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Abstract. I) We consider a system governed by a free boundary prob-
lem with Tresca condition on a part of the boundary of a material domain 
with a source term g through a parabolic variational inequality of the 
second kind. We prove the existence and uniqueness results to a fam-
ily of distributed optimal control problems over g for each parameter 
h > 0, associated to the Newton law (Robin boundary condition), and 
of another distributed optimal control problem associated to a Dirichlet 
boundary condition. We generalize for parabolic variational inequalities 
of the second kind the Mignot's inequality obtained for elliptic variational 
inequalities (Mignot, J. Funct. Anal., 22 (1976), 130-185), and we obtain 
the strictly convexity of a quadratic cost functional through the regu-
larization method for the non-differentiable term in the parabolic varia-
tional inequality for each parameter h. We also prove, when h -> +oo, the 
strong convergence of the optimal controls and states associated to this 
family of optimal control problems with the Newton law to that of the 
optimal control problem associated to a Dirichlet boundary condition. 

II) Moreover, if we consider a parabolic obstacle problem as a system 
governed by a parabolic variational inequalities of the first kind then 
we can also obtain the same results of Part I for the existence, unique-
ness and convergence for the corresponding distributed optimal control 
problems. 

III) If we consider, in the problem given in Part I, a flux on a part 
of the boundary of a material domain as a control variable (Neumann 
boundary optimal control problem) for a system governed by a parabolic 
variational inequality of second kind then we can also obtain the existence 
and uniqueness results for Neumann boundary optimal control problems 
for each parameter h > 0, but in this case the convergence when h -> +oo 
is still an open problem. 

Keywords: Parabolic variational inequalities, convex combination of 
solutions, regularization method, optimal control problems, strict 
convexity of cost functional. 

* Lyon University, UJM F-42023, CNRS UMR 5208, Institut Camine Jordan, 23 Paul 
Michelon, 42023, Saint-Etienne, France. 

** CONICET and Austral University, Mathematics Department, Paraguay 1950, 
S2000FZF Rosario, Argentina. 

D. 115mberg and F. Tr6Itzsch (Eds.): CSMO 2011, IFIP AICT 391, pp. 76-84, 2013. 
© IFIP International Federation for Information Processing 2013 

1 Int roduction 

The goal of this paper is to show the existence and uniqueness results to a 
family of distributed (see Sections 2 and 3) or Neumann boundary (see Section 4) 
optimal control problems for each parameter h > O, associated to the Newton law 
(Robin boundary condition on a part of the boundary of the material domain), 
and of another distributed optimal control problem associated to a Dirichlet 
boundary condition. The system of these optimal control problems are governed 
by free boundary problems (with Tresca boundary condition (see Sections 2 and 
4) or of an obstacle type problem (see Section 3) through a parabolic variational 
inequalities of the first (see Section 3) or second (see Sections 2 and 4) kind [2], 
[6]. An optimal control problem for elliptic variational inequality of the second 
kind is given in [9]. 

In order to prove the existence and uniqueness results we generalize for 
parabolic variational inequalities of the second kind the Mignot's inequality ob-
tained for elliptic variational inequalities [18], and then we obtain the strictly 
convexity of a quadratic cost functional through the regularization method for 
the non-differentiable term for each parameter h > O. 

We also prove, when h -> +oo, the strong convergence of the optimal controls 
and states associated to this family of optimal control problems with the Newton 
law to that of the optimal control problem associated to a Dirichlet boundary 
condition. 

We obtain these convergence without using the adjoint state which is a great 
advantage with respect to the proof given previously for optimal control problems 
governed by elliptic and parabolic variational equalities [3], [11], [12], [17]. 

These convergence when h -> +oo are valid for the optimal control problems 
given in Sections 2 and 3, and it is still an open problem for the Neumann 
boundary optimal control problem given in Section 4. 

2 Distributed Optimal Control Problems Governed 
by Parabolic Variational Inequality of Second Kind 

Let 12 a bounded open set in R N  with smooth boundary °a = ri  u r, such that 
n r, = O, and meas(fi) > O. We set V = H1 (I2), Vo = {Y E V : = O}, 

H = L2 (12), 9L = L2 (0,T;H), V = L 2 (0,T;V), and the closed convex set 
Kb = {V E V : v I rl  = b}. Let given 

b E L 2(0,T; H 1/2 (ri)), b > o, g E 1-1, g > 0, 

q E L2 ((0,T) x f2), q > O, ub E Kb. 

We consider the following variational problems [6] 

Problema 1. Let given g, q, b and ub as in (1). Find u = u, E C(0, T,H) n 
L2 (0, T; Kb) with v E 1/, such that u(0) = ub, and solution of the parabolic 
variational inequality of second kind: 

< ti, v - u > + a(u, y - u) + 0(y) - 0(u) > (g, y - u), Vy E Kb, t E (0, T). 

(1) 
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Problem 2. Let given g, q, b and ub as in (1). For all h > 0, find u = uh9  in 
C(0, T, H) n V with it E 1-/, such that u(0) = ub, and solution of the parabolic 
variational inequality of second kind 

< y - u > + ah(u, - u) + «y) - 0(u) (g,v - u) 

+h I b(v - u)ds, Vv E V, t E (0,T). 

Where ú = ut , <, > denotes the duality brackets between V' and V, a is a 
symmetric, continuous and coercive bilinear form over Vo, and is given by 

0(v) = fr2 q¡vids, 	 (2) 

and 

a(u, y) = 	VuVvdx, ah(u,v) = a(u,v) + h I uvds, (g,v) = gyds. 

Moreover from [15], [20], [21] we have that: 

3,1■ 1  > 0 such that Ah 11 VII < ah (v, v) Vy E V, with Ah = al min{1 , h} 

that is, ah is also a bilinear continuous, symmetric and coercive form on V. 

We remark that on x (0, T), Problem 1 is with the Dirichlet condition 
/Li r, = b, while Problem 2 is with the Robin's condition -Vu n = h(u - b), 
where n is the exterior unit vector normal to r . The functional comes from 
the Tresca condition on [1], [4]. 
The existente and uniqueness of the solution to each of the aboye Problem 1 and 
Problem 2, is well known see for example [7], [8], [10]. Therefore, it allows us to 
consider g u9  as a function from 1-1 to C(0, T, H) n V. 

Let M > O be a constant and 1-t +  = {g E i{ : g > 0}. We consider the 
following distributed optimal control problems defined by: 

Find gop  E 14 such that J(gbp) = min J(g), 
9E1-4 
	

(3 ) 

Find g",, E 14 such that J(go,,,$ ) = min Jh(g), 
	(4) 

go-1 +  

where the cost functional J 1-1 --> R and Jh : 1-1 -+ such that [16] (see also 
[13], [14], [22]) 

J(g) = -Huy a + 
2 	- 2 

1 	M 	
and Jh(g) = Illuh9 111+ 7 114, 	(5) 

1  

parabolic variational inequalities a main property [18] that : For any two control 
9, E 1-1, i = 1 or = 2, we have 

	

y9/91+(1-14)92 C  tiugi + 	11)u92, Vil E [0,1], 

uh(1igi+(1-p)92) < puh91  + (1 - p)ub92 	Vp  E [0 1 1 ], 

by using a regularization method for the nón-differentiable functional (see [6]). 
Then we prove the following 

Theorem 1. [6] Letuhg go9h  and u9‹,,, go, be the states and the optimalph'
controls defined in Problem 1 and Problem 2 respectively. Then, we obtain the 
following asymptotic behavior: 

liM IlUho 	 = 0, 

	

,°Ph 	, °P h-H-oo 

fim ligoph  - gop h = 0. 

3 Distributed Optimal Control Problems Governed 
by Parabolic Variational Inequality of First Kind 

We will examine in this section, some distributed optimal control problems, 
for which the strong formulation can be linked to a free boundary problems 
of complementarity type (Obstacle problems [19]), given for example by the 
following conditions: 

u> O, 	- áu - g) = 0, 	- !Jiu - g > O in .12, 	(8) 

	

u = b> O on li , -
fin 

= f on r, and u(0) = ub 	(9) 

and 

u > 0, 	- du - g) = 0, ü - 	- g > O in (7, 	(10) 

--
au 

= h(u - b) on 	--au 
= f on r2 , and u(0) = ub an 	 an 
	 (11) 

	

where (2 is a multidimentional regular domain whose boundary is 	= U r2 
with Fi n 1'2 = O. Let consider the convex set Kb as in Section 2. It is classical 
that, for a given positive b E L 2 (0, T; H4 (ro), f E L2 (0 , T; L 2  (r2)), and g E 1-/, 
the variational formulations of Problems (8)-(9) and (10)-(11) are respectively 
given by the following parabolic variational problems: 

Problem 3. Let given g, b and ub as in (1) and f E L2 (0, T; L2(r2)). Find 
u = u9  E C(0, T, H) n L 2 (0, T; Kb) with u E 11, such that u(0) = ub , and 

(6) 

(7)  

being here u9 , uhg  the unique solutions of the parabolic variational Problem 1, 
and Problem 2 respectively, and corresponding to the control g in 1-1. In order 
to prove the strict convexity of the cost functional J and Jh, we generalize for 

< ú , v - u > +a(u, u - y) > (g, v - u) - f f (v - u)ds, VV E Kb,Vt E (O, T). 
1-2  
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Problem 4.  Find u = uhy, E C(0, T, H) fl V with it E 71, such that u(0) = ub, and 

< v – u > +ah(u,u – y) > (g,v – u) + h I b(v – u)ds 

– 
 f

f (v – u)ds, VV E V, Vt E (O, T). 
r2 

where a and ah are as in Section 2. Then the existence and uniqueness of the so-
lution to Problem 3 and Problem 4, is also well known see for example [7], [8], [10]. 
Then it allows us to consider g 1–> u9  as a function from 1-1 to C(0, T, H) fl V. 
Let M > O be a constant. We consider the same family of distributed opti-
mal control problems (3)-(4) and we obtain the same results of the previous 
Theorem 1. 

Theorem 2. Let g, b, ub as in (1) and f < O in 1'2 x (O, T), we can obtain the 
same results as in Section 2, for the corresponding distributed optimal control 
problems (3)-(4) when g > O is the control variable. 

4 Neumann Boundary Optimal Control Problem 
Governed by Parabolic Variational Inequalities 
of Second Kind 

We assume in this section that the boundary of a multidimensional regular do-
main (7 is decomposed in three parts 8d2 = F1 U 1'2 U r3 with meas(Fi ) > O and 
meas(F3) > 0. 

We consider a Neumann boundary optimal control problem whose system is 
governed by a free boundary problem with Tresca conditions on a portion 1'2 of 
the boundary, with the flux f on 1'3 as the control variable, given by: 

Problem 5. 

ú – ziu= g in fl x (0,T), 

< q u = O, on r2  x (o,T), 

= q 3k > O : u = –k—
Ou 

' 
on F2 x (O, T), 

On 

u = b on Tl  x (0, T), 

--
8u 

 = 
an 

f on F3 x (0,T), 

with the initial condition 

u(0) = ub on 

and the compatibility condition on T 1  x (0, T) 

ub = b on rl x (0, T),  

where q > O is the Tresca friction coefficient on I'2 ([1], [4], [10]). We define the 
space F = L2 (0, T; L2(1'3 )). 

The variational formulation of Problem 5 leads to the following parabolic 
variational problem: 

Problem 6. Let given g, q, b and ub as in (1) and f E .F, f < 0. Find u = uf in 
C(0, T,H) fl L2 (0, T; Kb) with ü E 7t, such-  that u(0) = ub, and for t E (0, T) 

< U, v – u > +a(u, u – y) + 0(v) – 0(u) > (g, v – 	f f (v – u)ds, Vv E Kb. 

where a and are defined as in Section 2. 

We consider also the following problem where we change, in Problem 5, only 
the Dirichlet condition on x (0, T) by the Newton law or a Robin boundary 
condition. 

Problem 7. 

U – Au g in 12 x (O, T), 

< q u = O, on r2  x (0, T), 

=q 3k > O : u = –k—
Ou 

' 
on r2 x (o,T), 

On 

au 
--

On 
= h(u – b) on I'1  x (0, T), 

3u 

On 
= f on r3  x (o,T), 

with the initial condition 

u(0) = ub on 12, 

and the condition of compatibility on ri  x (0, T) 

ub = b on rl x (0,T). 

The variational formulation of the problem (7) leads to the the following 
parabolic variational problem 

Problem 8. Let given g, q, b, ub and f as in Problem 6. For all h > 0, find 
u = uhf E C(0, T, H) fl V with í E 71, such that u(0) = ub, and for t E (0, T) 

< ú, – u > +a h(u, u – y) + 0(v) – 0(u) > (g ,v – u) – I f (v – u)ds 
r3  

+h I b(v – u)ds, VV E V, 

where ah and are defined as in Section 2. 

Ou 

On 

au 

an 

1'3 

au 

9n 

au 

On 
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4.1 Neumann Boundary Optimal Control Problems 

Let M > O be a constant and we define the space ..F_ = {f E F : f < 0}. 
We consider the new following Neumannn boundary optimal control problems 
defined by: 

Problem 9. Find the optimal control fop  E F_ such that 

J(.fop) 
= miii

J(f) 	 (12) 

where the cost functional J : .7" —> R,1-  is given by 

J(f) = 2IIufIIx + 	Ilf11.2F (M > 0) 

and uf is the unique solution of the Problem 6. 

Problem 10. Find the optimal control foph  E F_ such that 

J(foph) = fria? Jh(f) 
	

(1 4) 

where the cost functional Jh : F --> lR is given by 

Jh(f ) = 2 lluhfII+ 	Ilf 11 2y (m > o, h > O) 	 (15) 

and Uhf is the unique solution of Problem 8. 

Theorem 3. Under the assumptions given in Problem 6, we have the following 

properties: 

a) The cost functional J is strictly convex on F_, 
b) There exists a unique optima! f op  E F_ solution of the new Neumannn 

boundary optimal control Problem 9. 

Proof. We give some sketch of the proof. 
i) We generalize for parabolic variational inequalities of the second kind the 

estimates obtained for convex combination of solution for elliptic variational 
inequalities [5] that is, the estimate between 

u4(p) = uph+(1_,)f2 , and u3(1,1) = Mufi + (1 — P)uf2 , 

for any two element f1 and f2 in F. 
ii) The main difficulty, to prove this result comes from the fact that the func-

tional is not differentiable. To overcome this difficulty, we use the regularization 
method and consider for e > O the following approach of defined by: 

f e (v) = f q.‘,/ e 2  + Ivi2ds, 	Vv E V, 	 (16) 
r2  

which is Gateaux differentiable, with 

qwv 	
(Vjw) , y) = 	ds 	V (w , v) E V2 . I r2  ./E2 	1 1,1,12 

We define u' as the unique solution of the corresponding parabolic variational 
inequality for all e > O. We obtain that for, all p E [0, 1] we have ul(p) 5_ ulp) 
for all e > O. 

iii) When e --> O we have that: 

ta(fi) + ( 1 - p)J(f2) - J(f3(p)) = 2  (11u3(1 )111 - 11u4(m)111) 

+2 ti(1 - 	 + --2  P( 1  — 
1 	

(19) 

Then J is strictly convex functional on F_ and therefore there exists a unique 
optimal f„, E F_ solution of the new Neumannn boundary optimal control 
Problem 9. 

Theorem 4. Under the assumptions given in Problem 6, we have the following 
properties: 

a) The cost functional Jh are strictly convex on F_, for all h > 0, 
b) There exists a unique optimal foph  E F_ solution of the new Neumannn 

boundary optimal control Problem 10, for all h > O. 

Proof. We follow a similar method to the one developed in Theorem 3 for all 
h > O. 

4.2 Open Problem 

The convergente of the new Neumann boundary optimal control Problem 10 to 
the new Neumann boundary optimal control Problem 9 when h —› oo is an open 
problem. 
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uq —4 	strongly in V n 	(0,T; H) for i = 1, 2, 3, 4, 	(17) 

(13) 	 for all p E [0,1] and therefore we get: 

O 5_ u4(p) 5_ u3(p) in (-2 x [O, 7], Vp E [0,1]. 	(18) 

iv) For all µ E10,1[, and for all f l , f2  in F, and by using .W11) = µ fl  +.( 1  — P).f2 
we obtain that: 
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