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In this paper, we consider a family of simultaneous distributed-boundary optimal
control problems (P,) on the internal energy and the heat flux for a system
governed by a mixed elliptic variational equality with a parameter a > 0 (the
heat transfer coefficient on a portion of the boundary of the domain) and a
simultaneous distributed-boundary optimal control problem (P) governed also by
an elliptic variational equality with a Dirichlet boundary condition on the same
portion of the boundary. We formulate discrete approximations (P,) and (Pp,) of
the optimal control problems (P) and (P) respectively, for each h > 0 and for each
a > 0, through the finite element method with Lagrange’s triangles of type 1 with
parameter h (the longest side of the triangles). The goal of this paper is to study
the convergence of this family of discrete simultaneous distributed-boundary mixed
elliptic optimal control problems (Pp,) when the parameters a goes to infinity
and the parameter h goes to zero simultaneously. We prove the convergence of the
family of discrete problems (Pp,) to the discrete problem (P,) when a — 400,
for each h > 0, in adequate functional spaces. We study the convergence of the
discrete problems (Ph,) and (P), for each a@ > 0, when h — 01 obtaining
a commutative diagram which relates the continuous and discrete simultaneous
distributed-boundary mixed elliptic optimal control problems (Prq), (Pa),(Pr)
and (P) by taking the limits h — 01 and a — 400 respectively. We also study
the double convergence of (Pp) to (P) when (h,a) — (0T, +00) which represents
the diagonal convergence in the above commutative diagram.
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1. Introduction

We consider a bounded domain (2 in R? whose regular boundary I" consists of the union of two disjoint
portions I3, i = 1, 2, with |I;] > 0, where |I;| denotes the (d — 1)-dimensional Hausdorff measure of the
portion I; on I'. The outward normal vector on the boundary is denoted by n. We formulate the following
classical steady-state heat conduction problems with mixed boundary conditions [1-5]:

. ou
—Au =g in £, u‘Fl = b, —%‘FQZ% (1.1)
. ou ou
—Au=g in 2, 7%|F1 = au—1b), 7%}[,2 =gq, (1.2)

where u is the temperature in {2, g is the internal energy in {2, b = Const. > 0 is the temperature on I'; for
the system (1.1) and the temperature of the external neighbourhood on I'; for the system (1.2) respectively,
q is the heat flux on I'; and o > 0 is the heat transfer coefficient on I';, which satisfy the hypothesis:
g€ H=1L%*) and g € Q = L*(I3).

Throughout the paper we use the following notation:

V=H"(2), Vo={veV/u=0 on I},
K={veV/v=b on IN}=b+,

a(uw):/ VuVuvdz, L(v)z/ gvdx—/ qy(v)drl,
I7; 2 Iy

y(w)y(v)dr, L4w=Lw+u/'mwmn

Iy

aq(u,v) = a(u,v) + a/

I

where v: V' — L?(I") denotes the trace operator on I'. In what follows, we write u for the trace of a function
u € V on the boundary. In a standard way, we obtain the following variational formulations of (1.1) and
(1.2), [6]:

find w € K such that a(u,v) = L(v) for all v € Vp, (1.3)

find u, € V' such that an(uq,v) = Lo(v) forall veV. (1.4)

The standard norms on V' and Vj are denoted by

1/2
lollv = (12200 + IV0122(gza))  for veV,

[vllve = IVl L2 osray for v e Vo.

It is well known by the Poincaré inequality, see [7,8], that on V{ the above two norms are equivalent. Note
that the bilinear, symmetric and continuous forms a and a, are coercive on V; and V respectively, that
is, [9]:

IX >0 such that a(v,v) = Hv||‘2/0 > A|v||} for all v € Vj, (1.5)

JAa > 0 such that aqy(v,v) = ||v||%,O > Ao|lv]|f forall veV (1.6)

where A, = Ay min{1, a}, with A; > 0 the coerciveness constant for the bilinear form a4, [9,10].

We remark that, under additional hypotheses on the data g, ¢ and b, problem (1.1) can be considered as
steady-state two-phase Stefan problem, see [5,6,10,11].

We consider the following continuous optimal control problems [12-14]:
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(P) A simultaneous distributed and Neumann boundary optimal control problem, given by:

find (g,9) € HxQ suchthat J(g,q)= min J(g,q) (1.7)
(9:9)€H*XQ
with
1 M, Moy
J(g.q) = §||qu—Zd||%{+7H9H%{+7HQ||é (1.8)

where ug4q is the unique solution to the variational equality (1.3) for g € H and q € Q, zq € H given
and M7 and Ms are positive constants given.
(P,) For each e > 0, the simultaneous distributed and Neumann boundary optimal control problem:

find (g,,d,) € H xQ suchthat J.(9,,q,) = min Ju(g,q) (1.9)
(9,9)€EH *XQ
with 1 M v
1 2
Ja(9:0) = 5 ttaga — zallt + S5 gl + =52l (110)

where uq4q is a solution to the variational equality (1.4) for g € H, ¢ € @ and a > 0, 24 € H is given
and My and M, are positive constants.

In relation with the simultaneous optimal control problems (1.7) and (1.9), we define the adjoint states,
as the unique solutions of the variational equalities, [12]:

find pyq € Vo such that a(pgyq,v) = (ugq — 24,v)g for all v eV, (1.11)

find pagq € V' such that aq(page,v) = (Vagq — 2d,v)m for all v e V. (1.12)

The unique continuous simultaneous vectorial optimal controls (g,q) and (g,,7,) can be characterized,
following [12,15], as a fixed point on H x @ for suitable operators W and W, over their optimal adjoint
system states pggz € Vo and pag, g, € V, defined by:

1 1
W:HxQ— HxQ suchthat W(g,q) = (—Epgq, Epgq)
1 1
Wa i HxQ— HxQ suchthat Wy(g,q) = (fﬁlpagq, Epagq).

The limit of the optimal control problems (1.9) when o — 400 was studied in [12] and it was proved that:

Jim(ueg, g, —ugall, =0, lim |peg, 7, —psally, =0,

i 1G0:8) = @ Dl =0

where the norm in H x @ is defined by:

(9. DlFrxq = 1)l + llall: V(g-q) € Hx Q.

Now, we consider the finite element method and a polygonal domain {2 C R™ with a regular triangulation
with Lagrange triangles of type 1, constituted by affine-equivalent finite element of class C° being h the
parameter of the finite element approximation which goes to zero [16,17]. Then, we discretize the elliptic
variational equalities for the system states (1.3) and (1.4), the adjoint system states (1.11) and (1.12), and the
cost functional (1.8) and (1.10), respectively. In general, the solution of a mixed elliptic boundary problem
belongs to H"(§2) with 1 < r < 3/2 — € (e > 0), but there exist some examples which solutions belong to
H"(2) with 2 < r [1,4,18)].
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The goal of this paper is to study the numerical analysis, by using the finite element method, of the
convergence results corresponding to the continuous simultaneous distributed-boundary elliptic optimal
control problems (1.7) and (1.9) when o« — +o00. Moreover, the following commutative diagram which relates
the continuous simultaneous distributed-boundary mixed optimal control problems (P,) and (P), with the
discrete simultaneous distributed-boundary mixed optimal control problems (Pr,) and (P) is obtained by
taking the limits h — 07, a — 400 and (h,a) — (07, +00) as follows:

Problem (P,) a — 400 Problem (P)
(EOUQO()’ uagaﬁa’ pa?aaa (§7 6)7 ’u@a’ p??
h— 0% (h,a) — (0T, +00) h— 0t
- a — 400 o
(ghou qha)7 uha?h(xahoﬂ phoz?haﬁha > (gh7 qh)7 uhghﬁhj ph’?hah
Problem (P, Problem (Py)

where (g,,G1), Ung,g, and pug,g, are the optimal control, system state and adjoint state of the discrete
simultaneous distributed-boundary optimal control problem (Py) for each h > 0, and (Gp4, @ha)s Yhaghedne
and phag,,7,, are the optimal control, the system state and adjoint state of the discrete simultaneous
distributed-boundary optimal control problem (P, ) for each h > 0 and « > 0, respectively.

The study of the limit ~ — 0T of the discrete solutions of optimal control problems can be considered as
a classical limit, see [19-30] but the double limit (h,«) — (0", 400) can be considered as a new ones for a
vectorial control problem.

The paper is structured as follows. In Section 2, we formulate the discrete elliptic variational equalities
for the system states ungq and Upagq, we define the discrete cost functional J;, and Juo, we formulate
the discrete simultaneous distributed-boundary optimal control problems (Py,) and (Phy), and the discrete
elliptic variational equalities for the adjoint states phrgq and ppagq for each a > 0 and h > 0. We obtain
properties for the discrete optimal control problems and we define contraction operators Wj and Wj,
which allows obtain the optimal controls (gy,q;,) and (Gpq:dne) as fixed points. In Section 3, we study the
convergences of the discrete optimal control problems (P,) to (P), and (Ppq) to (P,) when h — 07 (for each
a > 0). In Section 4, we study the convergence of the discrete optimal control problems (Pyq) to (Py) when
a — +oo (for each h > 0) and we obtain a commutative diagram which relates the continuous and discrete
optimal control problems by taking the limits A — 07 and o — +oc0. In Section 5, we study the double
convergence of the discrete optimal control problems (P, ) to (P) when (h,a) — (07, +00) and we obtain
the diagonal convergence in the previous commutative diagram. In Section 6, we obtain the relationship and
estimations among the optimal values J(7,9), J(G,,73), Jr (91, G,) and Jp, (g, g) corresponding to the optimal
control problems (P) and (Py) and the same estimations corresponding to the optimal control problems (P,)
and (Ppq). In Section 7, we formulate the conclusions of this paper.

2. Discretization by finite element method and properties

In this section, we consider the finite element method and a polygonal domain {2 C R™ with a regular
triangulation with Lagrange triangles of type 1, constituted by affine-equivalent finite element of class C°
being h the parameter of the finite element approximation which goes to zero [16,17]. We can take h equal
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to the longest side of the triangles T' € 77, and we can approximate the sets V, V5 and K by:

Vi, = {Uh S CO<D)/U}L|T € Pl(T>7VT S Th} s

Vo ={vn € Vi/un =0o0n I}, Kp=b+Vy,

where Pj is the set of the polynomials of degree less than or equal to 1. Let 7, : C°(£2) — Vj, be the
corresponding linear interpolation operator. Then there exists a constant ¢g > 0 (independent of h) such
that Yo € H"(£2), 1 <r <2, [16]:

[0 = ()l < coh"[lvll (2.1)

lv = mn(v)lly < coh” o] (2.2)

The discrete cost functional Jy,, Jpo : H X Q — Rg are defined by:

1 9 M,y Moy

Jn(g,q) = 3 [%hgq —Zd||H+7H9H12H+7HQ||E2 (2.3)
1 2 Ml M2

Jha(g,q) = 3 Uhage — 2zall g + 7”9”%{ + 7||Q||2Q~ (2.4)

where upgq and upagq are the discrete system states defined as the solution of the following discrete elliptic
variational equalities [9,31]:

Ungg € K+ a(ungg,vn) = (g,0n) g — (¢, vn)q@,  Yvn € Von, (2.5)

Uhagq € Vi aa (uhagqvvh) = (gvvh)H - (%Uh)Q +a - bvhd’% Yup, € V. (26)
1

The corresponding discrete distributed optimal control problems consist in finding (g,,,75), (Tha> Tha) €
H x @ such that:

Problem (P,) :  Jn (G, ) = min  Jx(g,q), (2.7)
(9:9)€HXQ
Problem (Pha) :  Jha (GharTna) = min Jra(g,9) (2.8)
(9:9)€H*Q

and their corresponding discrete adjoint states pjgyq and ppagg are defined respectively as the solution of the
following discrete elliptic variational equalities:

Phgq € Von 1 @ (Phggs V) = (Ungg — 2d;Vh) g s VUi € Von (2.9)

Phagq S Vh : Qg (phagmvh) = (uhagq - Zd7vh)H7 v’Uh S Vh~ (210)

Remark 2.1. We note that the discrete (in the d-dimensional space) distributed optimal control problem
(Py) and (Pp,) are still an infinite dimensional optimal control problem since the control space is not
discretized.

Lemma 2.2.

(i) For all (9,q) € H x Q, b > 0 on I', there exist unique solutions ungq € Kp and pngq € Von of the
elliptic variational equalities (2.5) and (2.9), respectively, and Unagq € Vi and pragqy € Vi of the elliptic
variational equalities (2.6) and (2.10), respectively.

5
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(it) The operators (g,q) € H X Q — upgg € V, and (g9,q) € H X Q — Unagg € V are Lipschitzians,
i'e'i v(ghql)? (927q2) € H x Q7Vh >0

1+ [v)v2
lunasas — wnoranly < S 0, ) (100l
1+ [vIDv2
Huhoegzqa - uha91q1||v < \ (92, q2) — (gl7q1)||H><Q :
@

where ||| is the norm of the trace operator.
(iii) We have, ¥(f,n) € H X Q the following equalities:

a(phgq,uhfn — unoo) = (fs phgq)H - (nvphgq)Q

aa(phagqyuhafn - UhaOO) = (f7 Phagq)H - (n;phagq)Q

where upgo and upaoo are the unique solutions for data g = 0 and g = 0, to the problems (2.5) and (2.6),
respectively.

(iv) The operators (g,q) € H X Q — prgq € Von, and (g,q) € H X Q — Dhagq € Vi are Lipschitzians and
strictly monotones, i.e., V(g1,q1), (92,q2) € H x Q,Vh > 0, we have:

2
(a) (phg2¢I2 — Phg1q1-92 — gl)H - (ph92Q2 — Phgiq1r42 — ql)Q = ||uhg2tJ2 - uhgltHHH >0,

2
(b) (pha92Q2 — Phagiq1- 92 — gl)H - (phagzqz — Phagiq1-92 — QI)Q = Huhccgztm — Uhagiqr ”H

2 0;
1+ vhv2
(¢) Prgaas _ph91Q1||V < SV (92, q2) — (glvql)HHxQ7
1+ [vIDv2
(d) lIPragags = Pragiarlly < 57— ll(92,42) = (91, 01) | rxqp -

Proof. We use the Lax-Milgram Theorem, the variational equalities (2.5), (2.6), (2.9) and (2.10), the
coerciveness (1.5) and (1.6) and following [12,13,32,33]. O

Theorem 2.3.

(i) The discrete cost functionals Jn and Jpo are H-elliptic and strictly convex applications, that is,
Y(g1,q1), (92,92) € H x Q,Vt € [0,1], we have:

(1 —t)Jn (92,q2) +tJn (91,q1) — Jn (1 — t)(92, q2) + t(91,q1))
tH1—t tH1—t t1—t
= ( ) ||uh92tI2 - uth‘Il”i] + My ( B ) ( 5 )

2
t(1—1t) 2
>m 9 ||(927q2)_(glaQ1)”H><Q7

2 2
g2 = g1l + Mo gz — aillg

and
(]' - t)JhOé (927 qQ) + tJhOt (917 CII) - Jha ((]‘ - t)(927 qQ) + t(gla ql))
t(1—1t) 9 t(1—1t) t(1—1t)
= 5 uhagags — Yhagia HH + My 5 B)
t(1—1¢) 9
zZm—— (92, q2) = (91, 01 ) x g »

2
g2 — g1ll7 + Ma

gz — a1l

where m = min{M-, Ma}.
(i) There exist unique optimal controls (G, qp) € H X Q and (e, Gne) € H X Q that satisfy the optimization
problems (2.7) and (2.8), respectively.
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(iii) Jn and Jno are Gateauzx differentiable applications and their derivatives are given by the following
expressions, V(f,n) € H x Q, Yh > 0:

I (9. 0)(f—9,m—q) = (f — 9. Phgg + M1 @) + (1 — ¢, Maq — Prgq)o

Jl{La(ga Q)(f —9,n— q) = (f — 9, Phagq + Ml g)H + (77 - Q7M2q - phagq)Q~
(iv) The optimality conditions for the problems (2.7) and (2.8) are given by, V(f,n) € H x Q:

1 Gn @) (f,m) =0 S (f,0hg, 3, + M1Gy) 5 + (1, MaG), — Prg,q,)0 =0

J}/La(gha7aho¢)(f’ 77) =0« (fa phgha Tha + Mlyha)H + (7% M2§ha - phﬁha aha)Q =0.

(v) J; and J},, are Lipschitzian and strictly monotone operators, i.e., ¥(g1,q1), (g2,92) € H x Q,Vh > 0, we
have:

|73 (g2, q2) — Jh(!Jl,Ql)HHXQ (M+mwy”)>f(gz,qQ) (91,9 g -

2
(Jn(92,42) = Jn(91,01), (92, 2) = (91, 41)) = |Ungogo — Ungray I
+ Mgz — gillf + Mo lla2 — a1l

2
2 m ||2(QQaQQ) - (glaql)”HxQ ’

Calodl)
HJilLa(927q2) - J}/La(glycIl)”HxQ < (M + 2 \/§||(92,Q2) - (917q1)||H><Q7
«

(Jha (92, 2) = Tha(915q1), (92, 92) — (91,01)) = [Uhagyay — “hagle?q
+ My llga — qally; + Mz g2 — Q1||2Q
>m||(g2,22) — (91, @) I
where M = max{Mi, Ms} and m = min{My, Ms}.

Proof. We use the definitions (2.3) and (2.4), the elliptic variational equalities (2.5) and (2.6) and the
coerciveness (1.5) and (1.6), following [12,13,32-34]. O

We define the operators

Wi:HXxQ—Vorp,xQCVpxQCH X such that

1 1
Wh(ga Q) = (_Mphgqa EV(phgq)) (2'11)

Wha 1 HXQ =V, xQ CV xQ C H xQ such that
1 1
Wha(g7Q) = (_Mphagqa E’Y(phagq)) (212)
and we prove the following result.
Theorem 2.4. We have that:

(i) Wp and Whe, are Lipschitzian operators, that is, V(g1,q1), (92,92) € H x Q,h > 0:

Wh(92,92) = W91, 9) 7 < Coll(92:42) = (91,91) gy -

[Wha(92:62) = Wha (91, 01) | v g < Coa [[(92:¢2) — (91, 41) [ o

with Cy = Y2 2+” = (1+ [ and Coo = Y7 2+“M2 @+ D).
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(i) Wi, Wha) is a contraction operator if and only if Co <1 (Coo < 1).
(iii) If data satisfy inequality Co < 1 (Coa < 1), then the unique solution (Gp,,dn) ((Ghos Gra)) to the discrete
optimal control Py, (Pra) can be obtained as the unique fized point of the operator Wi, (Why), that is:

Wi(Gr @) = (Gn,0n)  and Wha(Ghas Tha) = (Ghas Tha)-

Proof. This results by using the definitions (2.11) and (2.12), and following [12]. O

3. Convergence of the discrete distributed-boundary optimal control problems (Pp) to (P), and (Ph,) to
(P,) when h — 0t

In this section, we obtain error estimates between the optimal controls, system and adjoint states of
the discrete simultaneous distributed-boundary optimal control problems (P,) and (P}) and convergence
results of the discrete optimal control problems (Py,) to (P) and (Prq) to (Py) when h — 07, for each o > 0.

Lemma 3.1 (). If the continuous system states and the continuous adjoint states have the regularity wugq,
Uagqs Pgqr Pagg € H'(2) (1 < r <2), thenVa > 0,V(g,q) € HxQ, h > 0, we have the following estimations:

Co _ _

[ugq — Ungqlly < lugqll, " h IPgg — Prgqlly, < c1h” ! (3.1)
VA

Huhagq - uagq”V < COahrila ||ph0zgq *pagq”v < erah’ ! (3.2)

where ¢y (given in (2.1) and (2.2)), ¢1, con and c1, are constants independents of h.
(i) We have the following convergences, ¥(g,q) € H X Q:

hl_i>f(1)1+ [tgg — tngqlly, =0, hl_i)%l+ 1Pgq = Phaqlly, =0,

hl_i)rél+ ||Uhagq - Uagq||v =0, hl_if&_ ”phagq _paquV =0, Va>0.

Proof. By using the variational equalities (1.3), (1.4), (1.11), (1.12), (2.5), (2.6), (2.9) and (2.10), the
coerciveness properties (1.5) and (1.6), the estimations (2.1) and (2.2) and the following properties, V(g, ¢) €
H xQ:

a(Pgg — Phga> Th (Pgq) — Phgq) = (tgq — Ungq: Th (Pgq) — Phgq)

o (Pagq = Phaggs Th (Page) = Phage) = (Uhagq — Yaggs Th (Pagq) — phagq)H

following a similar method given in [32,33], the thesis holds. O

Theorem 3.2. We consider the continuous system states and adjoint states have the regularities ugg, tag, g,
Pgg: Pog.g, € H'(2) (1 <r <2):

(i) We have the following limits, Voo > 1:

it 50 7) — 3.0 g = 0 (33

Jimung,g, —ugally =0, lm {pug,q, - pgall, =0 (3.4)

I (@has Tha) = G @a)llmxg = 0 (3.5)

Jm gy g, = tagaally =0, Hm {[phagyagi. — Pagedally =0 (3.6)

8
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(ii) If data My and My satisfy the following inequalities

V2 1|yl V2 1

S\ ar A< md 5 5 + el < (37)
we have the following error bonds:
1Gn:@n) = @D g < b (3.8)
ung,a, — ugally, < ch™™  |phgya, —pgally, < ch™ (3.9)
1 Fnes Tna) = Gor @)l xg < cah”™" (3.10)
lerognadia = vogagally < cab™™  [lPragragng — Pogazally < cah™ (3.11)

where ¢ and c, are different constants independents of h.

Proof. We follow a similar method to the one developed in [32,33].
(i) From the definition of the functional (2.3), we obtain, VA > 0:

1 2 M1 _ M2 _ 1 2
B ||uh§hah - ZdHH + 7||9h\|121{ + 7”%”% < 5 [unoo — zall7 < ¢
where upgo is the unique solution of the variational equality (2.5) for ¢ = 0 and ¢ = 0. That is,

lwrganlly <c 1Gallm <c and [gallo <e

with ¢ different positive constants independent of h. Moreover, by using the variational equality (2.5), we
obtain

1
[unga, = blly < 5 Ugnlle + @llelvl) <

then

Huh§h§h|’V e

Next, by using the variational equality (2.9), we have

1
IPrgnanlly < 5 lwrgua, — zally < e Vh>0.
Now, from the above estimations we obtain, when h — 0F:

df e H : g, — f weakly in H

dpe@ : g, — p weakly in Q
In eV : upg,g, — n weakly in V(in H strong)

I eV : pug,q, — & weakly in V (in H strong).

By using the above weak convergences, we can pas to the limit as h — 07, and by uniqueness of the
variational equalities (1.3) and (1.11), we obtain that

n=usp, &=D0fp
9
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Next, by the weak lower semicontinuity of the functional Jj;, and the uniqueness of the solution of the optimal

control problem (1.7), we have that
f=9 and p=47q
By the following inequalities
2 _ _
A ||uh§h§h - u§§Hv < (G- 9, Ung,q, — b)r — (@n — 4, Unggy,
+ (9, ugg — ung,a,) o — (T, ugg — Ung,g,)Q

and

—b)q

2
Mlprgaan — paally < apag paz — Prg,a,)n — (Prg,a,. 457 — Wig,a,)Q

we obtain the strong convergences (3.4). Next, from the definition (2.3), we have

lim ||g =g and lim ||g =g
i[5 )5 = 5115 Tim gl =

and (3.3) holds. In a similar way, by using the elliptic variational equalities (2.6) and (2.10), we prove (3.5)

and (3.6).
(ii) Following [12], we obtain that

L L M M3 -
1@h: @) = (9, Dl g < o h
133+ @ )
2
Cla MLf + ”A’Z‘lg
||(§homqha) - (gaaqa)”HxQ < h’r71

1= 32 o + S+ k)

where ¢; and ¢, are constants given in (3.1) and (3.2), respectively. [

4. Convergence of the discrete optimal control problems (Phrq) to (Pr) when o — +o00

In this section, for each h > 0, we obtain convergence results of the discrete simultaneous distributed-
boundary optimal control problems (P, ) to (P) when the parameter o — +oo. For fixed h > 0, we have

the following convergences.

Lemma 4.1. For fized (g,q) € H x Q, h > 0, we have the following limits:

QEI_E [thagg — thgqllv = 0.

agrf [Phagq — Phgqllv = 0.

Proof. For fixed (g,q) € H x @Q, h > 0, and by using the variational equalities (2

into account that for o > 1 we can split

aq(u,v) = ay(u,v) + (o — 1)/1“ uvdry

we obtain the following estimations

(4.1)

(4.2)

.5) and (2.6), and taking

[uhagy — Ungglly <e, (a— 1)/ (Uhagg — b)2 dy<e, VYVa>1.
I

10
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From the above inequalities, we deduce that
Ihgg € V/Uhagg — Nhgq in V weakly (in H strong) as o — +00 with 744 = b.

By using the variational equality (2.6), we can pass to the limit when o — 400, and by uniqueness of the
solution to the variational equality (2.5) we obtain that 7,4 = unge. By using the above properties, and the
variational equalities (2.5) and (2.6), we deduce (4.1) and by using a similar method we can obtain the limit
(4.2) for the discrete adjoint system state. O

Theorem 4.2. We have the following limits:

(G Tn) — (30070) 110 = . (43)
agr-{-loo Huhaﬁhoﬁha — Uhgygy, v =0, agr_{_loo tho@haﬁha — PrgLa, v =0. (4.4)

Proof. For each fixed h > 0, the thesis holds in similar way that Theorem 7 in [12]. O

5. Double convergence of the discrete distributed-boundary optimal control problems (Prq) to (P) when
(h,a) — (0F, +00)

In this section, we prove the main result of the paper.

Theorem 5.1. We have the following limits:

lim ThosTne) — (9,9 =0. 5.1
(hva)—>(0+,+oo)|‘(gha Tna) = (@:9)lHxq (5.1)

lim Uhag, 7, . — Ugg|lv =0, lim 3. @ . — Paallv =0. 5.2
(h,a)—)(Oﬂ-&-oo)H haBhatna ~ UgallV (h,a)—>(0+,+oo)||phaghaqha Pyallv (5-2)

Proof. We obtain the proof in two steps.
Step 1. We show a sketch of the proof by obtaining the following estimations, for A > 0 and «a > 1:

lunoollv < e1 = b/[2]

1
lunaoolly < ez = <1 * A> “

1
2 C%
(@—=1) | (unaoo —b)"dy < 3=+~
I !

1Ghas Tna) lHx@ < ;
N AN S Y VY
Thar Tna) | < ca min{M;, Mo}
||uha§haaha||H S C5 = C2 + 2||Zd||H

1
— ’7 S Cg = —F/——
1@n: @)l xq < co min{M;, M}

lung,a, v < ez = V2(1+||7])cs + c1

(c2 + [l2all =)
(c1 + llzall 1)

1
ltnagyamna v < ¢ = V3L + [yl)ea + (1 " )\1> .

1
(@=1) [ (e — Py < 0 = - (VAL + [plDes + o)?
I

11
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1
IPrgyanllv < e10 = 3 (er + llzallzr)
1 1
1Phaghagna v < c11 = —(es + [lzalla) + {14+ 1= ) 1o
)\1 )\1
1
(@=1) [ Onouaine — 07 < e12 = 35 + lzalln + )
I 1
Therefore, from the above estimations we have that
3f € H : G, — f weakly in H, when (h,a) — (07, +00)
Jp€Q : G, — p weakly in Q, when (h,a) — (07, +00)
I eV : Unag,,g,, — 1 Weakly in V(in H strong), when (h,a) — (07, +00)

I €V : Prag,,dn, — & weakly in V(in H strong), when (h,a) — (07, 400)

and
3fn€ H : gy, — frn weakly in H, when a@ — 400
Jpon € Q : Gpo, — pn, weakly in @), when o« — 400
I €V Unag,,g,, — Mn weakly in V(in H strong), when o — +o00
Ih €V 1 Phagpadn., — & weakly in V(in H strong), when o — +o00
and

3fa € H : Gpo — fo weakly in H, when h — 07
pa € Q : Qo — Po Weakly in Q, when h — 07T
e €V 1 Unag,,a,, — Na Weakly in V(in H strong), when h — 0t

e €V Phagyagn, — Sa wWeakly in V(in H strong), when h — ot.
Step 2. Now, taking into account that

n=mn,=>bon I,

§=&, =0on I7,

by the uniqueness of the solutions of the simultaneous distributed-boundary optimal control problems (Pq,),
(Pr), (P,) and (P), and the uniqueness of the solutions of the elliptic variational equalities corresponding
to their state systems, we obtain that

Nh = Uhfypp = Uhgndns Sh = Phfnpn, = Phgngns Jh = dns PR =1dp

Noa = Uafapa = Uag,dys ga = Pafapa = Pagada> fa = gaa Po = qoz

and the limits (3.3) and (3.4). Next, by using [12], we get

lim Hfa _EHH =0, agrfoo ||pa - qHQ =0

a—~4o00

Jim e —ugglly =0, lm & —pgglv =0

and therefore the double limits (5.1) and (5.2) hold, when (h,a) — (0, +00). O

12
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6. Relationship among the optimal values corresponding to the optimal control problems (P), (Py),

(Py) and (Phe)

In this section, we obtain the estimates given below.

Lemma 6.1. If My and My satisfy the inequalities (3.7) and the continuous system states and adjoint states

have the regularity ugg, Uag, g, Pgg Pagaa, € H'(£2) (1 <r < 2), we have the following error bounds:

0 < J(GhTn) — J(3.9) < ch> Y
0< Jn(@,9) — In(@p. @y) < ch*Y

J(@.9) = Jn(@p, ) < ch™ 7t

and, for each o > 0:
0 < Ja(Ghas Tna) = Ja(Gar Ta) < cah® ™Y

0 S Jh&(?avqo) - Jha(ghowaha) S COéhQ(T_l)

J(Jt(gonqa) - Jha(?ha?qha) S Cahril

where ¢ and c,, are different constants independents of h.

Proof. Estimations (6.1), (6.2), (6.4) and (6.5) follow from the estimations (3.1), (3.2), (3.9), (3.11) and

the equalities:
_ __ 1 2 My _ o My, o
T@n:@n) = 7@ = 5 [vgua, —vsally + = 19, =9l + =~ @, —dllg
__ _ 1 2 My, _ o My, _ o
In(@.7) — In(Gn, Tn) = iHuhga—UhghahHH‘f'? ||9—9h||H+72 17 —anllg

1

Ja(yhomqha) - Ja(ﬁaaﬁa) = 5

1

2 M;  _ _ 2 My _ _ 2
Huhaghaa,m — Uag, G, ||H + bR 1Tha — ga”H + 5 1%h0 — %HQ

_ _ 2 My o My, 9
Jha(-gouqa) - Jhoé(ghouqha) = 5 Huhagaaa - “h@haﬁmHg + 7 ||ga - gha”H + 7 ||qoc - qha”Q .

Estimations (6.3) and (6.6) follow from estimations (3.1) and (3.2), taking into account that

J(9:9) = In(Gn,an) < J(Gnsqn) — In(Gn>Tn)
1 2 2
= 9 (Huﬁhﬁh - ZdHH - Huhﬁhﬁh - Zd”H)
1
=3 (ug,a, — Ungyan Ungnan + Ugua, — 22d)

IN

1
by Huﬁhﬁh - uh?hﬁh“H (Huhﬁhﬁh - ZdHH + Huﬁhah - ZdHH)

§ Chr—l
and
_ _ 1 2 2
Ja(gaanx) - Jha(ghouqu) < 5 (Huo@;wﬁha - ZdHH - Huhaghaaha - deH)

1 _
g 5 Huo‘ghaaha - uhaghaahoz HH (||uha§haahtx - ZdHH + Huaghaah(x - ZdHH) g Cah,r 1'

13
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Remark 6.2. In a forthcoming paper, we will do the numerical analysis and its corresponding error
estimates when we replace the condition (1.2)ii by the following

ou .
_%|F1 € aaj(“’)

Here j(z,.) is locally Lipschitz for a.e. € I'} and not necessary differentiable following [35-38]. Therefore,
the variational formulation, for the system state, will be given by an elliptic hemivariational inequality, and
the corresponding control variable can be the energy g, or the heat flux g or the vectorial control (g, q).

7. Conclusions

For two vectorial continuous optimal control problems (P,) and (P), and for the corresponding two
vectorial discrete optimal control problems (P, ) and (Pj,) we have obtained a commutative diagram when
h — 0" and o — 400, with & — 400 and h — 07, and the corresponding double convergence when
(h,a) — (07, +00) simultaneously for the optimal controls, for the optimal system states and for the
optimal adjoint states. The parameter o can be considered as the heat transfer coefficient on a portion
of the boundary of a material, and h is the parameter of the finite element approximation.
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