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Convergence of optimal control problems governed
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Abstract: We consider a family of optimal control problems where the control variable is given by a boundary
condition of Neumann type. This family is governed by parabolic variational inequalities of the second kind. We prove the
strong convergence of the optimal control and state systems associated to this family to a similar optimal control problem.
This work solves the open problem left by the authors in IFIP TC7 CSMO2011.
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1 Introduction
The motivation of this paper is to prove the strong con-

vergence of the boundary optimal controls and state systems
associated with a family of second kind parabolic varia-
tional inequalities. In this paper, we solve the open question,
left in [1] and we generalize our work [2], to study the Neu-
mann boundary optimal controls governed by second kind
parabolic variational inequalities.

To illustrate the problem, we consider, for example, two
free boundary problems which leads to the second kind
parabolic variational inequalities.

We assume that the boundary of a multidimensional reg-
ular domain Ω is given by ∂Ω = Γ1 ∪ Γ2 ∪ Γ3 with
meas(Γ1) > 0 and meas(Γ3) > 0. We consider a fam-
ily of optimal control problems where the control variable
is given by a boundary condition of Neumann type whose
state system is governed by a free boundary problem with
Tresca conditions on a portion Γ2 of the boundary, with a
flux f on Γ3 as the control variable, given by

Problem 1
u̇ − Δu = g in Ω × (0, T ),

|∂u

∂n
| < q ⇒ u = 0 on Γ2 × (0, T ),

|∂u

∂n
| = q ⇒ ∃k > 0 : u = −k

∂u

∂n
on Γ2 × (0, T ),

u = b on Γ1 × (0, T ),

−∂u

∂n
= f on Γ3 × (0, T ),

with the initial condition

u(0) = ub on Ω,

and the compatibility condition on Γ1 × (0, T )
ub = b on Γ1 × (0, T ),

where q > 0 is the Tresca friction coefficient on Γ2 [3–5].

We define the spaces F = L2((0, T ) × Γ3), V = H1(Ω),
V0 = {v ∈ V : v|Γ1

= 0}, H = L2(Ω), H = L2(0, T ; H),
V = L2(0, T ; V ) and the closed convex set Kb = {v ∈ V :
v|Γ1

= b}. Let{
g ∈ H, b ∈ L2(0, T, H

1
2 (Γ1)), f ∈ F ,

q ∈ L2((0, T ) × Γ2), q > 0, ub ∈ Kb.
(1)

The variational formulation of Problem 1 leads to the fol-
lowing parabolic variational problem:

Problem 2 Let g, b, q, ub and f be as in (1). Find
u = uf ∈ C(0, T, H) ∩ L2(0, T ; Kb) with u̇ ∈ H, such
that u(0) = ub, and for t ∈ (0, T ),

〈u̇, v − u〉 + a(u, u − v) + Φ(v) − Φ(u)

� (g, v − u) −
�

Γ3
f(v − u)ds, ∀v ∈ Kb.

where ( ·, · ) is the scalar product in H , a and Φ are defined
by

a(u, v) =
�

Ω
∇u∇vdx, Φ(v) =

�
Γ2

q|v|ds. (2)

The functional Φ comes from the Tresca condition on
Γ2 [4–5]. We consider also the following problem where
we change, in Problem 1, only the Dirichlet condition on
Γ1 × (0, T ) by the Newton law or a Robin boundary condi-
tion, i.e.,

Problem 3
u̇ − Δu = g in Ω × (0, T ),

|∂u

∂n
| < q ⇒ u = 0 on Γ2 × (0, T ),

|∂u

∂n
| = q ⇒ ∃k > 0 : u = −k

∂u

∂n
on Γ2 × (0, T ),

−∂u

∂n
= h(u − b) on Γ1 × (0, T ),

−∂u

∂n
= f on Γ3 × (0, T ),
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with the initial condition

u(0) = ub on Ω,

and the condition of compatibility on Γ1 × (0, T )
ub = b on Γ1 × (0, T ).

The variational formulation of Problem 3 leads to the fol-
lowing parabolic variational problem.

Problem 4 Let g, b, q, ub and f be as in (1). For all
h > 0, find u = uhf in C(0, T, H) ∩ V with u̇ in H, such
that u(0) = ub, and for t ∈ (0, T ),

〈u̇, v − u〉 + ah(u, u − v) + Φ(v) − Φ(u)

� (g, v − u) −
�

Γ3
f(v − u)ds + h

�
Γ1

b(v − u)ds,

∀v ∈ V,

where ah is defined by

ah(u, v) = a(u, v) + h
�

Γ1
uvds.

Moreover, from [6–9] we have that: ∃λ1 > 0 such that

λh‖v‖2
V � ah(v, v),∀v ∈ V, with λh = λ1 min{1, h},

that is, ah is also a bilinear, continuous, symmetric and co-
ercive form V × V to R. The existence and uniqueness of
the solution to each of the above Problems 2 and 4, is well
known see for example [3, 10–11].

The main goal of this paper is to prove in Section 2 the ex-
istence and uniqueness of a family of optimal control prob-
lems 5 and 6 where the control variable is given by a bound-
ary condition of Neumann type whose state system is gov-
erned by a free boundary problem with Tresca conditions on
a portion Γ2 of the boundary, with a flux f on Γ3 as the con-
trol variable, using a regularization method to overcome the
nondifferentiability of the functional Φ. Then, in Section 3,
we study the convergence when h → +∞ of the state sys-
tems and optimal controls associated to Problem 6 to the
corresponding state system and optimal control associated
to Problem 5. In order to obtain this last result we obtain an
auxiliary strong convergence by using the Aubin compact-
ness arguments (see Lemma 2). This paper completes our
previous paper [2] and solves the open problem left in [1].

Remark here that our study still valid with the bilinear
form a in more general cases, provided that a must be sym-
metric, coercive and continuous from V × V to R.

2 Boundary optimal control problems
Let M > 0 be a constant and we define the space

F− = {f ∈ F : f � 0}.
We consider the following Neumannn boundary optimal
control problems defined by [12–15].

Problem 5 Find the optimal control fop ∈ F− such
that

J(fop) = min
f∈F−

J(f), (3)

where the cost functional J : F− → R
+ is given by

J(f) =
1
2
‖uf‖2

H +
M

2
‖f‖2

F (M > 0), (4)

and uf is the unique solution to Problem 2 for a given
f ∈ F−.

Problem 6 Find the optimal control foph
∈ F− such

that

J(foph
) = min

f∈F−
Jh(f), (5)

where the cost functional Jh : F− → R
+ is given by

Jh(f) =
1
2
‖uhf‖2

H +
M

2
‖f‖2

F (M > 0, h > 0), (6)

and uhf is the unique solution to Problem 4 for a given
f ∈ F− and h > 0.

Theorem 1 Under the assumptions g � 0 in Ω×(0, T ),
b � 0 on Γ1×(0, T ) and ub � 0 in Ω, we have the following
properties:

a) the cost functional J is strictly convex on F−; and

b) there exists a unique optimal control fop ∈ F− solu-
tion to the Neumann boundary optimal control Problem 5.

Proof We give some sketch of the proof, following [2],
we generalize for parabolic variational inequalities of the
second kind, given in Problem 2, the estimates obtained for
convex combination between u4(μ) = uμf1+(1−μ)f2 , and
u3(μ) = μuf1 + (1−μ)uf2 , for any two element f1 and f2

in F . The main difficulty, to prove this result comes from
the fact that the functional Φ is not differentiable. To over-
come this difficulty, we use the regularization method and
consider for ε > 0 the following approach of Φ defined by

Φε(v) =
�

Γ2
q
√

ε2 + |v|2ds, ∀v ∈ V, (7)

which is Gateaux differentiable, with

〈Φ′
ε(w), v〉 =

�
Γ2

qwv√
ε2 + |w|2 ds, ∀(w, v) ∈ V 2.

We define uε as the unique solution to the corresponding
parabolic variational inequality for all ε > 0. We obtain that
for all μ ∈ [0, 1] we have uε

4(μ) � uε
3(μ) for all ε > 0.

When ε → 0 we have that for i = 1, . . . , 4,

uε
i → ui strongly in V ∩ L∞(0, T ; H). (8)

As f ∈ F−, g � 0 in Ω × (0, T ), b � 0 in Γ1 × (0, T ) and
ub � 0 in Ω, we obtain by the weak maximum principle that
for all μ ∈ [0, 1] we have 0 � u4(μ), and so following [2],
we obtain

0 � u4(μ) � u3(μ) in Ω × [0, T ], ∀μ ∈ [0, 1]. (9)

Then, for all μ ∈ [0, 1], and for all f1, f2 in F−, and by
using f3(μ) = μf1 + (1 − μ)f2, we obtain

μJ(f1) + (1 − μ)J(f2) − J(f3(μ))

=
1
2
(‖u3(μ)‖2

H−‖u4(μ)‖2
H)+

1
2
μ(1−μ)‖uf1−uf2‖2

H

+
M

2
μ(1 − μ)‖f1 − f2‖2

F . (10)

Then, J is strictly convex functional on F−, and therefore,
there exists a unique optimal fop ∈ F− solution to the Neu-
mann boundary optimal control Problem 5. This completes
the proof.

Theorem 2 Under the assumptions g � 0 in Ω×(0, T ),
b � 0 in Γ1×(0, T ) and ub � 0 in Ω, we have the following
properties:

a) the cost functional Jh are strictly convex on F−, for all
h > 0; and

b) there exists a unique optimal control fhop ∈ F− solu-
tion to the Neumann boundary optimal control problem 6,
for all h > 0.

Proof We follow a similar method to the one developed
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in Theorem 1 for all h > 0.

3 Convergence when h → +∞
In this section, we study the convergence of the Neumann

optimal control problem 6 to the optimal control problem 5
when h → ∞. For a given f ∈ F , we have first the follow-
ing result which generalizes [2, 6–7, 16].

Lemma 1 Let uhf be the unique solution to Problem 4
and uf the unique solution to Problem 2, and then,

uhf → uf ∈ V strongly as h → +∞, ∀f ∈ F .

Proof Following [2], we take v = uf (t) in the varia-
tional inequality of Problem 4 where u = uhf , and recalling
that uf (t) = b on Γ1×[0, T ], taking φh(t) = uhf (t)−uf (t)
we obtain for h > 1, that ‖uhf‖V is bounded for all h > 1
and for all f ∈ F . Then, there exists η ∈ V such that (when
h → +∞)

uhf ⇀ η weakly in V,

and

uhf → b strongly on L2((0, T ) × Γ1),
and so η(0) = ub.

Let ϕ be in L2(0, T, H1
0 (Ω)) and take the variational in-

equality of Problem 4 where u = uhf , v = uhf (t) ± ϕ(t),
and then, as ‖uhf‖V is bounded for all h > 1, we deduce
that ‖u̇hf‖L2(0,T,H−1(Ω)) is also bounded for all h > 1.
Then, we conclude that

uhf ⇀ η in V weak, and in L∞(0, T, H) weak star,

and u̇hf ⇀ η̇ in L2(0, T, H−1(Ω)) weak. (11)

From the variational inequality of Problem 4, taking v ∈
K so v = b on Γ1, we obtain a.e. t ∈ [0, T ]

〈u̇hf , v−uhf 〉+a(uhf , v−uhf )−h
�

Γ1
|uhf −b|2ds

� Φ(uhf ) − Φ(v) + (g, v − uhf ) −
�

Γ3
f(v − uhf )ds,

for all v ∈ K, and then, as h > 0 we have a.e. t ∈ [0, T ],
〈u̇hf , v − uhf 〉 + a(uhf , v − uhf )

� Φ(uhf ) − Φ(v) + (g, v − uhf ) −
�

Γ3
f(v − uhf )ds,

∀v ∈ K. (12)

Therefore, using (11) and passing to the limit, when h →
+∞, we obtain

〈η̇, v − η〉 + a(η, v − η) + Φ(v) − Φ(η)

� (g, v − η)−
�

Γ3
f(v − η)ds, ∀v ∈ K a.e. t ∈ [0, T ],

and η(0) = ub. Using the uniqueness of the solution to
Problem 2, we obtain η = uf .

To prove the strong convergence, we take v = uf (t) in
the variational inequality of Problem 4,

〈u̇hf , uf −uhf 〉+ah(uhf , uf −uhf )+Φ(uf )−Φ(uhf )

� (g, uf − uhf ) + h
�

Γ1
b(uf − uhf )ds

−
�

Γ3
f(uf − uhf )ds,

a.e. t ∈ [0, T ], and thus as uf = ub on Γ1 × [0, T ], we put
φh = uhf − uf , and so a.e. t ∈ [0, T ] we have

〈φ̇h, φh〉+a(φh, φh)+h
�

Γ1
|φh|2ds+Φ(uhf )−Φ(uf )

� 〈u̇f , φh〉 + a(uf , φh) + (g, φh) −
�

Γ3
fφhds,

and so
1
2
‖φh‖2

L∞(0,T,H) + λh‖φh‖2
V + Φ(uhf ) − Φ(uf )

� −
� T

0
〈u̇f (t), φh(t)〉dt −

� T

0
a(uf (t), φh(t))dt

+
� T

0
(g(t), φh(t))dt −

� T

0

�
Γ3

fφhdsdt.

Using the weak semicontinuity of Φ and the weak conver-
gence (11), the right side of the above inequality tends to
zero when h → +∞, and then, we deduce the strong con-
vergence of φh = uhf − uf to 0 in V ∩ L∞(0, T, H), for
all f ∈ F− and the proof holds.

We prove now the following lemma by using the Aubin
compactness arguments. Lemma 2 is very important and
necessary which allow us to conclude this paper. Indeed this
result is needed to pass to the limit exactly in the last term
of the inequality (22) in the proof of the main Theorem 3.

Lemma 2 Let uhfoph
the state system defined by the

unique solution to Problem 4, where the flux f is replaced
by foph

. Then, for h → +∞, we have

uhfoph
→ uf in L2((0, T ) × ∂Ω), (13)

where uf is the the state system defined by the unique solu-
tion to Problem 2 with the flux f on Γ3.

Proof Let consider the variational inequality of Prob-
lem 4 with u = uhfoph

and f = foph
, i.e.,

〈u̇hfoph
, v − uhfoph

〉 + ah(uhfoph
, v − uhfoph

) + Φ(v)
−Φ(uhfoph

)

� (g, v − uhfoph
) −

�
Γ3

foph
(v − uhfoph

)ds

+h
�

Γ1
b(v − uhfoph

)ds, ∀v ∈ V, (14)

and let ϕ ∈ L2(0, T ; H1
0 (Ω)), and set v = uhfoph

(t)±ϕ(t)
in (14), we obtain

〈u̇hfoph
, ϕ〉 = (g, ϕ) − a(uhfoph

, ϕ).
By integration in times for t ∈ (0, T ), we obtain� T

0
〈u̇hfoph

, ϕ〉dt =
� T

0
(g, ϕ)dt −

� T

0
a(uhfoph

, ϕ)dt,

and thus, for A = (c‖g‖H + ‖uhfoph
‖V), we obtain

|
� T

0
< u̇hfoph

, ϕ > dt| � A‖ϕ‖L2(0,T ;H1
0 (Ω)),

where c comes from the Poincaré inequality, and as in
Lemma 1 we can obtain that uhfoph

is bounded in V , and
so there exists a positive constant C such that

‖u̇hfoph
‖L2(0,T ;H−1(Ω)) � C. (15)

Using now the Aubin compactness arguments, see for ex-

ample [17] with the three Banach spaces V , H
2
3 (Ω) and

H−1(Ω), and then,

uhfoph
→ uf L2(0, T ; H

2
3 (Ω)).

As the trace operator γ0 is continuous from H
2
3 (Ω) to

L2(∂Ω), and then, the result follows. This completes the
proof.

We give now, without need to use the notion of adjoint
states [14,18], the convergence result which generalizes the
result obtained in [19] for a parabolic variational equalities
(see also [18,20–23]). Other optimal control problems gou-
verned by variational inequalities are given in [24–26].

Theorem 3 Let uhfoph
∈ V , foph ∈ F− and ufop ∈ V ,
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fop ∈ F− be respectively the state systems and the optimal
controls defined in Problems 4 and 2. Then,

lim
h→+∞

‖uhfoph
− ufop‖V

= lim
h→+∞

‖uhfoph
− ufop‖L∞(0,T,H)

= lim
h→+∞

‖uhfoph
− ufop‖L2((0,T )×Γ1) = 0, (16)

lim
h→+∞

‖foph
− fop‖F = 0. (17)

Proof We have first

Jh(foph
) =

1
2
‖uhfoph

‖2
H +

M

2
‖foph

‖2
F

� 1
2
‖uhf‖2

H +
M

2
‖f‖2

F ,

for all f ∈ F−, and then, for f = 0 ∈ F− we obtain

Jh(foph
)=

1
2
‖uhfoph

‖2
H+

M

2
‖foph

‖2
F � 1

2
‖uh0‖2

H, (18)

where uh0 ∈ V is the solution to the following parabolic
variational inequality:

〈u̇h0, v − uh0〉 + ah(uh0, v − uh0) + Φ(v) − Φ(uh0)

�
�

Ω
g(v − uh0)dx+h

�
Γ1

b(v − uh0)ds, a.e. t ∈ [0, T ]

for all v ∈ V and uh0(0) = ub.

Taking v = ub ∈ Kb we obtain that ‖uh0 − ub‖V is
bounded independently of h, and then, ‖uh0‖H is bounded
independently of h. Therefore, we deduce with (18) that
‖uhfoph

‖H and ‖foph
‖F are also bounded independently of

h. Therefore, there exist f̃ ∈ F− and η in H such that

foph
⇀ f̃ in F− and uhfoph

⇀ η in H (weakly). (19)

Taking now v = ufop(t) ∈ Kb in Problem (4), for
t ∈ [0, T ], with u = uhfoph

and f = foph
, we obtain

〈u̇hfoph
, ufop − uhfoph

〉 + a1(uhfoph
, ufop − uhfoph

)

+(h − 1)
�

Γ1
uhfoph

(ufop − uhfoph
)ds + Φ(ufop)

−Φ(uhfoph
)

� (g, ufop − uhfoph
) + h

�
Γ1

b(ufop − uhfoph
)ds

−
�

Γ3
foph

(ufop − uhfoph
)ds, a.e. t ∈ [0, T ].

As ufop = b on Γ1 × [0, T ], taking φh = ufop − uhfoph
, we

obtain
1
2
‖φh‖2

L∞(0,T ;H) + λ1‖φh‖2
V

+(h − 1)
� T

0

�
Γ1

|φh(t)|2dsdt

�
� T

0

�
Γ3

foph
φhdsdt −

� T

0
(g(t), φh(t))dt

+
� T

0

�
Γ2

q|φh(t)|dsdt +
� T

0
〈u̇fop(t)φh(t)〉dt

+
� T

0
a(ufop(t), φh(t))dt.

As foph
is bounded in F−, from (15) u̇fop is bounded in

L2(0, T ; H−1(Ω)), and uhfoph
is also bounded in V , all in-

dependently on h, and so there exists a positive constant C
which does not depend on h such that

‖φh‖V = ‖uhfoph
− ufop‖V � C, ‖φh‖L∞(0,T,H) � C

(h − 1)
� T

0

�
Γ1

|uhfoph
− b|2dsdt � C,

and then, η ∈ V and

uhfoph
⇀ η in V and in L∞(0, T, H) weak star, (20)

uhfoph
→ b in L2((0, T ) × Γ1) strong, (21)

and so η(t) ∈ Kb for all t ∈ [0, T ].
Now, taking v ∈ K in Problem 4 where u = uhfoph

and
f = foph

so

〈u̇hfoph
, v − uhfoph

〉 + ah(uhfoph
, v − uhfoph

) + Φ(v)
−Φ(uhfoph

)

� (foph
, v − uhfoph

) + h
�

Γ1
b(v − uhfoph

)ds

−
�

Γ3
foph

(v − uhfoph
)ds, a.e. t ∈ [0, T ]

as v ∈ Kb so v = b on Γ1, and thus, we have

〈u̇hfoph
, uhfoph

− v〉 + a(uhfoph
, uhfoph

− v)

+h
�

Γ1
|uhfoph

− b|2ds + Φ(uhfoph
) − Φ(v)

−(g, v − uhfoph
)

�
�

Γ3
foph

(v − uhfoph
)ds a.e. t ∈ [0, T ].

Thus,

〈u̇hfoph
, uhfoph

− v〉 + a(uhfoph
, uhfoph

− v)
+Φ(uhfoph

) − Φ(v)
� −(g, v − uhfoph

)

−
�

Γ3
foph

(v − uhfoph
)ds a.e. t ∈ [0, T ]. (22)

Using Lemma 2, (19) and (20), we deduce that [3, 27]

〈η̇, v − η〉 + a(η, v − η) + Φ(v) − Φ(η)

� (f, v−η)−
�

Γ3
f̃(v−η))ds, ∀v ∈ K, a.e. t ∈ [0, T ],

so also by the uniqueness of the solution to Problem 2, we
obtain

uf̃ = η. (23)

We prove that f̃ = fop. Indeed, we have

J(f̃) =
1
2
‖η‖2

H +
M

2
‖f̃‖2

F

� lim inf
h→+∞

{1
2
‖uhfoph

‖2
H +

M

2
‖foph

‖2
F}

= lim inf
h→+∞

Jh(foph
)

� lim inf
h→+∞

Jh(f) = lim inf
h→+∞

{1
2
‖uhf‖2

H +
M

2
‖f‖2

F},
and so using now the strong convergence uhf → uf as
h → +∞,∀f ∈ F− (see Lemma 1), we obtain

J(f̃) � lim inf
h→+∞

Jh(foph
) � 1

2
‖uf‖2

H +
M

2
‖f‖2

F

= J(f), ∀f ∈ F−, (24)

and then, by the uniqueness of the optimal control problem
2, we obtain

f̃ = fop. (25)

Now, we prove the strong convergence of uhfoph
to η =

uf in V ∩ L∞(0, T ; H) ∩ L2(0, T ; L2(Γ1)), indeed taking
v = η in Problem 4 where u = uhfoph

and f = foph
, as

η(t) ∈ K for t ∈ [0, T ], and so η = b on Γ1, we obtain

1
2
‖uhfoph

− η‖2
L∞(0,T ;H) + λ1‖uhfoph

− η‖2
V
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+
� T

0
{Φ(uhfoph

)−Φ(η)}dt+h̃‖uhfoph
−η‖2

L2((0,T )×Γ1)

�
� T

0
(g, uhfoph

(t) − η(t))dt −
� T

0
〈η̇, uhfoph

− η〉dt

+
� T

0
a(η(t), η(t) − uhfoph

(t))

−
�

Γ3
foph

(uhfoph
− η))dsdt,

where h̃ = h − 1.

Using (20) and the weak semicontinuity of Φ, we deduce
that

lim
h→+∞

‖uhfoph
− η‖L∞(0,T ;H)

= lim
h→+∞

‖uhfoph
− η‖V

= ‖uhfoph
− η‖L2((0,T )×Γ1) = 0,

and with (23) and (25) we deduce (16). Then, from (24) and
(25), we can write

J(fop) =
1
2
‖ufop‖2

H +
M

2
‖fop‖2

F � lim inf
h→+∞

Jh(foph
)

= lim inf
h→+∞

{1
2
‖uhfoph

‖2
H +

M

2
‖foph

‖2
F}

� lim
h→+∞

Jh(fop) = J(fop), (26)

and using the strong convergence (16), we obtain

lim
h→+∞

‖foph
‖F = ‖fop‖F . (27)

Finally as

‖foph
− fop‖2

F = ‖foph
‖2
F + ‖fop‖2

F − 2(foph
, fop),

(28)

and by the first part of (19) we have

lim
h→+∞

(foph
, fop) = ‖fop‖2

F ,

and so from (27) and (28) we obtain (17). This completes
the proof.

Corollary 1 Let uhfoph
in V , foph in F−, ufop in V and

fop in F− be respectively the state systems and the optimal
controls defined in Problems 4 and 2. Then,

lim
h→+∞

|Jh(foph
) − J(fop)| = 0.

Proof It follows from the definitions (3) and (4), and
the convergences (16) and (17).

4 Conclusions
The main difference between this paper and our previ-

ous work [2] where the control variable was the function g,
is that we consider here as a control variable the function
f given by the Neumann boundary condition on Γ3. This
change induce in the variational problems 2 and 4, and also
in the proofs of Lemma 1 and Theorem 3, a new integral
term on Γ3. The main difficulty here is in Section 3, and the
question is exactly how to pass to the limit for h → +∞ in
the last integral term on Γ3 in (22). To overcome this main
difficulty we have introduced the new lemma 2, which is the
key of our problem. The idea of Lemma 1 and Theorem 3
and their proofs are indeed similar to those of our work [2]
with the differences and difficulties mentioned just above.
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et Appliquées, 1972, 51(1): 1 – 162.

[11] M. Chipot. Elements of Nonlinear Analysis. Basel: Birkhäuser, 2000.
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