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a b s t r a c t

In this paper, we consider a family of simultaneous distributed-boundary optimal
control problems (Pα) on the internal energy and the heat flux for a system
governed by a mixed elliptic variational equality with a parameter α > 0 (the
heat transfer coefficient on a portion of the boundary of the domain) and a
simultaneous distributed-boundary optimal control problem (P ) governed also by
an elliptic variational equality with a Dirichlet boundary condition on the same
portion of the boundary. We formulate discrete approximations (Phα) and (Ph) of
the optimal control problems (Pα) and (P ) respectively, for each h > 0 and for each
α > 0, through the finite element method with Lagrange’s triangles of type 1 with
parameter h (the longest side of the triangles). The goal of this paper is to study
the convergence of this family of discrete simultaneous distributed-boundary mixed
elliptic optimal control problems (Phα) when the parameters α goes to infinity
and the parameter h goes to zero simultaneously. We prove the convergence of the
family of discrete problems (Phα) to the discrete problem (Ph) when α → +∞,
for each h > 0, in adequate functional spaces. We study the convergence of the
discrete problems (Phα) and (Ph), for each α > 0, when h → 0+ obtaining
a commutative diagram which relates the continuous and discrete simultaneous
distributed-boundary mixed elliptic optimal control problems (Phα) , (Pα) , (Ph)
and (P ) by taking the limits h → 0+ and α → +∞ respectively. We also study
the double convergence of (Phα) to (P ) when (h, α) → (0+, +∞) which represents
the diagonal convergence in the above commutative diagram.
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1. Introduction

We consider a bounded domain Ω in Rd whose regular boundary Γ consists of the union of two disjoint
portions Γi, i = 1, 2, with |Γi| > 0, where |Γi| denotes the (d − 1)-dimensional Hausdorff measure of the
portion Γi on Γ . The outward normal vector on the boundary is denoted by n. We formulate the following
classical steady-state heat conduction problems with mixed boundary conditions [1–5]:

− ∆u = g in Ω , u
⏐⏐
Γ1

= b, −∂u

∂n

⏐⏐
Γ2

= q, (1.1)

− ∆u = g in Ω , −∂u

∂n

⏐⏐
Γ1

= α(u − b), −∂u

∂n

⏐⏐
Γ2

= q, (1.2)

here u is the temperature in Ω , g is the internal energy in Ω , b = Const. > 0 is the temperature on Γ1 for
he system (1.1) and the temperature of the external neighbourhood on Γ1 for the system (1.2) respectively,
is the heat flux on Γ2 and α > 0 is the heat transfer coefficient on Γ1, which satisfy the hypothesis:
∈ H = L2(Ω) and q ∈ Q = L2(Γ2).
Throughout the paper we use the following notation:

V = H1(Ω), V0 = {v ∈ V/v = 0 on Γ1},

K = {v ∈ V/v = b on Γ1} = b + V0,

a(u, v) =
∫
Ω

∇u ∇v dx, L(v) =
∫
Ω

gv dx −
∫
Γ2

qγ(v) dΓ ,

aα(u, v) = a(u, v) + α

∫
Γ1

γ(u)γ(v) dΓ , Lα(v) = L(v) + α

∫
Γ1

bγ(v) dΓ ,

here γ : V → L2(Γ ) denotes the trace operator on Γ . In what follows, we write u for the trace of a function
∈ V on the boundary. In a standard way, we obtain the following variational formulations of (1.1) and

1.2), [6]:
find u ∈ K such that a(u, v) = L(v) for all v ∈ V0, (1.3)

find uα ∈ V such that aα(uα, v) = Lα(v) for all v ∈ V. (1.4)

he standard norms on V and V0 are denoted by

∥v∥V =
(

∥v∥2
L2(Ω) + ∥∇v∥2

L2(Ω ;Rd)

)1/2
for v ∈ V,

∥v∥V0 = ∥∇v∥L2(Ω ;Rd) for v ∈ V0.

t is well known by the Poincaré inequality, see [7,8], that on V0 the above two norms are equivalent. Note
hat the bilinear, symmetric and continuous forms a and aα are coercive on V0 and V respectively, that
s, [9]:

∃λ > 0 such that a(v, v) = ∥v∥2
V0 ≥ λ∥v∥2

V for all v ∈ V0, (1.5)

∃λα > 0 such that aα(v, v) = ∥v∥2
V0 ≥ λα∥v∥2

V for all v ∈ V (1.6)

here λα = λ1 min{1, α}, with λ1 > 0 the coerciveness constant for the bilinear form a1, [9,10].
We remark that, under additional hypotheses on the data g, q and b, problem (1.1) can be considered as

teady-state two-phase Stefan problem, see [5,6,10,11].

We consider the following continuous optimal control problems [12–14]:
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(P ) A simultaneous distributed and Neumann boundary optimal control problem, given by:

find (g, q) ∈ H × Q such that J(g, q) = min
(g,q)∈H×Q

J(g, q) (1.7)

with
J(g, q) = 1

2∥ugq − zd∥2
H + M1

2 ∥g∥2
H + M2

2 ∥q∥2
Q (1.8)

where ugq is the unique solution to the variational equality (1.3) for g ∈ H and q ∈ Q, zd ∈ H given
and M1 and M2 are positive constants given.

(Pα) For each α > 0, the simultaneous distributed and Neumann boundary optimal control problem:

find (gα, qα) ∈ H × Q such that Jα(gα, qα) = min
(g,q)∈H×Q

Jα(g, q) (1.9)

with
Jα(g, q) = 1

2∥uαgq − zd∥2
H + M1

2 ∥g∥2
H + M2

2 ∥q∥2
Q (1.10)

where uαgq is a solution to the variational equality (1.4) for g ∈ H, q ∈ Q and α > 0, zd ∈ H is given
and M1 and M2 are positive constants.

In relation with the simultaneous optimal control problems (1.7) and (1.9), we define the adjoint states,
as the unique solutions of the variational equalities, [12]:

find pgq ∈ V0 such that a(pgq, v) = (ugq − zd, v)H for all v ∈ V0, (1.11)

find pαgq ∈ V such that aα(pαgq, v) = (uαgq − zd, v)H for all v ∈ V. (1.12)

The unique continuous simultaneous vectorial optimal controls (g, q) and (gα, qα) can be characterized,
ollowing [12,15], as a fixed point on H × Q for suitable operators W and Wα over their optimal adjoint
ystem states pg q ∈ V0 and pαgα qα

∈ V , defined by:

W : H × Q → H × Q such that W (g, q) = (− 1
M1

pgq,
1

M2
pgq)

Wα : H × Q → H × Q such that Wα(g, q) = (− 1
M1

pαgq,
1

M2
pαgq).

The limit of the optimal control problems (1.9) when α → +∞ was studied in [12] and it was proved that:

lim
α→+∞

uαgα qα
− ug q


V

= 0, lim
α→+∞

pαgα qα
− pg q


V

= 0,

lim
α→+∞

∥(gα, qα) − (g, q)∥H×Q = 0

here the norm in H × Q is defined by:

∥(g, q)∥2
H×Q = ∥(g)∥2

H + ∥q∥2
Q, ∀(g.q) ∈ H × Q.

Now, we consider the finite element method and a polygonal domain Ω ⊂ Rn with a regular triangulation
ith Lagrange triangles of type 1, constituted by affine-equivalent finite element of class C0 being h the
arameter of the finite element approximation which goes to zero [16,17]. Then, we discretize the elliptic
ariational equalities for the system states (1.3) and (1.4), the adjoint system states (1.11) and (1.12), and the
ost functional (1.8) and (1.10), respectively. In general, the solution of a mixed elliptic boundary problem
elongs to Hr(Ω) with 1 < r ≤ 3/2 − ϵ (ϵ > 0), but there exist some examples which solutions belong to
r(Ω) with 2 ≤ r [1,4,18].
3
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The goal of this paper is to study the numerical analysis, by using the finite element method, of the
convergence results corresponding to the continuous simultaneous distributed-boundary elliptic optimal
control problems (1.7) and (1.9) when α → +∞. Moreover, the following commutative diagram which relates
he continuous simultaneous distributed-boundary mixed optimal control problems (Pα) and (P ), with the
iscrete simultaneous distributed-boundary mixed optimal control problems (Phα) and (Ph) is obtained by
aking the limits h → 0+, α → +∞ and (h, α) → (0+, +∞) as follows:

Problem (Pα)

(gα, qα), uαgαqα
, pαgαqα

Problem (P )

(g, q), ug q, pg q

Problem (Phα)

(ghα, qhα), uhαghαqhα
, phαghαqhα

Problem (Ph)

(gh, qh), uhghqh
, phghqh

h → 0+ h → 0+

α → +∞

α → +∞

(h, α) → (0+, +∞)

where (gh, qh), uhghqh
and phghqh

are the optimal control, system state and adjoint state of the discrete
imultaneous distributed-boundary optimal control problem (Ph) for each h > 0, and (ghα, qhα), uhαghαqhα

nd phαghαqhα
are the optimal control, the system state and adjoint state of the discrete simultaneous

distributed-boundary optimal control problem (Phα) for each h > 0 and α > 0, respectively.
The study of the limit h → 0+ of the discrete solutions of optimal control problems can be considered as

classical limit, see [19–30] but the double limit (h, α) → (0+, +∞) can be considered as a new ones for a
ectorial control problem.

The paper is structured as follows. In Section 2, we formulate the discrete elliptic variational equalities
or the system states uhgq and uhαgq, we define the discrete cost functional Jh and Jhα, we formulate

the discrete simultaneous distributed-boundary optimal control problems (Ph) and (Phα), and the discrete
lliptic variational equalities for the adjoint states phgq and phαgq for each α > 0 and h > 0. We obtain

properties for the discrete optimal control problems and we define contraction operators Wh and Whα

which allows obtain the optimal controls (gh, qh) and (ghα, qhα) as fixed points. In Section 3, we study the
onvergences of the discrete optimal control problems (Ph) to (P ), and (Phα) to (Pα) when h → 0+ (for each

α > 0). In Section 4, we study the convergence of the discrete optimal control problems (Phα) to (Ph) when
α → +∞ (for each h > 0) and we obtain a commutative diagram which relates the continuous and discrete
optimal control problems by taking the limits h → 0+ and α → +∞. In Section 5, we study the double
onvergence of the discrete optimal control problems (Phα) to (P ) when (h, α) → (0+, +∞) and we obtain

the diagonal convergence in the previous commutative diagram. In Section 6, we obtain the relationship and
estimations among the optimal values J(g, q), J(gh, qh), Jh(gh, qh) and Jh(g, q) corresponding to the optimal
ontrol problems (P ) and (Ph) and the same estimations corresponding to the optimal control problems (Pα)
nd (Phα). In Section 7, we formulate the conclusions of this paper.

2. Discretization by finite element method and properties

In this section, we consider the finite element method and a polygonal domain Ω ⊂ Rn with a regular
riangulation with Lagrange triangles of type 1, constituted by affine-equivalent finite element of class C0

being h the parameter of the finite element approximation which goes to zero [16,17]. We can take h equal

4
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to the longest side of the triangles T ∈ τh and we can approximate the sets V, V0 and K by:

Vh =
{

vh ∈ C0(Ω̄)/vh|T ∈ P1(T ), ∀T ∈ τh

}
,

V0h = {vh ∈ Vh/vh = 0 on Γ1} , Kh = b + V0h

here P1 is the set of the polynomials of degree less than or equal to 1. Let πh : C0(Ω̄) → Vh be the
orresponding linear interpolation operator. Then there exists a constant c0 > 0 (independent of h) such
hat ∀v ∈ Hr(Ω), 1 < r ≤ 2, [16]:

∥v − πh(v)∥H ≤ c0hr∥v∥r (2.1)

∥v − πh(v)∥V ≤ c0hr−1∥v∥r. (2.2)

he discrete cost functional Jh, Jhα : H × Q → R+
0 are defined by:

Jh(g, q) = 1
2 ∥uhgq − zd∥2

H + M1

2 ∥g∥2
H + M2

2 ∥q∥2
Q (2.3)

Jhα(g, q) = 1
2 ∥uhαgq − zd∥2

H + M1

2 ∥g∥2
H + M2

2 ∥q∥2
Q. (2.4)

here uhgq and uhαgq are the discrete system states defined as the solution of the following discrete elliptic
ariational equalities [9,31]:

uhgq ∈ Kh : a (uhgq, vh) = (g, vh)H − (q, vh)Q, ∀vh ∈ V0h, (2.5)

uhαgq ∈ Vh : aα (uhαgq, vh) = (g, vh)H − (q, vh)Q + α

∫
Γ1

bvhdγ, ∀vh ∈ Vh. (2.6)

he corresponding discrete distributed optimal control problems consist in finding (gh, qh), (ghα, qhα) ∈
× Q such that:

Problem (Ph) : Jh (gh, qh) = min
(g,q)∈H×Q

Jh(g, q), (2.7)

Problem (Phα) : Jhα (ghα, qhα) = min
(g,q)∈H×Q

Jhα(g, q) (2.8)

nd their corresponding discrete adjoint states phgq and phαgq are defined respectively as the solution of the
ollowing discrete elliptic variational equalities:

phgq ∈ V0h : a (phgq, vh) = (uhgq − zd, vh)H , ∀vh ∈ V0h (2.9)

phαgq ∈ Vh : aα (phαgq, vh) = (uhαgq − zd, vh)H , ∀vh ∈ Vh. (2.10)

emark 2.1. We note that the discrete (in the d-dimensional space) distributed optimal control problem
Ph) and (Phα) are still an infinite dimensional optimal control problem since the control space is not
iscretized.

emma 2.2.

(i) For all (g, q) ∈ H × Q, b > 0 on Γ1, there exist unique solutions uhgq ∈ Kh and phgq ∈ V0h of the
elliptic variational equalities (2.5) and (2.9), respectively, and uhαgq ∈ Vh and phαgq ∈ Vh of the elliptic
variational equalities (2.6) and (2.10), respectively.
5
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(

(

ii) The operators (g, q) ∈ H × Q → uhgq ∈ V , and (g, q) ∈ H × Q → uhαgq ∈ V are Lipschitzians,
i.e., ∀(g1, q1), (g2, q2) ∈ H × Q, ∀h > 0

∥uhg2q2 − uhg1q1∥V ≤ (1 + ∥γ∥)
√

2
λ

∥(g2, q2) − (g1, q1)∥H×Q ,

∥uhαg2q2 − uhαg1q1∥V ≤ (1 + ∥γ∥)
√

2
λα

∥(g2, q2) − (g1, q1)∥H×Q .

where ∥γ∥ is the norm of the trace operator.
ii) We have, ∀(f, η) ∈ H × Q the following equalities:

a(phgq, uhfη − uh00) = (f, phgq)H − (η, phgq)Q

aα(phαgq, uhαfη − uhα00) = (f, phαgq)H − (η, phαgq)Q

where uh00 and uhα00 are the unique solutions for data g = 0 and q = 0, to the problems (2.5) and (2.6),
respectively.

iv) The operators (g, q) ∈ H × Q → phgq ∈ V0h, and (g, q) ∈ H × Q → phαgq ∈ Vh are Lipschitzians and
strictly monotones, i.e., ∀(g1, q1), (g2, q2) ∈ H × Q, ∀h > 0, we have:

(a) (phg2q2 − phg1q1 , g2 − g1)H − (phg2q2 − phg1q1 , q2 − q1)Q = ∥uhg2q2 − uhg1q1∥2
H ≥ 0,

(b) (phαg2q2 − phαg1q1 , g2 − g1)H − (phαg2q2 − phαg1q1 , q2 − q1)Q = ∥uhαg2q2 − uhαg1q1∥2
H

≥ 0,

(c) ∥phg2q2 − phg1q1∥V ≤ (1 + ∥γ∥)
√

2
λ2 ∥(g2, q2) − (g1, q1)∥H×Q ,

(d) ∥phαg2q2 − phαg1q1∥V ≤ (1 + ∥γ∥)
√

2
λ2

α

∥(g2, q2) − (g1, q1)∥H×Q .

Proof. We use the Lax–Milgram Theorem, the variational equalities (2.5), (2.6), (2.9) and (2.10), the
coerciveness (1.5) and (1.6) and following [12,13,32,33]. □

Theorem 2.3.

(i) The discrete cost functionals Jh and Jhα are H-elliptic and strictly convex applications, that is,
∀(g1, q1), (g2, q2) ∈ H × Q, ∀t ∈ [0, 1], we have:

(1 − t)Jh (g2, q2) + tJh (g1, q1) − Jh ((1 − t)(g2, q2) + t(g1, q1))

= t(1 − t)
2 ∥uhg2q2 − uhg1q1∥2

H + M1
t(1 − t)

2 ∥g2 − g1∥2
H + M2

t(1 − t)
2 ∥q2 − q1∥2

Q

≥ m
t(1 − t)

2 ∥(g2, q2) − (g1, q1)∥2
H×Q ,

and
(1 − t)Jhα (g2, q2) + tJhα (g1, q1) − Jhα ((1 − t)(g2, q2) + t(g1, q1))

= t(1 − t)
2 ∥uhαg2q2 − uhαg1q1∥2

H + M1
t(1 − t)

2 ∥g2 − g1∥2
H + M2

t(1 − t)
2 ∥q2 − q1∥2

Q

≥ m
t(1 − t)

2 ∥(g2, q2) − (g1, q1)∥2
H×Q ,

where m = min{M1, M2}.
ii) There exist unique optimal controls (gh, qh) ∈ H ×Q and (ghα, qhα) ∈ H ×Q that satisfy the optimization

problems (2.7) and (2.8), respectively.

6
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(i

(

P
c

ii) Jh and Jhα are Gâteaux differentiable applications and their derivatives are given by the following
expressions, ∀(f, η) ∈ H × Q, ∀h > 0:

J ′
h(g, q)(f − g, η − q) = (f − g, phgq + M1 g)H + (η − q, M2q − phgq)Q,

J ′
hα(g, q)(f − g, η − q) = (f − g, phαgq + M1 g)H + (η − q, M2q − phαgq)Q.

iv) The optimality conditions for the problems (2.7) and (2.8) are given by, ∀(f, η) ∈ H × Q:

J ′
h(gh, qh)(f, η) = 0 ⇔ (f, phgh qh

+ M1gh)H + (η, M2qh − phgh qh
)Q = 0

J ′
hα(ghα, qhα)(f, η) = 0 ⇔ (f, phghα qhα

+ M1ghα)H + (η, M2qhα − phghα qhα
)Q = 0.

(v) J ′
h and J ′

hα are Lipschitzian and strictly monotone operators, i.e., ∀(g1, q1), (g2, q2) ∈ H × Q, ∀h > 0, we
have:

∥J ′
h(g2, q2) − J ′

h(g1, q1)∥H×Q ≤
(

M + (1 + ∥γ∥)2

λ2

) √
2 ∥(g2, q2) − (g1, q1)∥H×Q ,

⟨J ′
h(g2, q2) − J ′

h(g1, q1), (g2, q2) − (g1, q1)⟩ = ∥uhg2q2 − uhg1q1∥2
H

+ M1 ∥g2 − g1∥2
H + M2 ∥q2 − q1∥2

Q

≥ m ∥(g2, q2) − (g1, q1)∥2
H×Q ,

∥J ′
hα(g2, q2) − J ′

hα(g1, q1)∥H×Q ≤
(

M + (1 + ∥γ∥)2

λ2
α

) √
2 ∥(g2, q2) − (g1, q1)∥H×Q ,

⟨J ′
hα(g2, q2) − J ′

hα(g1, q1), (g2, q2) − (g1, q1)⟩ = ∥uhαg2q2 − uhαg1q1∥2
H

+ M1 ∥g2 − g1∥2
H + M2 ∥q2 − q1∥2

Q

≥ m ∥(g2, q2) − (g1, q1)∥2
H×Q

where M = max{M1, M2} and m = min{M1, M2}.

roof. We use the definitions (2.3) and (2.4), the elliptic variational equalities (2.5) and (2.6) and the
oerciveness (1.5) and (1.6), following [12,13,32–34]. □

We define the operators

Wh : H × Q → V0h × Q ⊂ V0 × Q ⊂ H × Q such that

Wh(g, q) = (− 1
M1

phgq,
1

M2
γ(phgq)) (2.11)

Whα : H × Q → Vh × Q ⊂ V × Q ⊂ H × Q such that

Whα(g, q) = (− 1
M1

phαgq,
1

M2
γ(phαgq)). (2.12)

and we prove the following result.

Theorem 2.4. We have that:

(i) Wh and Whα are Lipschitzian operators, that is, ∀(g1, q1), (g2, q2) ∈ H × Q, h > 0:

∥Wh(g2, q2) − Wh(g1, q1)∥H×Q ≤ C0 ∥(g2, q2) − (g1, q1)∥H×Q ,

∥Whα(g2, q2) − Whα(g1, q1)∥H×Q ≤ C0α ∥(g2, q2) − (g1, q1)∥H×Q

with C0 =
√

2
λ2

√
1

M2 + ∥γ∥2

M2 (1 + ∥γ∥) and C0α =
√

2
λ2

√
1

M2 + ∥γ∥2

M2 (1 + ∥γ∥).

1 2 α 1 2

7
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P

3

w

P
c
H

f

T
p

ii) Wh (Whα) is a contraction operator if and only if C0 < 1 (C0α < 1).
ii) If data satisfy inequality C0 < 1 (C0α < 1), then the unique solution (gh, qh) ((ghα, qhα)) to the discrete

optimal control Ph (Phα) can be obtained as the unique fixed point of the operator Wh (Whα), that is:

Wh(gh, qh) = (gh, qh) and Whα(ghα, qhα) = (ghα, qhα).

roof. This results by using the definitions (2.11) and (2.12), and following [12]. □

. Convergence of the discrete distributed-boundary optimal control problems (Ph) to (P ), and (Phα) to
(Pα) when h → 0+

In this section, we obtain error estimates between the optimal controls, system and adjoint states of
the discrete simultaneous distributed-boundary optimal control problems (Ph) and (Phα) and convergence
results of the discrete optimal control problems (Ph) to (P ) and (Phα) to (Pα) when h → 0+, for each α > 0.

Lemma 3.1 (i). If the continuous system states and the continuous adjoint states have the regularity ugq,
uαgq, pgq, pαgq ∈ Hr(Ω) (1 < r ≤ 2), then ∀α > 0, ∀(g, q) ∈ H ×Q, h > 0, we have the following estimations:

∥ugq − uhgq∥V ≤ c0√
λ

∥ugq∥r hr−1, ∥pgq − phgq∥V ≤ c1hr−1 (3.1)

∥uhαgq − uαgq∥V ≤ c0αhr−1, ∥phαgq − pαgq∥V ≤ c1αhr−1 (3.2)

here c0 (given in (2.1) and (2.2)), c1, c0α and c1α are constants independents of h.
(ii) We have the following convergences, ∀(g, q) ∈ H × Q:

lim
h→0+

∥ugq − uhgq∥V = 0, lim
h→0+

∥pgq − phgq∥V = 0,

lim
h→0+

∥uhαgq − uαgq∥V = 0, lim
h→0+

∥phαgq − pαgq∥V = 0, ∀α > 0.

roof. By using the variational equalities (1.3), (1.4), (1.11), (1.12), (2.5), (2.6), (2.9) and (2.10), the
oerciveness properties (1.5) and (1.6), the estimations (2.1) and (2.2) and the following properties, ∀(g, q) ∈

× Q:
a (pgq − phgq, πh (pgq) − phgq) = (ugq − uhgq, πh (pgq) − phgq)

aα (pαgq − phαgq, πh (pαgq) − phαgq) = (uhαgq − uαgq, πh (pαgq) − phαgq)H

ollowing a similar method given in [32,33], the thesis holds. □

heorem 3.2. We consider the continuous system states and adjoint states have the regularities ug q, uαgαqα
,

g q, pαgαqα
∈ Hr(Ω) (1 < r ≤ 2):

(i) We have the following limits, ∀α > 1:

lim
h→0+

∥(gh, qh) − (g, q)∥H×Q = 0 (3.3)

lim
h→0+

uhghqh
− ug q


V

= 0, lim
h→0+

phghqh
− pg q


V

= 0 (3.4)

lim
h→0+

∥(ghα, qhα) − (gα, qα)∥H×Q = 0 (3.5)

lim
uhαghαqhα

− uαgα qα

 = 0, lim
phαghαqhα

− pαgαqα

 = 0. (3.6)

h→0+ V

h→0+ V

8
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v

ii) If data M1 and M2 satisfy the following inequalities
√

2
λ2

√
1

M2
1

+ ∥γ∥2

M2
2

(1 + ∥γ∥) < 1 and
√

2
λ2

α

√
1

M2
1

+ ∥γ∥2

M2
2

(1 + ∥γ∥) < 1 (3.7)

we have the following error bonds:

∥(gh, qh) − (g, q)∥H×Q ≤ chr−1 (3.8)

uhghqh
− ug q


V

≤ chr−1,
phghqh

− pg q


V

≤ chr−1 (3.9)

∥(ghα, qhα) − (gα, qα)∥H×Q ≤ cαhr−1 (3.10)uhαghαqhα
− uαgα qα


V

≤ cαhr−1,
phαghαqhα

− pαgαqα


V

≤ cαhr−1 (3.11)

where c and cα are different constants independents of h.

roof. We follow a similar method to the one developed in [32,33].
(i) From the definition of the functional (2.3), we obtain, ∀h > 0:

1
2

uhghqh
− zd

2
H

+ M1

2 ∥gh∥2
H + M2

2 ∥qh∥2
Q ≤ 1

2 ∥uh00 − zd∥2
H ≤ c

here uh00 is the unique solution of the variational equality (2.5) for g = 0 and q = 0. That is,uhghqh


H

≤ c ∥gh∥H ≤ c and ∥qh∥Q ≤ c

ith c different positive constants independent of h. Moreover, by using the variational equality (2.5), we
btain uhghqh

− b


V
≤ 1

λ
(∥gh∥H + ∥qh∥Q∥γ∥) ≤ c

hen uhghqh


V

≤ c.

Next, by using the variational equality (2.9), we havephghqh


V

≤ 1
λ

uhghqh
− zd


H

≤ c, ∀h > 0.

Now, from the above estimations we obtain, when h → 0+:

∃f ∈ H : gh → f weakly in H

∃ρ ∈ Q : qh → ρ weakly in Q

∃η ∈ V : uhghqh
→ η weakly in V (in H strong)

∃ξ ∈ V : phghqh
→ ξ weakly in V (in H strong).

By using the above weak convergences, we can pas to the limit as h → 0+, and by uniqueness of the
ariational equalities (1.3) and (1.11), we obtain that

η = u , ξ = p .
fρ fρ

9
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w

Next, by the weak lower semicontinuity of the functional Jh and the uniqueness of the solution of the optimal
ontrol problem (1.7), we have that

f = g and ρ = q.

y the following inequalities

λ
uhghqh

− ug q

2
V

≤ (gh − g, uhghqh
− b)H − (qh − q, uhghqh

− b)Q

+ (g, ug q − uhghqh
)H − (q, ug q − uhghqh

)Q

and

λ
phghqh

− pg q

2
V

≤ a(pg q, pg q − phghqh
)H − (phghqh

, ug q − uhghqh
)Q

e obtain the strong convergences (3.4). Next, from the definition (2.3), we have

lim
h→0+

∥gh∥H = ∥g∥H and lim
h→0+

∥qh∥Q = ∥q∥Q

nd (3.3) holds. In a similar way, by using the elliptic variational equalities (2.6) and (2.10), we prove (3.5)
nd (3.6).

(ii) Following [12], we obtain that

∥(gh, qh) − (g, q)∥H×Q ≤
c1

√
1

M2
1

+ ∥γ∥2

M2
2

1 −
√

2
λ2

√
1

M2
1

+ ∥γ∥2

M2
2

(1 + ∥γ∥)
hr−1

∥(ghα, qhα) − (gα, qα)∥H×Q ≤
c1α

√
1

M2
1

+ ∥γ∥2

M2
2

1 −
√

2
λ2

α

√
1

M2
1

+ ∥γ∥2

M2
2

(1 + ∥γ∥)
hr−1

here c1 and c1α are constants given in (3.1) and (3.2), respectively. □

. Convergence of the discrete optimal control problems (Phα) to (Ph) when α → +∞

In this section, for each h > 0, we obtain convergence results of the discrete simultaneous distributed-
boundary optimal control problems (Phα) to (Ph) when the parameter α → +∞. For fixed h > 0, we have
the following convergences.

Lemma 4.1. For fixed (g, q) ∈ H × Q, h > 0, we have the following limits:

lim
α→+∞

∥uhαgq − uhgq∥V = 0. (4.1)

lim
α→+∞

∥phαgq − phgq∥V = 0. (4.2)

roof. For fixed (g, q) ∈ H × Q, h > 0, and by using the variational equalities (2.5) and (2.6), and taking
nto account that for α > 1 we can split

aα(u, v) = a1(u, v) + (α − 1)
∫
Γ1

uvdγ

e obtain the following estimations

∥uhαgq − uhgq∥V ≤ c, (α − 1)
∫

(uhαgq − b)2
dγ ≤ c, ∀α > 1.
Γ1

10
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T

P
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(

T

From the above inequalities, we deduce that

∃ηhgq ∈ V/uhαgq −→ ηhgq in V weakly (in H strong) as α → +∞ with ηhgq

⏐⏐
Γ1

= b.

y using the variational equality (2.6), we can pass to the limit when α → +∞, and by uniqueness of the
olution to the variational equality (2.5) we obtain that ηhgq = uhgq. By using the above properties, and the
ariational equalities (2.5) and (2.6), we deduce (4.1) and by using a similar method we can obtain the limit
4.2) for the discrete adjoint system state. □

heorem 4.2. We have the following limits:

lim
α→+∞

∥(ghα, qhα) − (gh, qh)∥H×Q = 0. (4.3)

lim
α→+∞

∥uhαghαqhα
− uhghqh

∥V = 0, lim
α→+∞

∥phαghαqhα
− phghqh

∥V = 0. (4.4)

roof. For each fixed h > 0, the thesis holds in similar way that Theorem 7 in [12]. □

. Double convergence of the discrete distributed-boundary optimal control problems (Phα) to (P ) when
h, α) → (0+, +∞)

In this section, we prove the main result of the paper.

heorem 5.1. We have the following limits:

lim
(h,α)→(0+,+∞)

∥(ghα, qhα) − (g, q)∥H×Q = 0. (5.1)

lim
(h,α)→(0+,+∞)

∥uhαghαqhα
− ug q∥V = 0, lim

(h,α)→(0+,+∞)
∥phαghαqhα

− pg q∥V = 0. (5.2)

Proof. We obtain the proof in two steps.
Step 1. We show a sketch of the proof by obtaining the following estimations, for h > 0 and α > 1:

∥uh00∥V ≤ c1 = b
√

|Ω |

∥uhα00∥V ≤ c2 =
(

1 + 1
λ1

)
c1

(α − 1)
∫
Γ1

(uhα00 − b)2dγ ≤ c3 = c2
1

λ1

∥(ghα, qhα)∥H×Q ≤ c4 = 1√
min{M1, M2}

(c2 + ∥zd∥H)

∥uhαghαqhα
∥H ≤ c5 = c2 + 2∥zd∥H

∥(gh, qh)∥H×Q ≤ c6 = 1√
min{M1, M2}

(c1 + ∥zd∥H)

∥uhghqh
∥V ≤ c7 =

√
2(1 + ∥γ∥)c6 + c1

∥uhαghαqhα
∥V ≤ c8 =

√
2(1 + ∥γ∥)c4 +

(
1 + 1

λ1

)
c7

(α − 1)
∫

(uhαghαqhα
− b)2dγ ≤ c9 = 1 (

√
2(1 + ∥γ∥)c4 + c7)2
Γ1 λ1

11
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a

b
(
t

a

a

∥phghqh
∥V ≤ c10 = 1

λ
(c7 + ∥zd∥H)

∥phαghαqhα
∥V ≤ c11 = 1

λ1
(c8 + ∥zd∥H) +

(
1 + 1

λ1

)
c10

(α − 1)
∫
Γ1

(phαghαqhα
− b)2dγ ≤ c12 = 1

λ1
(c5 + ∥zd∥H + c10)2.

Therefore, from the above estimations we have that

∃f ∈ H : ghα → f weakly in H, when (h, α) → (0+, +∞)

∃ρ ∈ Q : qhα → ρ weakly in Q, when (h, α) → (0+, +∞)

∃η ∈ V : uhαghαqhα
→ η weakly in V (in H strong), when (h, α) → (0+, +∞)

∃ξ ∈ V : phαghαqhα
→ ξ weakly in V (in H strong), when (h, α) → (0+, +∞)

and
∃fh ∈ H : ghα → fh weakly in H, when α → +∞

∃ρh ∈ Q : qhα → ρh weakly in Q, when α → +∞

∃ηh ∈ V : uhαghαqhα
→ ηh weakly in V (in H strong), when α → +∞

∃ξh ∈ V : phαghαqhα
→ ξh weakly in V (in H strong), when α → +∞

nd
∃fα ∈ H : ghα → fα weakly in H, when h → 0+

∃ρα ∈ Q : qhα → ρα weakly in Q, when h → 0+

∃ηα ∈ V : uhαghαqhα
→ ηα weakly in V (in H strong), when h → 0+

∃ξα ∈ V : phαghαqhα
→ ξα weakly in V (in H strong), when h → 0+.

Step 2. Now, taking into account that

η = ηh = b on Γ1,

ξ = ξh = 0 on Γ1,

y the uniqueness of the solutions of the simultaneous distributed-boundary optimal control problems (Phα),
Ph), (Pα) and (P ), and the uniqueness of the solutions of the elliptic variational equalities corresponding
o their state systems, we obtain that

ηh = uhfhρh
= uhghqh

, ξh = phfhρh
= phghqh

, fh = gh, ρh = qh

ηα = uαfαρα = uαgαqα
, ξα = pαfαρα = pαgαqα

, fα = gα, ρα = qα

nd the limits (3.3) and (3.4). Next, by using [12], we get

lim
α→+∞

∥fα − g∥H = 0, lim
α→+∞

∥ρα − q∥Q = 0

lim
α→+∞

∥ηα − ug q∥V = 0, lim
α→+∞

∥ξα − pg q∥V = 0

nd therefore the double limits (5.1) and (5.2) hold, when (h, α) → (0+, +∞). □
12
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E
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6. Relationship among the optimal values corresponding to the optimal control problems (P ), (Ph),
Pα) and (Phα)

In this section, we obtain the estimates given below.

Lemma 6.1. If M1 and M2 satisfy the inequalities (3.7) and the continuous system states and adjoint states
ave the regularity ug q, uαgαqα

, pg q, pαgαqα
∈ Hr(Ω) (1 < r ≤ 2), we have the following error bounds:

0 ≤ J(gh, qh) − J(g, q) ≤ ch2(r−1) (6.1)

0 ≤ Jh(g, q) − Jh(gh, qh) ≤ ch2(r−1) (6.2)

J(g, q) − Jh(gh, qh) ≤ chr−1 (6.3)

nd, for each α > 0:
0 ≤ Jα(ghα, qhα) − Jα(gα, qα) ≤ cαh2(r−1) (6.4)

0 ≤ Jhα(gα, qα) − Jhα(ghα, qhα) ≤ cαh2(r−1) (6.5)

Jα(gα, qα) − Jhα(ghα, qhα) ≤ cαhr−1 (6.6)

here c and cα are different constants independents of h.

Proof. Estimations (6.1), (6.2), (6.4) and (6.5) follow from the estimations (3.1), (3.2), (3.9), (3.11) and
the equalities:

J(gh, qh) − J(g, q) = 1
2

ughqh
− ug q

2
H

+ M1

2 ∥gh − g∥2
H + M2

2 ∥qh − q∥2
Q

Jh(g, q) − Jh(gh, qh) = 1
2

uhg q − uhghqh

2
H

+ M1

2 ∥g − gh∥2
H + M2

2 ∥q − qh∥2
Q

Jα(ghα, qhα) − Jα(gα, qα) = 1
2

uhαghαqhα
− uαgα qα

2
H

+ M1

2 ∥ghα − gα∥2
H + M2

2 ∥qhα − qα∥2
Q

Jhα(gα, qα) − Jhα(ghα, qhα) = 1
2

uhαgα qα
− uhαghαqhα

2
H

+ M1

2 ∥gα − ghα∥2
H + M2

2 ∥qα − qhα∥2
Q .

stimations (6.3) and (6.6) follow from estimations (3.1) and (3.2), taking into account that

J(g, q) − Jh(gh, qh) ≤ J(gh, qh) − Jh(gh, qh)

= 1
2

(ughqh
− zd

2
H

−
uhghqh

− zd

2
H

)
= 1

2
(
ughqh

− uhghqh
, uhghqh

+ ughqh
− 2zd

)
H

≤ 1
2

ughqh
− uhghqh


H

(uhghqh
− zd


H

+
ughqh

− zd


H

)
≤ chr−1

nd

Jα(gα, qα) − Jhα(ghα, qhα) ≤ 1
2

(uαghαqhα
− zd

2
H

−
uhαghαqhα

− zd

2
H

)
≤ 1 uαg q − uhαg q

 (uhαg q − zd

 +
uαg q − zd

 )
≤ cαhr−1.

□

2 hα hα hα hα H hα hα H hα hα H

13
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Remark 6.2. In a forthcoming paper, we will do the numerical analysis and its corresponding error
stimates when we replace the condition (1.2)ii by the following

−∂u

∂n
|Γ1 ∈ α∂j(u).

ere j(x, .) is locally Lipschitz for a.e. x ∈ Γ1 and not necessary differentiable following [35–38]. Therefore,
he variational formulation, for the system state, will be given by an elliptic hemivariational inequality, and
he corresponding control variable can be the energy g, or the heat flux q or the vectorial control (g, q).

. Conclusions

For two vectorial continuous optimal control problems (Pα) and (P ), and for the corresponding two
ectorial discrete optimal control problems (Phα) and (Ph) we have obtained a commutative diagram when

→ 0+ and α → +∞, with α → +∞ and h → 0+, and the corresponding double convergence when
h, α) → (0+, +∞) simultaneously for the optimal controls, for the optimal system states and for the
ptimal adjoint states. The parameter α can be considered as the heat transfer coefficient on a portion
f the boundary of a material, and h is the parameter of the finite element approximation.

cknowledgements

The present work has been partially sponsored by the European Union’s Horizon 2020 Research and
nnovation Programme under the Marie Sklodowska-Curie grant agreement 823731 CONMECH and by the
roject PIP No. 0275 from CONICET, Argentina and Universidad Austral, Rosario, Argentina for the third
uthor, and by the Project PPI No. 18/C555 from SECyT-UNRC, Ŕıo Cuarto, Argentina for the first and
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