This article was downloaded by: [Domingo Tarzia]

On: 04 April 2013, At: 11:16

Publisher: Taylor & Francis

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer
House, 37-41 Mortimer Street, London W1T 3JH, UK

Applicable Analysis: An International Journal

Publication details, including instructions for authors and subscription information:
e http://www.tandfonline.com/loi/gapa20

Applicable
Analysis

Critical outflow for a steady-state stefan problem
J.E. Bouillet* * , M. Shillor** ® & D.A. Tarzia*** °

% Departamento de Matematica, Universidad de Buenos Aires,Instituto Argentino de
Matematica, Viamonte, Buenos Aires, 1636, Argentina

b Department of Mathematical Sciences, Oakland University, Rochester, MI, 43309,
U.S.A

¢ Promar (Conicet-unr), Instituto de Matematica, B.LeviFac. de Ciencias Exactas e
Ing., Avda, Pellegrini, Rosario, 250, Argentina
Version of record first published: 02 May 2007.

To cite this article: J.E. Bouillet* , M. Shillor** & D.A. Tarzia*** (1989): Critical outflow for a steady-state stefan
problem, Applicable Analysis: An International Journal, 32:1, 31-51

To link to this article: http://dx.doi.org/10.1080/00036818908839837

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.tandfonline.com/page/terms-and-conditions

This article may be used for research, teaching, and private study purposes. Any substantial or
systematic reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in
any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the
contents will be complete or accurate or up to date. The accuracy of any instructions, formulae, and drug
doses should be independently verified with primary sources. The publisher shall not be liable for any
loss, actions, claims, proceedings, demand, or costs or damages whatsoever or howsoever caused arising
directly or indirectly in connection with or arising out of the use of this material.



http://www.tandfonline.com/loi/gapa20
http://dx.doi.org/10.1080/00036818908839837
http://www.tandfonline.com/page/terms-and-conditions

Downloaded by [Domingo Tarzia] at 11:16 04 April 2013

Applicable Analysis, Vol. 32, pp. 31-51

Reprints available directly from the publisher
Photocopying permitted by license only

© 1989 Gordon and Breach, Science Publishers, Inc.
Printed in Great Britain

Critical Outflow for a Steady-State
Stefan Problem

Communicated by |. Stakgold

* k% k%
J.E.BOUILLET , M.SHILLOR , D.A.TARZIA

(*) Departamento de Matemitica, Universidad de Buenos Aires,
Ciudad Universitaria, (1428) Buenos Aires, Argentina, and
Instituto Argentino de Matemdtica, Viamonte 1636, (1055)
Buenos Aires, Argentina.

(**) Department of Mathematical Sciences, Oakland University,
Rochester, MI 43309, U.S.A.

(*%%) PROMAR (CONICET-UNR), Instituto de Matemitica "B.Levi'',
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AMS(MOS): 35R35, 35J20

Abstract: The problem of the steady temperature distribution
in a container of fluid that is kept at a given positive
temperature over a part of its boundary and is coocled with a
given rate q on the rest of the boundary is considered. It
is shown that there exists a critical ¢ _ > 0 such that for
q > q the temperature is negative in a part of the fluid
and this is interpreted as the existence of a solid phase
together with the liquid fase. For ¢ < q. the temperature
is positive and there is only liquid in the container. Vari-
ous estimates for q, are given in terms of the geometry.

KEY WORDS: Stefan problem, variational formulation, heat flux, phase change.

(Received for Publication 27 May 1988)
1. INTRODUCTION

We consider the problem of the steady temperature distribution
of a body or a container with a fluid. Our main concern is the

31
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critical cooling rate q,, on a part of the boundary that is being
cooled, such that for larger cooling rates a solid phase appears

in the system while for lower cooling rates the system remains liq-
uid everywhere.

We assume the body to be a bounded domain & C RY, with a suf-
ficiently regular boundary o0 = Tl ) TZ, Tl and TZ being dis-
joint portioms of 9 of positive (m -1)-dimensional measure.
Assuming a phase-change temperature of 0°C for the material occu-
pying 1, keep Fl at the temperature 6 =b > 0 and maintain a
heat flux q > 0 on TZ. Assuming a steady~state problem, we can
expect a phase change to take place in { if the outflow of heat
q > 0 through s is large enough: this paper is devoted to ob-

tain estimates for the critical flux 9, such that
for q < Cp 8§ >0 in O (no phase change), and
for q > qc,' 8 takes negative and positive values in
(two phases are present).

A

The temperature 5 = §(x) can be represented in the following

way:
el(x) <0, x€ Ql (solid phase)
8(x) = 0 , x€ { (free boundary) (1.1)
ez(x) >0, x € Qz (liquid phase)
where Q = Q) k’Qz U £, and satisfies the condition below
88y =0, dn Q. (i-1,2)
861 862
81 = 62 = 0, kl = kz on £ , (1.2)
on an
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a8

—sz?;=q if >0 on T,
on
ael

—kl — = g 1if 8 < 0 on T2
dan

where ki > 0 1is the thermal conductivity of phase i (i = 1 solid
phase, 1 = 2 liquid phase).

If we define the new unknown function u as follows [5,6]
u = kze - k,5 in { (1.3)

we obtain the problem (B = kzb > 0):

o (1.4)

The notation above and in the sequel is the following:

n 1is the outer normal to T

5+ |7 denotes (n-1)-dimensional
Lebesgue measure of T,

Tl’ TZ are assumed to be smooth (say Cl), but fl n , may
represent edges (RB) or corners (R2) of 3%.

On occasions (Example }), 3 = Tl U TZ U T3 where Y3 is a
part of the boundary where %% = 0; our analysis applies with minor
modifications to this case as well.

In Section 2 we present the variational formulation of (1.4).
The existence of a classical solution to this problem is well known.
We introduce several comparison theorems that will allow us to es—
timate, from above and below (Section 3) the critical flux q.-
Several examples illustrate this method.

Some of the results were presented by D.A. Tarzia in [7]. Some

related questions on the optimization of q can be found in [1].

AA B
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2. SOME GENERAL RESIULTS

Following the presentation in Section 1, we are led to the

following problem in a bounded domain §C Rn, o = jl @] TZ (dis-
joint), T,| > 0, Tyl > 0
u=20 in &,
uj-y =B > 0 on jl’ (2.1)
B =g, q> 0, on T2'
an |l

That is, we have a boundary condition of the first kind on Tl’ and
of the second kind on the portion fz of 6%, B and q are posi
tive constants, although many of our arguments apply to functions
of x € 4.

 We recall the variational formulations of (2.1): Put a(u,v)

H ‘ Ju.Vv dx,
1 {
J(v) 1= = a(v,v) + . qu dy ,
2 )72
- 1, |
K={veH () : val = B}

The unique solution u = u of (2.1) is characterized | 3,4] by

u € K,
‘ (2.2)
a(u,v-u) = - {” q{v-u)d , ¥ v EK;

"2
and also by

u €K,
(2.3)

J(u) € J{v), ¥v EK ;

In the present setting the existence of a phase change in

is equivalent to u = Up q taking negative values in . The pur-~
, .
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pose of this note is to find conditions on !, B, and q under
which this change of sign of u takes place.

OQur techniques rely on the variational formulations (2.2),
(2.3). We begin with the statement of a sequence of results that
will be useful in the sequel: their proofs are fairly standard and
can be found elsewhere (cf., [6]).

Consider, for fixed B > 0, the unique solution u=u =u

q B,q
to (2.2). We have:
a(uq_,uq_) = Irzq uq_ dy . (2.4)
uq_ #0 in Q if and only if uq_ #0 on Ty (2.5)

In other words, there will be a change of phase in {I if and
only if Uy takes negative values on T2: if uq is going to
change sign at all, uq will take negative values at points of 3

where the outflow of heat q > 0 takes place,

The function 0<q-~ Ug e HI(Q) is strictly
decreasing; (2.6)
The function 0 < q-~ (r uq dy is strictly
)_
decreasing. 2 (2.7)

Let f : RT > R be the real function defined by
1
= J == + |- dy . 2.
£(q) (uq) ) a<uq,uq) leq ug dy (2.8)
Then

f dis differentiable, f' 1is a continuous and strictly

decreasing function, and is given by (2.9)

£ =i, d
(@) J‘z g dy
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There exists a constant C > 0 such that a(uq,uq) =

2
C q , and (2.10)

’ C
£(@) = - S q” + B.|T,] q
2

The constant C = C(Q,Tl,Tz) > 0 1is given by the following

expressions:

| =

i) C (ﬁ (B-u_,)dy , for some ¢ > 0, or
)..

B
2 q

[
\
)

ffal

(2.11)
S udy
)

ii) € = a(u,u) =

where u is the solution of the following problem

a(u,v) = r v dy , ¥v € VO
2

u€ev
o

with V= {v €@H () /v[[| =0}
B .

Let q_ ==.T,.; then if q > q_,
° ¢ 2 ° (2.12)

u = u g changes sign in &.
The proof of this statement follows from the fact that

s = | y
0= fiag) = g @

The difficulty here lies with the fact that the constant C

is unknown 'a priori'.

As said before, the main purpose of this note is, for a given

Q, 30 =1, U7

B > 0, to estimate the critical heat flux ¢

2° c

such that
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q > q if and only if uq changes sign in 1§
(two-phase Stefan problem),
(2.13)

q < q, if and only if Uq = 0 in @
(heat conduction problem).

With this definition, 4, > 9

The following theorems give comparison results for solutions

u = These results will be applied in the sequel. We shall

u .
B’q
only include a proof for the second and third. The first is proved

using similar techniques.

Theorem 1
(a) Let up q be the solution to (2.1) in the sense (2.2), then

u (x) < max B(x), x €

B,q -

x €]
1
(b) Let u and u be the solutions to (2.1) in the
Bl,qy Bysd,

sense (2.2) for Bl = Bl(x), qy = ql(x) and B, = Bz(x),

= i i < B
4, qz(x) respectively., Then if Bl B, on 1

aul Ju
L _ql<x) < _qz(x) = ——= on T2, it follows that

an on

u in (.

<u
B,,q; B,,q,

Remark: We are clearly allowing functions B(x) defined on Tl

(as traces) and q(x) on [y

Corollary: A strict inequality is obtained in the theorem above if

either of the inequalities on Fl or TZ is strict.

O = - = . = =
Theorem 2. Assume 3% Tl U TZ Ty LJ12, with 5 C Tl, T2 C I

and let u,a be the solutions, in the sense (2.2), of

27
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bu=0 din O, ©v|T, =B, =) = -q(x), and
33\?2
fu=0 dn 0, ul, =8, =% =--q(),
?n}T2
with &> 2% o 52 C ?2, i.e. q(x) < E(x) on F2. Then u > u
an on
in .

Proof. Put 2z = (; - u)+. We shall show that =z = 0O,
First we show that v =u+ z €K = {v € HI(Q) : vIT, = B} and
v=u+2z€EK,

As u<3B in { (Theorem l.(a)) we have E(Tl VT, <B and,

obviously, U!Tl \ I, = 3.

Hence U - uly \ ?l < 0 and therefore Z}Tl \ ?l = 0. We clearly
have U - u \F] = 0, whence we conclude that z[7, = 0.
Take now v =u 42z : v E Hl(ﬁ) and ;{?1 = fol + zf?l =B + (0 =

B, therefore v € K. Similar arguments show that v = u + z € K,
Replacing these ,v in the variational formulation (2.2) for u

and u gives

0<alz,2) = a(u-wF@-w? = a@-u,2) =

{ ~
= Fazdy+ f? q z dy =
4‘2 )—2
f ~ { ~
=, (q+@Qzdy %\, qzdy <0
i )lZ\FZ
rhus ;ﬂ<7<5 -0 D ax - 0, and as (u —u)+:T1 =0 it follows

. ~ + . = - ~ ~ .
that (u-u) =0 in &, giving u>u in 0, as desired.

We shall now consider q, = qC(Q) as a function of the domain

. Let ﬁl and QZ be two bounded domains, with regular bound-

aries, such that
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SN
8, = ril) U, (2.15)
52, = f’§2) ur,

where the boundary conditions on Tgl) (i=1,2) and FZ are of the

same type as the ones defined before.

Let u; (i=1,2) be the solution to problem (2.2) for the

R . (1) - -
$i. T .= ) =
domain {5 with data B on Iy and 4 ql(x) on T, (i=1,2),

that is

a.(u.,v-u.) = - |, q.(v-u.)dy , ¥v EK. ,

ivd i /\;2 i i i (2.16)
u. € K. (i=1,2)

i i

where

K, = {vE& Hl(Qi) /v{?ii) = B:,

(2.17)
a (u,v) = . Vuvdx (i=1,2).
jay
Theorem 3. Under the hypotheses above, we obtain:
< T < in O, . .
q; < q, on T, = u, vy in G (2.18)

Proof. To prove (2.18) we must show that 2z = 0 in (}, where =z =

- + Lo ! (1) _ () =
(u2 ul) € H (ml). Clearly, z\il = 0 because ™ IS Gy
By using (2.16) with vy o=y +z € Kl’ we have

a,(u,,z) = - fﬂ q, z dy . (2.19)
1Y im0

If we extend by O the function =z to the whole set & and we

+ z €K in (2.16), we obtain

put v2 = u2 2
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{ o
- JT qy 2 &y = az(uZ,Z) = Jﬂzvuz.wz dx =

.
= JRITUZ.VZ dx = a;(uy,2) . (2.20)

From (2.19) and (2.20) we obtain
< - ; - i} <
0 al(z,z) al(uz ul,z) Jrz<ql qz)z dy < 0,

=

that is z = 0 in £y

Corollary. Let Ql and QZ be as above, i.e. they satisfy the

conditions in (2.15). Then, we have that
o) < o .
a.,) < q @) (2.20)

that is, q, = qc(ﬂ) is anon-increasing function of the domain ()

where the order is represented by conditions (2.15).

Proof. It is enough to put g, = ¢, (=q) in Theorem 3.
2100t & Y

Remark. Let 2C RZ be the set defined, in pclar coordinates, by

Qo= (zr,9) / r (¢) < T <R, 0<¢< 2},
(2.22)

0<R,<r (¢) <R <R, ¥ E[0,21) (Ry < R).

Consider the following annular domains

2 {(r,d) /Rl<r<R, 0 <4< 27}

2, = {(r,0) /Ry <t <R, 0<¢c< 21

which satisfythe inclusions Ql cac Qz . employing the values for

qC(Ql) and qC(QZ) (cf. Example 2, Sect. 3) we obtain

- B
~———ji—??— qc(u) < —x (2.23)
R log = R log —
Ra Ry

N
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3. ESTIMATES FOR q.
Two estimates for the critical flux q, can be obtained using

Theorem 1. Sect.2:

Theorem 4. (i) Let w denote the solution of Aw =0 in &,

w|, =B, w\TZ = 0; (3.1)

) . (3.2)

Define q = inf (- —El
- .
12 On’l

Then q < q; implies uq Zw=20 in Q.

As w= 0 in @, this implies q; < g

(ii) Let Py = T2 and the affine function T be such that

H\Tl > B, W(pz) =0, ﬂifz >0 (3.3)
and put
a, = swp (-7 (%), (3.4)
XEFZ on

Then q > 4 implies u_ < 1 in

iid < .
(1i1) uq(pZ) < 0 for all q > qqs and therefore q, < qq

On the other hand, w <7 in % and, if w # 7T we have 4 < -

Remark. A sufficient condition for such 7 to exist is the exist-

ence of supporting hyperplanes ¢ to { at P, < TZ which are

a positive distance away from TI: construct an affine function
vanishing on 0 (and at p2), and such that W\Tl 2 B, and there
is Py € fl with ﬂ(pl) = B. The optimal qg can be obtained by

selecting Pys O = Op such that dist(o,fl) is largest.
2
This construction fails if Tz is a flat portion of 30, e.g.

the side of a triangle &C RZ, Tl being formed by the other two

sides.
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The fact that uq(pz) < 0 suggests that the second phase
o (cf. (2.5)).

In many cases (cf. Examples below) the function 7 can be

appears at p, € TZ’ the point "farthest" from

obtained by satisfying (3.3) and w(pl) = B, where Py S fl’ P, €
Tz and dist(pl,pz) =Xi;¥ dist(x,Tl). There is no uniqueness in
general for the points Py S fl’ Py S FZ. For instance, in Example
1. there are many py = (0,y) and Py = (xo,y), with y € [O,yo].

In the following examples the functions w and/or © can be
found explicity, leading to the determination of q; and/or qg-
The straightforward computations are omitted.

- 2 :
Example 1. & = (0,x ) x(0,y ) C R, T, ={0}x[0,y I,

T, = {xo} X[O,yo] s Tg= (0,x) x{0} U (0,x,) x{yo}. We obtain

T(x) = w(x) =B - il X .

Therefore 4, = 4; =9, = B/Xo'

Example 2. Anular region: 2 = {(r,d): r; <= (x2 +y2)l/2 < Ty,

0< ¢ < 21} C R

0= {(ry¢): ¢ = r;, 0<¢< 2mk
Ty = {(ry¢): v = r,, 0<9< 2nt
T
2
log —
We obtain w(r) = B L
2
log —
1
B
= ' = —_— =
q; = W (rz) 5 T, Qo
r~ log —
T
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]3;(1:2 ~x)
T(x,y) = M(x) = ———
ry -1,
B cos ¢ _ B
4y = max = H
¢ <27 — —
O0s¢p <2 Ty -1, r, -1,

obviously, qq > q,-

Example 3. Spherical shell: @ = {(r,¢,X) : r, < r :=

1
2,2, 2.1/2 : 3L,
(x" +y" + 29 < CRGTY {fr=r0 3 T,=4
r,r
1 72 1 1
w(r) =B (=~-—=),
r-r, T 1,
' » Br1
qp = -w' (ry) = ————=q_
- (r, ~ )T
2 1772
T, - x
T(x) = B ———— (as in Example 2.).
r, - 1)
Th f =—B.___>
erefore, q 3 .
2 701

Example 4. Let R > 0, 0 <& _ < 7/2

o]
2= {(r,9) :r := (x2 + yz)l/2 < R C R2,
I'N={(r,0 :xr = R, -eo<¢<eo},
= r,d) :r = R, 6, <0< —60}
B
T(r,d) = 1{x) = (x + R)

R(1 + cos GO)

43
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4, = max(n'(x).cos ¢) = B q

(x,y)=(r,¢) €T, R(l + cos &) ¢’

The upper estimate 4 for 1, relies on the construction of
a linear "barrier" 1 to the solution u(x) of (2.1); as remarked
before this in turn depends strongly on the geometry of the portion

[y of 09 (e.g. "strict convexity"). We discuss now the use of

Poincaré type barriers to compute a value - Let ¢ € TZ be
such that there exists x ¢ qQ, ’Xo -& =a>0, {x:]x- xo[< al
NG ={c;. The Poincaré barriers at £ € r, are (cf. [2])

V(x,£)=c(i——#ﬁ), C>0, n>3;
a |x-x_|
ol |
Ix -~ %4
= C log ( -— ), €>0, n=2
a

The following properties of V are straightforward

Lemma. (i) 4 V(x,8) =0 in O
XX,
(1) 7 V(x,8) = (n - 2) ¢ S, n=>3;
) \x—xo]
X - XO
=C ‘ 5 s 0= 2
RN
o
N . (x-x_) .n(x)
(i) wxer,, SBE o o,
an(x) ix -x |
[s]
. av(x,£ V(L C
(iv)  wxer,, L0 NED L (g
on(x) an(g) a

Let p, €7 , p, €T be such that d = sup dist(x,l,) =
1 1 2 2 s 1
‘ B ~
Py = py| > 0. Denote V(x,8) = Va’c(x,g) , with £ = p, .
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Theorem 5. Assume

(a) V[?lzB if and only if V(p;,£) =B ;

BVa’C(x,E)

(b) Let qy = inf - inf
Va,c(pl,£)=B x €F2 an(x)
- inf < nc-1>' (3.5)
Va,c(pl’£)=B a

Then if uq is the solution to (2.1), q > dy implies V(x,g) >
uq(x) in 0 . Therefore uq(g) < 0, and if 4. is the critical
value for {,B, then 4 < dy-

Remark. (a) 1s an immediate consequence of the monotonicity of V

on X - xo}, for special domains (cf. Examples).

Proof. Apply Theorem l, part (b) to uq(x) and V(x,&):

Assuming V(pl,g) = B, we have V = uq on Tl by (a).

4 .
=-a<-gqy < V(x,E) , ¥x € FZ , after selection of

n(x)

Now —
the parameters a,C in the definition of V.

Example 5, As an application we shall compute qv(> qc) for the
anular region in Example 2 above: Put X, = (xO,O), P, = (rl,O),

Py = £ = (r2,0), X 2Ty > T, a=x, - T Then, V(x,£) =

o 2°

jx—xo[ atr,-T,

C log ——— and the condition V(pl,E) = B is C.log(——)
a a
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_ ; [ B
Hence 9y = inf = inf puT—
a+r2—rl a a>o0 a log( 2 1)
C log (———3———)=B £ a
1 !
=B .,—— , with f(a) = a log (1 + )
sup f(a) a
a>0

The analysis of f(a) is easily accomplished in the usual way,

yielding sup f(a) = Ty-ry, whence
a>0

-2 , same value as in Example 2.
Ty -1y

1y

As the previous example shows, letting a - « when TZ has
convexity properties "flattens" the Poincaré barrier yielding the
same upper bound given by the plane barrier. It is precisely the
case when this plane barrier is not available that suggests employ-
ing the functions V.

Consider a domain - C {(x,y): x < 0} C RZ, such that 72 C n
be the segment {(0,y): -1 < y < 1} and such that there exists an
open triangle T with vertices (0,1), (0,-1), (-A,0), A > 0, con-
tained in . Notice that TZ is a common boundary to both re-
gions, so if we define FET) as being composed of the two sides
joining (0,-1), (-A,0) and (0,1) of T, we can apply Theorem 3 to

obtain
9. (D < q (T) < q = qu(D).

Therefore we will compute for T:

dy

Example 6. By symmetry we take £ = p2=(0,0) € TZ' In order to
find the distance between fl and x = (a,0) 1in the definition
lx-x |
V(x,8) = €. log —— ,
a
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we easily compute

sC

distance (x ,l,) = /1 + a2 if a >l
o’ 1

A

=a—+.é_ if a(l

/1 + A2 A

distance(xo,l_"l)
V=B on I‘l’ provided C.log ——————— =B .
a

The reasoning now parallels that of Example 5 and

B B
/l +a2 | a+A
—) sup (a log (
a 0<a <i a J1+A
A (3.7)

9y = min

sup (a log )

az

o

Case a = 1/A:

The analysis of the function f(a) = % log (1 + ——12—) leads to
a

2
solving 1422 = a2 o(2/(1Ha™),

a, "~ 0.5049 where f'(ac) =0, with f' <0 for a > a.-

this gives a critical point

Therefore,
sup (a log /1 +—% ~ 0.4026 = f(ac) if a, = 1/A,
a>—l— a

A

= £(1/4)

1 log /l + A2 if a < 1/A.
A

Case a < l/A:

The discussion of g(a) = a log ( ath ) = a log (o + Q)’
a »_/l+A a
o = L 5 R = A , leads to a critical point a® that
;l+A I+A

satisfies (o + —BE) log (o + %)-—- B or, putting z = o +
a a a® a

z log z =12z -0, 0 < z< 1, Standard considerations (namely,
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- . . c .
secant and tangent line approximations to 2z ) give, for 2¢ :=
o+ —%—, the estimates

c
e —qgle - 1) <z <e -
whence for a® ome has

A c A

1
R < a2
e f+al - 2 e(A+aZ - 1) 4

Moreover, the graph of g(a) shows that g(ac) > g(%) = % log /1+A2
and therefore, if a, "~ 0.5049 < 1/A in Case 1 (i.e. A < 2) we find
by (3.7)

B < B(e ¢l+A2 - 2)

for instance.
2 b
(e V -
A lOg \e 1+A 1)

g(a®

dy

vl+A2

Remark., A lower bound for 9 is readily found observing that the
plane 7 such that W}TZ =0, 7n(-A,0) =B satisfies also
B
7T < B, g .
) B We therefore have n q.
We introduce now a variant of the Poincaré barriers used above

to examine our last

Example 7. Put & = {(x,y): -E<x<E, -h<y<h}, E>0, h>0.
Define Fl as being composed of top and bottom sides of this rect-
angle, and Tz as being made of the two vertical sides. We main-

tain a temperature B > 0 on and ask for the minimum heat flux

I
q on TZ for which the zome {%x,y) €2 1 ulx,y) > 0} (whose
boundary obviously contains Tl) be disconnected, a region where
u < 0 joining the two components of ?2'
Clearly, if is enough to consider 2 N {x > 0, y > 0, set

X, = (E + a, 0), £ = (E,0), observe that the point in Fl nearest
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to x, is Py = (E,h), put d := h2 + a2 and define, with 1 <
§ < 4 s
: |z, |
[¢]
log (—
Sa
V(x,£) = B.
d
log (=)
Sa

With the choice of constants we have V(pl,i) = B, whence

V[Fl > B, With an argument already employed, select

q,, = B - e B 8§ _ __eBS
v d 2 + a2

sup  (a log (<%)

0<a <Q' da

§
and according to Theorem 1 (b). Sect. 2, if q > qy» uq < V(x,£8)

in . But V(x,£) = 0 if {x—xo[ =8 a > a, and therefore Ug <0
in a circular segment that penetrates §a-a into (. Hence if
a(s-1) > E the zone uq > 0 1is not connected. We now optimize
the choice of a,§.

We want to have a(8-1) > E with the restrictions 1 < § <

2,2
7hta . Putting n = da reduces the problem to find a,n so

a
that n~a > E and a < n </h2+a2 or

E+a<nc« /h2+a2 .

A discussion of the functions of a > 0, n =E+4+a and n =
2+a2 yields
(i) No solution if h < E (which is obvious);

(ii) if h > E, the region

AA C
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h2 - E2

2E

D= {(a,m): 0 <a < , a+ E <n< /%2 + az}

In terms of a,n we need, for h > E,

e Bn

inf q,, = inf
v (a,m)ED a ;h2+a
h2 - E2
The minimum value is attained at a = ———— , giving
2E
inf q = 2e EB
Vo2 —E2
2 2 2 2
with a = h-E , &= Ei—i~hi = g—. For this value § ,V(x,%)
2E E" - h a

is not defined.

By theorem 3 Sect. 2, the same phenomenon is found for any

domain 2 D ) such that FZ = Tz, if temperature B > 0 is main-
tained on AT, =T, .
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