∫
Rn−1

G1(x, y, t, ξ, η, 0)dη

]
dξ.

Using the formula (2.17), we get

u0(x, y, t) =

∫ +∞

0

G(x, t, ξ, 0)h0(ξ)dξ := u0(x, t), ∀y ∈ R
n−1. (4.2)

From (3.11) with h = h0, we have

f(y, t) =
1

(2
√
πt)nt

∫
Rn−1

[∫ +∞

0

ξe−
ξ2

4t h0(ξ)dξ

]
e−

‖y−η‖2
4t dη

=
1

(2
√
πt)nt

∫ +∞

0

ξe−
ξ2

4t h0(ξ)dξ

∫
Rn−1

e−
‖y−η‖2

4t dη,

and by using the formula (2.15), we get

f(y, t) =
1

2
√
πt

3
2

∫ +∞

0

ξe−
ξ2

4t h0(ξ)dξ := f(t), ∀y ∈ R
n−1. (4.3)

(2) If the initial temperature is given by (4.1) and the solution of the integral equation

(3.3) is independent of y ∈ R
n−1, i.e.,

V (y, t) = V (t), ∀y ∈ R
n−1, (4.4)

from (3.1), and using (4.1) we have

u(x, y, t) = u0(x, t)−
∫ t

0

erf
(

x
2
√
t−τ

)
(2
√
π(t− τ ))

n−1F (V (τ ))

∫
Rn−1

e−
‖y−η‖2
4(t−τ) dηdτ,

and by (2.15), we get

u(x, y, t) = u0(x, t)−
∫ t

0

erf

(
x

2
√
t− τ

)
F (V (τ ))dτ

= u(x, t), x > 0, t > 0, ∀y ∈ R
n−1 (4.5)
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where u0(x, t) is given in (4.2), and (3.12) becomes

g(y, t, τ, V (y, τ )) = − 2

(2
√
π)n

F (V (τ ))

(t− τ )
n
2

∫
Rn−1

e−
‖y−η‖2
4(t−τ) dη

= − F (V (τ ))√
π(t− τ )

:= g (t, τ, V (τ )) ∀y ∈ R
n−1. (4.6)

This particular case corresponds to the one-dimensional non-classical heat

equation which was studied in [1], [18].

(3) If the initial temperature is constant, i.e.,

h(x, y) = h0, ∀x > 0, ∀y ∈ R
n−1, (4.7)

and the solution of the integral equation (3.3) is independent of y ∈ R
n−1,

i.e., satisfying (4.4), then by (2.31), the temperature is given by the following

expression:

u(x, t) = h0erf

(
x

2
√
t

)
−
∫ t

0

erf

(
x

2
√
t− τ

)
F (V (τ ))dτ, x > 0, t > 0, (4.8)

and its heat flux V (t) at x = 0 is given by the solution of the Volterra integral

equation

V (t) =
h0√
πt

−
∫ t

0

F (V (τ ))√
π(t− τ )

dτ, t > 0. (4.9)

This particular case also corresponds to the one-dimensional non-classical heat

equation which was studied in [1].

Remark 4.1. The Stefan problem for the non-classical one-dimensional heat equation

was studied in [3]-[5], [17].

5. Conclusion. In this study we have considered the non-classical heat problem in

a semi-n-dimensional space domain D for which the internal energy depends on the heat

flux on the boundary S of the domain D. In Section 2, we have recalled and discussed

the integral representation of solutions of some classical problems of heat distribution;

see Lemma 2.1 and Lemma 2.2. We end this section with a technical Lemma 2.4, which

contains mathematical formulas useful for the study of our Problem 1.1.

In Section 3, we gave first in Theorem 3.1 the integral representation (3.1) of the

solution of our Problem 1.1, but it depends on the heat flow on the boundary S, which

satisfies the Volterra integral equation (3.3) with initial condition (3.2). Then we proved,

in Theorem 3.3, under some assumption on the data, that there exists a unique solution

of the Problem 1.1 locally in time which can be extended globally in time.

We also made in Lemma 3.4 several observations concerning the forcing function

V0(y, t) given by (3.2) with respect to the initial temperature h(x, y).

In Section 4, we have considered some particular cases with given physical interesting

phenomena and their relations to the considered Problem 1.1.
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