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Abstract First, let ug be the unique solution of an elliptic variational inequality
with source term g. We establish, in the general case, the error estimate between
u3(μ) = μug1 + (1 − μ)ug2 and u4(μ) = uμg1+(1−μ)g2 for μ ∈ [0,1]. Secondly, we
consider a family of distributed optimal control problems governed by elliptic varia-
tional inequalities over the internal energy g for each positive heat transfer coefficient
h given on a part of the boundary of the domain. For a given cost functional and us-
ing some monotony property between u3(μ) and u4(μ) given in Mignot (J. Funct.
Anal. 22:130–185, 1976), we prove the strong convergence of the optimal controls
and states associated to this family of distributed optimal control problems governed
by elliptic variational inequalities to a limit Dirichlet distributed optimal control prob-
lem, governed also by an elliptic variational inequality, when the parameter h goes to
infinity. We obtain this convergence without using the adjoint state problem (or the
Mignot’s conical differentiability) which is a great advantage with respect to the proof
given in Gariboldi and Tarzia (Appl. Math. Optim. 47:213–230, 2003), for optimal
control problems governed by elliptic variational equalities.
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1 Introduction

Let V a Hilbert space, V ′ its topological dual, K be a closed, convex and non empty
set in V , g in V ′ and a bilinear form a : V ×V → R, which is symmetric, continuous
and coercive form on V , that to say, there exists a constant m > 0 such that m‖v‖2 ≤
a(v, v) for all v in V . It is well known [23, 26, 34] that for each g ∈ V ′ there exists a
unique solution u ∈ K , such that

a(u, v − u) ≥ 〈g, v − u〉, ∀v ∈ K, (1.1)

where 〈·, ·〉 denotes the duality pairing between V and V ′. So we can consider g �→
u = ug as a function from V ′ to K . Let ui = ugi

be the corresponding solution of
(1.1) with g = gi for i = 1,2. We define for μ ∈ [0,1]
u3(μ) = μu1 + (1 − μ)u2, g3(μ) = μg1 + (1 − μ)g2, and u4(μ) = ug3(μ).

(1.2)
In [7], we established the necessary and sufficient condition to obtain that the convex
combination u3(μ) is the unique solution of the elliptic variational inequality (1.1)
with source term g3(μ), namely

u4(μ) = u3(μ) ∀μ ∈ [0,1] if and only if α = β = 0, (1.3)

with

α = α(g1) := a(u1, u2 − u1) − 〈g1, u2 − u1〉, (1.4)

β = β(g2) := a(u2, u1 − u2) − 〈g2, u1 − u2〉. (1.5)

In Sect. 2, we establish the error estimate between u3(μ) and u4(μ) in the case
where α and β defined by (1.4) and (1.5) are not equal to zero. We obtain also some
other information concerning u3(μ) and u4(μ) which will be used in Sect. 4. We
can not obtain, for an arbitrary convex K , a needed monotony property of u3(μ) and
u4(μ) that u4(μ) ≤ u3(μ) ∀μ ∈ [0,1] [29] but we can obtain this inequality for the
complementarity free boundary problems given in Sect. 3.

In Sect. 3, we consider a family of free boundary problems with mixed boundary
conditions associated to particular cases of the elliptic variational inequality (1.1).
We study some dependence properties of the solutions to this family of elliptic varia-
tional inequalities, on the internal energy g (see more details in the complementarity
problem (3.1) or the variational inequalities (3.5) or (3.6)) and also on the heat trans-
fer coefficient h which is characterized in the Newton law or the Robin boundary
condition (3.3) (see also the variational inequality (3.6)). Note that mixed boundary
conditions play an important role in various applications [12, 35].

In Sect. 4, first for a given constant M > 0 we consider g as a control variable
for the cost functional (4.1), then we formulate the distributed optimal control prob-
lem associated to the variational inequality (3.5). We also formulate the family of
distributed optimal control problems associated to the variational inequality of (3.6),
which depend on a positive parameter h. With the above dependence properties ob-
tained in Sect. 3, the inequality obtained in Sect. 2 and by using the monotony prop-
erty [29] between u3(μ) and u4(μ), we obtain a new proof of the strict convexity of



Convergence of optimal controls for obstacle problems 377

the cost functional which is not given in [29] and then the existence and the unique-
ness of the optimal control gop holds. We obtain similar results for the optimal control
goph

. We remark here that the strict convexity of the cost functional is automatically
true (then the uniqueness of the optimal control problems holds) when the equiva-
lence (1.3) is verified.

Then, we prove that the optimal control goph
and its corresponding state ugophh

are strongly convergent to gop and ugop respectively, when h → +∞, in adequate
functional spaces. This asymptotic behavior can be considered very important in the
optimal control of heat transfer problems because the Dirichlet boundary condition,
given in (3.2), is not a relevant physical condition to impose on the boundary; the true
relevant physical condition is given by the Newton law or the Robin boundary condi-
tion (3.3) [9]. Therefore, the goal of this paper is to approximate a Dirichlet optimal
control problem, governed by an elliptic variational inequality, by Neumann optimal
control problems, governed by elliptic variational inequalities, for a large positive co-
efficient h. Moreover, from a numerical analysis point of view it may be preferable
to consider approximating Neumann problems in all space V (see the variational in-
equality (3.6)), with parameter h, rather than a Dirichlet problem in a restriction of
the space V (see the variational inequality (3.5)).

We note here that we do not need to consider the adjoint state for problems (3.5)
and (3.6) as in [10, 27] in order to prove the convergence when h → +∞. This is
a very important advantage of our proof with respect to the previous one given for
variational equalities in [10]. This fact was possible because we do not need to use
the Mignot’s conical differentiability of the cost functional [29].

Different problems with distributed optimal control governed by partial differen-
tial equations can be found in the following books [3, 25, 31, 38]. Moreover, we de-
scribe briefly some works on optimal control governed by elliptic variational inequal-
ities, see for example: [1, 30] on optimality conditions for the penalized problem, [4]
on augmented Lagrangian algorithms, [5, 6, 17, 22] on Lagrange multipliers, [39] on
quasilinear elliptic variational inequalities, [15] on estimation of a parameter involved
in a variational inequality model, [8] on optimal control problems of variational in-
equalities for Signorini problem, [32] on optimal control for variational inequali-
ties governed by a pseudomonotone operator, [13] when optimal control problem
for a variational inequality is approximated by a family of finite-dimensional prob-
lems, [14] on the identification of a distributed parameter, and [28] on regularization
techniques with state constraints. In conclusion, many practical applications ranging
from physical and engineering sciences to mathematical finance are modeled properly
by elliptic and parabolic variational inequalities (see [15, 16, 18] and their references
within them).

2 Some general results

In [7] we proved the equivalence (1.3). In order to study optimal control problems in
Sect. 4 it is useful for us, to obtain the error estimate between u3(μ) and u4(μ) when
the equivalence (1.3) is not satisfied.
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Theorem 2.1 Let u1 and u2 be the two solutions of the variational inequality (1.1)
with respectively as source term g1 and g2, then we have the following estimate

m‖u4(μ) − u3(μ)‖2
V + μI14(μ) + (1 − μ)I24(μ) ≤ μ(1 − μ)(α + β), ∀μ ∈ [0,1]

where α and β are defined by (1.4) and (1.5) respectively and

I14(μ) = a(u1, u4(μ) − u1) − 〈g1, u4(μ) − u1〉 ≥ 0,

I24(μ) = a(u2, u4(μ) − u2) − 〈g2, u4(μ) − u2〉 ≥ 0.

Proof As u4(μ) is the unique solution of the variational inequality

a(u4(μ), v − u4(μ)) − 〈g3(μ), v − u4(μ)〉 ≥ 0, ∀v ∈ K

and u3(μ) ∈ K so taking v = u3(μ) in this variational inequality, we have

m‖u4(μ) − u3(μ)‖2
V ≤ a(u3(μ),u3(μ) − u4(μ)) − 〈g3(μ),u3(μ) − u4(μ)〉.

Using that u3(μ) = μ(u1 − u2) + u2 and g3(μ) = μ(g1 − g2) + g2 we obtain

m‖u4(μ) − u3(μ)‖2
V ≤ [

a(u2, u2 − u4(μ)) − 〈g2, u2 − u4(μ)〉]

+ μ
[
a(u2, u1 − u2) − 〈g2, u1 − u2〉

]

+ μ2 [
a(u1 − u2, u1 − u2) − 〈g1 − g2, u1 − u2〉

]

+ μ
[
a(u1 − u2, u2 − u4(μ)) − 〈g1 − g2, u2 − u4(μ)〉]

≤ −I24(μ) + μβ − μ2β − μ2α + μI24(μ)

+ μ
[
a(u1, u2 − u4(μ)) − 〈g1, u2 − u4(μ)〉] ,

so

m‖u4(μ) − u3(μ)‖2
V ≤ μ(1 − μ)(α + β) − [μI14(μ) + (1 − μ)I24(μ)] ,

which is the required result. �

The result of Theorem 2.1 will be used in Sect. 4 (see Lemma 4.1). Moreover, from
Theorem 2.1 we deduce the result obtained in [7] and more information concerning
u3(μ) and u4(μ) in the following corollary.

Corollary 2.1

α(g1) = β(g2) = 0 =⇒
{

(i) u3(μ) = u4(μ) ∀μ ∈ [0,1],
(ii) I14(μ) = I24(μ) = 0 ∀μ ∈ [0,1].

Remark 2.1 We can not obtain a monotony property between u3(μ) and u4(μ) for a
general variational inequality (1.1), precisely for any convex set K . But we can obtain
it when we consider the particular obstacle problems (see Sect. 3).
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3 Dependence properties of solution of obstacle problem

Let � an open bounded set in R
n with its boundary ∂� = �1 ∪ �2. We suppose

that �1 ∩ �2 = ∅, and meas(�1) > 0. We consider the following complementarity
problem:

u ≥ 0, u(−�u − g) = 0, −�u − g ≥ 0 a.e. in �, (3.1)

u = b on �1, −∂u

∂n
= q on �2 (3.2)

and for a parameter h > 0, we consider the complementarity problem (3.1) with the
mixed boundary conditions:

−∂u

∂n
= h(u − b) on �1, −∂u

∂n
= q on �2 (3.3)

where h is the heat transfer coefficient on �1, g is the internal energy, b is the tem-
perature on �1, q is the heat flux on �2.

It is well known that the regularity of the mixed problem is problematic in the
neighborhood of some part of the boundary, see for example the book [11]. A regu-
larity for elliptic problems with mixed boundary conditions is given in [2, 24]. More-
over, sufficient hypothesis on the data in order to have the H 2 regularity for elliptic
variational inequalities are [33, p. 139]:

∂� ∈ C1,1, g ∈ H = L2(�), q ∈ H 3/2(�2) (3.4)

which are assumed from now on.
We define the spaces V = H 1(�), V0 = {v ∈ V : v|�1

= 0} and the convex sets
given by

K = {v ∈ V : v|�1 = b, v ≥ 0 in �},
K+ = {v ∈ V : v ≥ 0 in �}.

It is classical that, for a given positive b ∈ H
1
2 (�1), q ∈ L2(�2), and g ∈ H , the

two free boundary problems (3.1)–(3.2) and (3.1), (3.3) lead respectively to the fol-
lowing elliptic variational problems: Find u ∈ K such that

a(u, v − u) ≥ (g, v − u) −
∫

�2

q(v − u)ds, ∀v ∈ K (3.5)

and find u ∈ K+ such that

ah(u, v −u) ≥ (g, v −u)−
∫

�2

q(v −u)ds +h

∫

�1

b(v −u)ds, ∀v ∈ K+ (3.6)

respectively, where

a(u, v) =
∫

�

∇u∇vdx, (g, v) =
∫

�

gvdx,
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ah(u, v) = a(u, v) + h

∫

�1

uvds.

It is evident that [23]

∃λ > 0 such that λ‖v‖2
V ≤ a(v, v), ∀v ∈ V0.

Moreover [35, 36]

∃λ1 > 0 such that λh‖v‖2
V ≤ ah(v, v), ∀v ∈ V, with λh = λ1 min{1, h}

that is ah is a bilinear continuous, symmetric and coercive form on V , as a.

Remark 3.1 Note that we can easily obtain the same results of this paper for more
general problem than (3.1)–(3.2) and (3.1), (3.3) governed by elliptic variational in-
equalities under the assumption that the form a must be bilinear, continuous and
coercive.

Remark 3.2 The variational inequalities (3.5) and (3.6) are the particular cases of
(1.1) for the particular convex sets K and K+ and

〈g, v〉 = (g, v) −
∫

�2

qvds, (3.7)

〈g, v〉 = (g, v) −
∫

�2

qvds + h

∫

�1

bvds (3.8)

respectively. Moreover for g ≥ 0 in �, q ≤ 0 on �2 and b ≥ 0 on �1, then by the weak
maximum principle, the unique solution of (3.5) is in K and the unique solution of
(3.6) is in K+ for each h > 0.

For all h > 0 and all g ∈ H , we associate u = ugh
the unique solution of (3.6) and

u = ug the unique solution of (3.5).

Lemma 3.1

(a) Let ugn , ug two solutions of (3.5) with gn and g in H then we have

gn ⇀ g in H (weak) as n → +∞ then ugn → ug in V (strong). (3.9)

Moreover, we have

g1 ≥ g2 in � then ug1 ≥ ug2 in �, (3.10)

umin(g1,g2) ≤ u4(μ) ≤ umax(g1,g2), ∀μ ∈ [0,1]. (3.11)

(b) Let ugnh, ugh two solutions of (3.6) with gn and g in H and h > 0 then we have

gn ⇀ g in H (weak) as n → +∞ then ugnh → ugh in V (strong).
(3.12)
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Proof (a) Let gn ⇀ g in H as n → +∞, ugn and ug in K such that

a(ugn, v − ugn) ≥ (gn, v − ugn) −
∫

�2

q(v − ugn)ds, ∀v ∈ K. (3.13)

Set zn = ugn − B where B ∈ K such that B|�1 = b, and taking v = B in (3.13) we
obtain the following inequalities

λ‖zn‖2
V ≤ a(zn, zn) ≤ −a(zn,B) + (gn, zn) −

∫

�2

qznds. (3.14)

As gn ⇀ g in H then ‖gn‖H is bounded, then from (3.14) there exists a positive
constant C which do not depend on n such that ‖ugn‖V ≤ C. Thus

∃η ∈ V such that ugn ⇀ η weakly in V (strongly in H), (3.15)

taking n → +∞ in (3.13), we get

a(η, v − η) ≥ (g, v − η) −
∫

�2

q(v − η)ds, ∀v ∈ K. (3.16)

By the uniqueness of the solution of (3.5) we obtain that η = ug . Taking now v = ug

in (3.13), and taking v = ugn in (3.5) with u = ug , then by addition we get

a(ugn − ug,ugn − ug) ≤ (gn − g,ugn − ug),

that is (3.9).
Taking in (3.5) v = u1 + (u1 − u2)

− (which is in K) where u = u1 and g = g1.
Then taking in (3.5) v = u2 − (u1 − u2)

− (which also is in K) where u = u2 and
g = g2. By addition we get

a((u1 − u2)
−, (u1 − u2)

−) ≤ (g2 − g1, (u1 − u2)
−)

so if g2 − g1 ≤ 0 in � then ‖(u1 − u2)
−‖V = 0, and as (u1 − u2)

− = 0 on �1 we
have u1 − u2 ≥ 0 in �. This gives (3.10). Finally (3.11) follows from (3.10) because

min{g1, g2} ≤ μg1 + (1 − μ)g2 ≤ max{g1, g2}, ∀μ ∈ [0,1].
(b) It is similar to (a) for all h > 0. �

Let now g1, g2 in H , and ug1h, ug2h two solutions of the variational inequality
(3.6) with g = g1 and g = g2 respectively, and the same q and h. We define also

u3h(μ) = μug1h + (1 − μ)ug2h and u4h(μ) = u(μg1+(1−μ)g2)h.

So we obtain as in (3.11) that

umin(g1,g2)h ≤ u4h(μ) ≤ umax(g1,g2)h, ∀μ ∈ [0,1]. (3.17)
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Remark 3.3 Taking v = u+ in (3.6) we deduce that

ah(u
−, u−) ≤ −(g,u−) +

∫

�2
qu−ds − h

∫

�1
bu−ds

so for h > 0 sufficiently large we can have ugh ≥ 0 in � with g ≤ 0 in �, for given
q ≥ 0 on �2 and b ≥ 0 on �1.

Lemma 3.2 Let g1, g2 in H and ug1h, ug2h two solutions of the variational inequality
(3.6) with the same q and h. Suppose that b is a positive constant and q ≥ 0, then we
have

g ≤ 0 in � =⇒ ugh
≤ b in �, and ugh

≤ b on �1, (3.18)

g2 ≤ g1 ≤ 0 in �, and h2 ≤ h1 =⇒ ug2h2 ≤ ug1h1 in �, (3.19)

g ≤ 0 in � =⇒ ugh
≤ ug in �, ∀h > 0. (3.20)

Moreover ∀g ∈ H , ∀q ∈ L2(�2) and ∀b ∈ H
1
2 (�1), we have

h2 ≤ h1 =⇒ ‖ugh2
−ugh1

‖V ≤ ‖γ0||
λ1 min(1, h2)

‖b−ugh1
‖L2(�1)

(h1 −h2) (3.21)

where γ0 is the trace embedding from V to L2(�1) and ‖γ0‖ is its norm.

Proof Taking in (3.6) u = ugh
and v = ugh

− (ugh
− b)+ (which in K+), we get

−ah(ugh
, (ugh

− b)+)

≥ −(g, (ugh
− b)+) +

∫

�2

q(ugh
− b)+ds − h

∫

�1

b(ugh
− b)+ds,

then

ah((ugh
− b)+, (ugh

− b)+) ≤ (g, (ugh
− b)+) −

∫

�2

q(ugh
− b)+ds ≤ 0,

so (3.18) holds.
To check (3.19) we take first in (3.6) v = ug1h1 + (ug2h2 − ug1h1)

+, which is in
K+, where u = ug1h1 is in K+ with g = g1 and h = h1, and taking in (3.6) v =
ug2h2 − (ug2h2 −ug1h1)

+, which is also in K+, where u = ug2h2 is in K+ with g = g2

and h = h2, then adding the two obtained inequalities we get

ah2((ug2h2 − ug1h1)
+, (ug2h2 − ug1h1)

+)

≤ (g2 − g1, (ug2h2 − ug1h1)
+)ds − (h2 − h1)

∫

�1

(ug1h1 − b)(ug2h2 − ug1h1)
+ds

and from (3.18) we get (3.19).
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To check (3.20), let W = ugh
− ug and choose in (3.6) v = ugh

− W+ which is in
K+, so

a(ugh
,W+) ≤ (g,W+) −

∫

�2

qW+ds. (3.22)

We choose, in (3.5), v = ug + W+, which is in K because from (3.18), then we have
W+ = 0 on �1, so

a(ug,W
+) ≥ (g,W+) −

∫

�2

qW+ds. (3.23)

So from (3.22) and (3.23) we deduce that a(W+,W+) ≤ 0. Then (3.20) holds.
To finish the proof it remains to check (3.21). We choose v = ugh2

in (3.6) where
u = ugh1

, and v = ugh1
in (3.6) where u = ugh2

, adding the two inequalities we get

λ1 min{1, h2}‖ugh1
− ugh2

‖2
V ≤ (h1 − h2)‖b − ugh1

‖L2(�1)
‖ugh1

− ugh2
‖L2(�1)

≤ ‖γ0‖(h1 − h2)‖b − ugh1
‖L2(�1)

‖ugh1
− ugh2

‖V .

Thus (3.21) holds. �

Remark 3.4 The Lemma 3.2 gives as a first additional information that, for all g ≤ 0
in � and all h > 0, the sequence (ugh

) is increasing and bounded, so it is convergent
in some space. We study, in the next sections, the optimal control problems associated
to the variational inequalities (3.5) and (3.6) and the convergence when h → +∞ in
Lemma 4.2 and Theorem 4.1 for all g, without restriction to g ≤ 0 in �.

4 Optimal control problems and convergence for h → +∞
We will first study in this section two kinds of distributed optimal control problems,
their existence, uniqueness results and the relation between them. In fact the existence
and uniqueness, of the solution to the two variational inequalities (3.5) and (3.6) allow
us to consider g �→ ug and g �→ ugh as a functions from H to V , for any h > 0.

Let a constant M > 0. We define the two cost functionals J : H → R and Jh :
H → R such that [25] (see also [19–21])

J (g) = 1

2
‖ug‖2

H + M

2
‖g‖2

H , (4.1)

Jh(g) = 1

2
‖ugh‖2

H + M

2
‖g‖2

H , (4.2)

and we consider the family of distributed optimal control problems

Find gop ∈ H such that J (gop) = min
g∈H

J (g), (4.3)

Find goph
∈ H such that J (goph

) = min
g∈H

Jh(g). (4.4)
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Lemma 4.1 Let g,g1, g2 in H and ug,ug1, ug2 are the associated solutions of (3.5).
We have

‖u3(μ) − u4(μ)‖2
V + μ(1 − μ)‖ug1 − ug2‖2

V + μ

λ
I14 + (1 − μ)

λ
I24

≤ μ(1 − μ)

λ2
‖g1 − g2‖2

H . (4.5)

For ugh
, ug1h

, ug2h
the associated solutions of (3.6), we also have

‖u4h(μ) − u3h(μ)‖2
V + μ(1 − μ)‖ug2h

− ug1h
‖2
V + μ

λh

I14h + (1 − μ)

λh

I24h

≤ μ(1 − μ)

λ2
h

‖g1 − g2‖H , (4.6)

Proof For i = 1,2 we have

Ii4(μ) = a(ui, u4(μ) − ui) − (gi, u4(μ) − ui) +
∫

�2

q(u4(μ) − ui)ds ≥ 0

and therefore by using Theorem 2.1 and (3.7) we obtain

λ‖u3(μ) − u4(μ)‖2
V + μI14 + (1 − μ)I24 ≤ μ(1 − μ)(α + β), ∀μ ∈ [0,1].

As

α + β = a(u1, u2 − u1) − (g1, u2 − u1) +
∫

�2

q(u2 − u1)ds

+ a(u2, u1 − u2) − (g2, u1 − u2) +
∫

�2

q(u1 − u2)ds

≤ −a(u2 − u1, u2 − u1) + (g2 − g1, u2 − u1)

≤ −λ‖u2 − u1‖2
V + ‖g2 − g1‖H ‖u2 − u1‖H

≤ −λ‖u2 − u1‖2
V + 1

λ
‖g2 − g1‖2

H

thus (4.5) follows. (4.6) follows also from Theorem 2.1 and (3.8) as above. �

By using Lemma 4.1 and the references [3, 25], we can obtain firstly the existence
(not the uniqueness) of optimal controls gop and goph

solution of Problem (4.3) and
Problem (4.4) respectively. Then, the corresponding uniqueness of the optimal con-
trol problems can be obtained by using [29, pp. 166 and 177]. Secondly, in order to
avoid the use of the conical differentiability (see [29]) and by completeness of the
proof of the result we can do another proof of the uniqueness of the optimal control
problems which is not given in [29]. For that, we can prove two important equalities
(4.7) and (4.8) which allow us to get that J and Jh are strictly convex applications
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on H , so there exist the unique solutions gop and goph
in H to the Problem (4.3)

and Problem (4.4) respectively. This fact is also very important for us because it per-
mits us to obtain the convergence in Theorem 4.1, our mean result, without using the
adjoint state problem.

Proposition 4.1 Let given g in H and h > 0, there exist unique solutions gop and
goph

in H respectively for the Problems (4.3) and (4.4).

Proof We remark first that using Lemma 4.1 and [3, 10, 25, 29] we can obtain the
following classical results

lim‖g‖H →+∞J (g) = +∞, and lim‖g‖H →+∞Jh(g) = +∞,

J and Jh ∀h > 0, are lower semi-continuous on H weak,

so we can deduce the existence, of at least, an optimal control gop solution of Problem
(4.3) and respectively an optimal control goph

solution of Problem (4.4).
The uniqueness of the solutions of Problems (4.3) and (4.4) can be also obtained by

using [29, pp. 166 and 177]. For completeness we will prove that the cost functional J

and Jh are strictly convex applications on H which are not given in [29]. Let u = ugi

and ugih be respectively the solution of the variational inequalities (3.5) and (3.6)
with g = gi for i = 1,2. We have

‖u3(μ)‖2
H = μ2‖ug1‖2

H + (1 − μ)2‖ug2‖2
H + 2μ(1 − μ)(ug1 , ug2)

then the following equalities hold

‖u3(μ)‖2
H = μ‖ug1‖2

H + (1 − μ)‖ug2‖2
H − μ(1 − μ)‖ug2 − ug1‖2

H , (4.7)

‖u3h(μ)‖2
H = μ‖ug1h‖2

H + (1 − μ)‖ug2h‖2
H − μ(1 − μ)‖ug2h − ug1h‖2

H . (4.8)

Let now μ ∈ [0,1] and g1, g2 ∈ H so we have

μJ(g1) + (1 − μ)J (g2) − J (g3(μ))

= μ

2
‖ug1‖2

H + (1 − μ)

2
‖ug2‖2

H

− 1

2
‖u4(μ)‖2

H + M

2

{
μ‖g1‖2

H + (1 − μ)‖g2‖2
H − ‖g3(μ)‖2

H

}

and by using (4.7) for g3(μ) = μg1 + (1 − μ)g2 we obtain

μJ(g1) + (1 − μ)J (g2) − J (g3(μ)) = 1

2
{μ‖ug1‖2

H + (1 − μ)‖ug2‖2
H − ‖u4(μ)‖2

H }

+ M

2
μ(1 − μ)‖g1 − g2‖2

H . (4.9)

Following [29] we obtain the cornerstone monotony property

u4(μ) ≤ u3(μ) in �, ∀μ ∈ [0,1], (4.10)
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and as u4(μ) ∈ K so u4(μ) ≥ 0 in � for all μ ∈ [0,1], we deduce

‖u4(μ)‖2
H ≤ ‖u3(μ)‖2

H , ∀μ ∈ [0,1].
By using (4.7) we have

μ‖ug1‖2
H + (1 − μ)‖ug2‖2

H − ‖u4(μ)‖2
H

= ‖u3(μ)‖2
H − ‖u4(μ)‖2

H + μ(1 − μ)‖ug1 − ug2‖2
H

which is positive for all μ ∈ [0,1]. Finally we deduce from (4.9) that

μJ(g1) + (1 − μ)J (g2) − J (g3) ≥ μ(1 − μ)

2

{‖ug1 − ug2‖2
V + M‖g1 − g2‖2

H

}
> 0

(4.11)
for all μ ∈ ]0,1[ and for all g1, g2 in H . So J is a strictly convex functional, thus the
uniqueness of the optimal control for the Problem (4.3) holds.

The uniqueness of the optimal control of the Problem (4.4) follows using the anal-
ogous inequalities (4.9)–(4.11) for any h > 0, that is

μJh(g1) + (1 − μ)Jh(g2) − Jh(g3(μ))

= 1

2
{μ‖ug1h‖2

H + (1 − μ)‖ug2h‖2
H − ‖u4h(μ)‖2

H }

+ M

2
μ(1 − μ)‖g1 − g2‖2

H (4.12)

from

u4h(μ) ≤ u3h(μ) in �, (4.13)

so we get

‖u4h(μ)‖2
H ≤ ‖u3h(μ)‖2

H , (4.14)

and obtain

μJh(g1) + (1 − μ)Jh(g2) − Jh(g3)

≥ μ(1 − μ)

2

{‖ug1h
− ug2h

‖2
V + M‖g1 − g2‖2

H

}
> 0

for all μ ∈ ]0,1[, for all h > 0 and for all g1, g2 in H . So Jh is also a strictly convex
functional, thus the uniqueness of the optimal control for the Problem (4.4) holds. �

Remark 4.1 The Proposition 4.1 is automatically true (and then it is not necessary in
order to study the convergence given in Theorem 4.1) when the equivalence (1.3) is
verified for all g1, g2 in H .

Now we study the convergence of the state ugophh, and the optimal control goph
,

when the heat transfer coefficient h on �1, goes to infinity. For a given fixed g ∈ H ,
we have the following property which generalizes the one obtained for variational
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equality in [35, 36]. After that, we can study the limit h → +∞ for the general opti-
mal control problems.

Lemma 4.2 Let ugh
the unique solution of the variational inequality (3.6) and ug the

unique solution of the variational inequality (3.5), then

ugh
→ ug in V strongly as h → +∞, ∀g ∈ H.

Proof We take v = ug in (3.6) where u = ugh
, recalling that ug = b on �1 and h > 1,

we obtain

a1(ugh
− ug,ugh

− ug) + (h − 1)

∫

�1

(ugh
− ug)

2ds

≤ (g,ugh
− ug) −

∫

�2

q(ugh
− ug)ds +

∫

�1

b(ugh
− ug)ds − a1(ug,ugh

− ug)

≤ (g,ugh
− ug) −

∫

�2

q(ugh
− ug)ds − a(ug,ugh

− ug). (4.15)

From what we deduce that ‖ugh
− ug‖V and (h − 1)‖ugh

− ug‖L2(�1)
are bounded

for all h > 1. So there exists η ∈ V such that ugh
⇀ η weakly in V and η ∈ K . From

(3.6) we have also

a(ugh
, v − ugh

) + h

∫

�1

(ugh
− b)(v − ugh

)ds

≥ (g, v − ugh
) −

∫

�2

q(v − ugh
)ds, ∀v ∈ K+,

taking v ∈ K so v = b on �1, thus

a(ugh
, ugh

) ≤ a(ugh
, v) − (g, v − ugh

) +
∫

�2

q(v − ugh
)ds, ∀v ∈ K. (4.16)

Thus we can pass to the limit in (4.16), for h → +∞, to obtain

a(η, v − η) ≥ (g, v − η) −
∫

�2

q(v − η)ds, ∀v ∈ K.

Using the uniqueness of the solution of (3.5) we get that η = ug .
To prove the strong convergence of ugh

to ug , when h → +∞, it is sufficient to
use the inequality (4.15) and the weak convergence of ugh

to η = ug for all g ∈ H .
This ends the proof. �

We give now the main result of the paper which generalizes, for optimal con-
trol problems governed by elliptic variational inequalities, the convergence result ob-
tained in [10]. Moreover, this convergence is obtained without need of the adjoint
states. We remark here the double dependence on the parameter h in the expression
of state of the system ugophh corresponding to the optimal control goph

.
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Theorem 4.1 Let ugophh, goph
and ugop , gop are the states and the optimal controls

defined in the problems (4.4) and (4.3) respectively. Then, we obtain the following
asymptotic behavior:

lim
h→+∞‖ugophh − ugop‖V = 0, (4.17)

lim
h→+∞‖goph

− gop‖H = 0. (4.18)

Proof We have first

Jh(goph
) = 1

2
‖ugophh

‖2
H + M

2
‖goph

‖2
H ≤ 1

2
‖ugh

‖2
H + M

2
‖g‖2

H , ∀g ∈ H

then for g = 0 ∈ H we obtain that

Jh(goph
) = 1

2
‖ugophh

‖2
H + M

2
‖goph

‖2
H ≤ 1

2
‖u0h

‖2
H (4.19)

where u0h
∈ K+ is solution of the following elliptic variational inequality

ah(u0h
, v − u0h

) ≥ −
∫

�2

q(v − u0h
)ds + h

∫

�1

b(v − u0h
)ds, ∀v ∈ K+.

Taking v = B with B ∈ K+ such that B = b on �1, we get

a1(u0h
, u0h

) + (h − 1)

∫

�1

(u0h
− b)2ds ≤ a1(u0h

,B) +
∫

�2

q(B − u0h
)ds

+
∫

�1

b(u0h
− b)ds

thus ‖u0h
‖V is bounded independently of h, then from ‖u0h

‖H ≤ ‖u0h
‖V , we deduce

that ‖u0h
‖H is bounded independently of h. So we deduce with (4.19) that ‖ugophh

‖H

and ‖goph
‖H are also bounded independently of h. So there exists f and ξ in H such

that

goph
⇀ f in H (weak) and ugophh

⇀ ξ in H (weak). (4.20)

Taking now v = ugop ∈ K ⊂ K+ in (3.6) with u = ugoph
h and g = goph

, we obtain

a1(ugoph
h, ugop − ugoph

h) + (h − 1)

∫

�1

ugoph
h(ugop − ugoph

h)ds

≥ (goph
, ugop − ugoph

h)

−
∫

�2

q(ugop − ugoph
h)ds + h

∫

�1

b(ugop − ugoph
h)ds

as ugop = b on �1 we obtain
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a1(ugoph
h − ugop , ugop − ugoph

h) − (h − 1)

∫

�1

(ugoph
h − b)2ds

≥ (goph
, ugop − ugoph

h) −
∫

�2

q(ugop − ugoph
h)ds

+
∫

�1

b(b − ugoph
h)ds − a1(ugop , ugop − ugoph

h)

so

a1(ugoph
h − ugop , ugoph

h − ugop ) + (h − 1)

∫

�1

(ugoph
h − b)2ds

≤ (goph
, ugoph

h − ugop ) −
∫

�2

q(ugoph
h − ugop )ds − a(ugop , ugoph

h − ugop )

thus there exists a constant C > 0 which does not depend on h such that (as h → +∞
we can take h > 1):

‖ugoph
h − ugop‖V ≤ C and (h − 1)

∫

�1

|ugoph
h − b|2ds ≤ C,

then

ugoph
h ⇀ ξ in V weak (in H strong), (4.21)

ugoph
h → b in L2(�1) strong, (4.22)

and then ξ ∈ K .
Now taking v ∈ K in (3.6) where u = ugoph

h and g = goph
so

ah(ugoph
h, v − ugoph

h) ≥ (goph
, v − ugoph

h) −
∫

�2

q(v − ugoph
h)ds

+ h

∫

�1

b(v − ugoph
h)ds

as v ∈ K so v = b on �1, thus we obtain

a(ugoph
h, ugoph

h) + h

∫

�1

(ugoph
h − b)2ds ≤ a(ugoph

h, v) − (goph
, v − ugoph

h)

+
∫

�2

q(v − ugoph
h)ds.

Thus

a(ugoph
h, ugoph

h) ≤ a(ugoph
h, v) − (goph

, v − ugoph
h) +

∫

�2

q(v − ugoph
h)ds,
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using (4.20) and (4.21) we deduce that

a(ξ, v − ξ) ≥ (f, v − ξ) −
∫

�2

q(v − ξ)ds, ∀v ∈ K,

so by the uniqueness of the solution of the variational inequality (3.5) we obtain that

uf = ξ. (4.23)

Now we prove that f = gop . Indeed we have

J (f ) = 1

2
‖ξ‖2

H + M

2
‖f ‖2

H

≤ lim inf
h→+∞

{
1

2
‖ugoph

h‖2
H + M

2
‖goph

‖2
H

}
= lim inf

h→+∞Jh(goph
)

≤ lim inf
h→+∞Jh(g) = lim inf

h→+∞

{
1

2
‖ugh

‖2
H + M

2
‖g‖2

H

}

using now the strong convergence ugh
→ ug as h → +∞, ∀ g ∈ H (see Lemma 4.2),

we obtain that

J (f ) ≤ lim inf
h→+∞Jh(goph

) ≤ 1

2
‖ug‖2

H + M

2
‖g‖2

H = J (g), ∀g ∈ H (4.24)

then by the uniqueness of the optimal control problem (4.3) we get

f = gop. (4.25)

Now we prove the strong convergence of ugoph
h to ξ in V , indeed taking v = ξ in

(3.6) where u = ugoph
h and g = goph

we get

ah(ugoph
h, ξ − ugoph

h) ≥ (goph
, ξ − ugoph

h) −
∫

�2

q(ξ − ugoph
h)ds

+ h

∫

�1

b(ξ − ugoph
h)ds,

as ξ ∈ K so ξ = b on �1, we obtain

a1(ugoph
h − ξ,ugoph

h − ξ) + (h − 1)

∫

�1

(ugoph
h − ξ)2ds

≤ (goph
, ugoph

h − ξ) +
∫

�2

q(ξ − ugoph
h)ds + a(ξ, ξ − ugoph

h)

thus

λ1‖ugoph
h − ξ‖2

V ≤ (goph
, ugoph

h − ξ) +
∫

�2

q(ξ − ugoph
h)ds + a(ξ, ξ − ugoph

h).
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Using (4.21) we deduce that

lim
h→+∞‖ugoph

h − ξ‖V = 0,

and with (4.23) we deduce (4.17). Moreover, as f ∈ H , then from (4.24) with g = f

and (4.25) we can write

J (f ) = J (gop) = 1

2
‖ugop‖2

H + M

2
‖gop‖2

H

= lim
h→+∞Jh(goph

) = lim
h→+∞

{
1

2
‖ugoph

h‖2
H + M

2
‖goph

‖2
H

}
(4.26)

and using (4.17) the strong convergence ugoph
h → ξ = uf = ugop in V , we get

lim
h→+∞‖ugoph

h‖H = ‖ugop‖H , (4.27)

thus from (4.26) and (4.27) we get

lim
h→+∞‖goph

‖H = ‖gop‖H . (4.28)

Finally

lim
h→+∞‖goph

− gop‖2
H = lim

h→+∞

(
‖goph

‖2
H + ‖gop‖2

H − 2(goph
, gop)

)
. (4.29)

By the first part of (4.20) we obtain that

lim
h→+∞

(
goph

, gop

) = ‖gop‖2
H ,

so from (4.28) and (4.29) we get (4.18). This ends the proof. �

Remark 4.2 Much of the recent literature on optimal control problems governed by
variational inequalities (often called mathematical programs with equilibrium con-
straints (MPEC)) is focused on the numerical realization of stationary points to these
problems. See for example recent works as e.g. [16] and their references within it.
The numerical analysis of the convergence of optimal control problems governed by
elliptic variational equalities [10] is given in [37] but the numerical analysis of the
corresponding convergence of optimal control problems governed by elliptic varia-
tional inequalities given by Theorem 4.1 is an open problem.

Conclusions In this paper we have first established the error estimate between the
convex combination u3(μ) = μug1 + (1 − μ)ug2 of two solutions ug1 and ug2 for
elliptic variational inequality corresponding to the data g1 and g2 respectively, and
the solution u4(μ) = ug3(μ) of the same elliptic variational inequality corresponding
to the convex combination g3(μ) = μg1 + (1 − μ)g2 of the two data. This result
complements and generalizes the previous one given in [7].
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Using the existence and uniqueness of the solution to particular elliptic variational
inequality, we consider a family of distributed optimal control problems on the inter-
nal energy g associated to the heat transfer coefficient h defined on a portion of the
boundary of the domain. Using the monotony property [29] (see (4.10) and (4.13)) we
can obtain the strict convexity of the cost functional (4.1) and (4.2), and the existence
and uniqueness of the distributed optimal control problems (4.3) and (4.4) for any
h > 0 holds by a different way used in [29] avoiding the conical differentiability of
the cost functional. Then we prove that the optimal control goph

and its correspond-
ing state of the system ugophh

are strongly convergent, when h → +∞, to gop and
ugop which are respectively the optimal control and its corresponding state of the sys-
tem, for a limit Dirichlet distributed optimal control problems. We obtain our results
without using the notion of adjoint state (i.e. the Mignot’s conical differentiability)
of the optimal control problems which is a very important advantage with respect to
the previous result given in [10] for elliptic variational equalities.
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