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3Depto. Matemática, FCE, Universidad Austral, Paraguay 1950, S2000FZF Rosario, Argentina
4CONICET, Argentina

Abstract. In this paper, we study boundary optimal control problems on the heat flux and simultane-
ous distributed-boundary optimal control problems on the internal energy and the heat flux for a system
governed by a class of elliptic boundary hemivariational inequalities with a parameter. The system was
originated by a steady-state heat conduction problem with non-monotone multivalued subdifferential
boundary condition on a portion of the boundary of the domain described by the Clarke generalized
gradient of a locally Lipschitz function. We prove an existence result for the boundary optimal control
problem and simultaneous distributed-boundary optimal control problems. We show an asymptotic be-
havior result for the optimal controls and the system states for both optimal control problems, when the
parameter, like a heat transfer coefficient, tends to infinity on a portion of the boundary.
Keywords. Asymptotic behavior; Clarke generalized gradient; Elliptic hemivariational inequality; Mixed
elliptic problem; Simultaneous optimal control problems.

1. INTRODUCTION

We consider a bounded domain Ω in Rd whose regular boundary Γ consists of the union of
three disjoint portions Γi, i = 1, 2, 3 with |Γi| > 0, where |Γi| denotes the (d−1)-dimensional
Hausdorff measure of the portion Γi on Γ. The outward normal vector on the boundary is
denoted by n. We formulate the following classical steady-state heat conduction problem with
mixed boundary conditions [1, 2, 3, 4, 5, 6]:

−∆u = g in Ω, u
∣∣
Γ1

= 0, −∂u
∂n

∣∣
Γ2

= q, u
∣∣
Γ3

= b, (1.1)

where u is the temperature in Ω, g is the internal energy in Ω, b is the temperature on Γ3 and
q is the heat flux on Γ2, which satisfy the hypothesis: g ∈ H = L2(Ω), q ∈ Q = L2(Γ2), and
b ∈ H

1
2 (Γ3).
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Throughout the paper, we use the following notation:

V = H1(Ω), V0 = {v ∈V | v = 0 on Γ1},

K = {v ∈V | v = 0 on Γ1, v = b on Γ3}, K0 = {v ∈V | v = 0 on Γ1∪Γ3},

a(u,v) =
∫

Ω

∇u∇vdx, L(v) =
∫

Ω

gvdx−
∫

Γ2

qγ(v)dΓ,

where γ : V → L2(Γ) denotes the trace operator on Γ. In what follows, we write u for the trace
of a function u ∈ V on the boundary. In a standard way, we obtain the following variational
formulation of (1.1), [7]:

find u∞ ∈ K such that a(u∞,v) = L(v) for all v ∈ K0. (1.2)

The standard norms on V and V0 are denoted by

‖v‖V =
(
‖v‖2

L2(Ω)+‖∇v‖2
L2(Ω;Rd)

)1/2
for v ∈V,

‖v‖V0 = ‖∇v‖L2(Ω;Rd) for v ∈V0.

It is well known by the Poincaré inequality (see, e.g., [5, 8, 9]) that on V0 the above two norms
are equivalent. Note that the form a is bilinear, symmetric, continuous, and coercive with
constant ma > 0, i.e.,

a(v,v) = ‖v‖2
V0
≥ ma‖v‖2

V for all v ∈V0.

We remark that, under additional hypotheses on the data g, q, and b, problem (1.1) can be
considered as steady-state two-phase Stefan problem; see, e.g., [6, 7, 10, 11].

Now, in this paper, we consider the mixed nonlinear boundary value problem for an elliptic
equation as follows:

−∆u = g in Ω, u
∣∣
Γ1

= 0, −∂u
∂n

∣∣
Γ2

= q, −∂u
∂n

∣∣
Γ3
∈ α ∂ j(u), (1.3)

which was recently studied in [12, 13] (see also [14]).
Here α is a positive constant which can be considered as the heat transfer coefficient on the

boundary while the function j : Γ3×R→ R, called a superpotential (nonconvex potential), is
such that j(x, ·) locally Lipschitz for a.e. x ∈ Γ3 and not necessary differentiable. Since in ge-
neral j(x, ·) is nonconvex, so the multivalued condition on Γ3 in problem (1.3) is described by a
nonmonotone relation expressed by the generalized gradient of Clarke [15]. Such multivalued
relation in problem (1.3) is met in certain types of steady-state heat conduction problems (the
behavior of a semipermeable membrane of finite thickness, a temperature control problems,
etc.). Further, problem (1.3) can be considered as a prototype of several boundary semiper-
meability models, see [16, 17, 18, 19], which are motivated by problems arising in hydraulics,
fluid flow problems through porous media, and electrostatics, where the solution represents the
pressure and the electric potentials. Note that the analogous problems with maximal mono-
tone multivalued boundary relations (that is the case when j(x, ·) is a convex function) were
considered in [20, 21], see also the references therein.
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Under the above notation, the weak formulation of the elliptic problem (1.3) becomes the
following elliptic boundary hemivariational inequality [13]:

find u ∈V0 such that a(u,v)+α

∫
Γ3

j0(u;v)dΓ≥ L(v) for all v ∈V0. (1.4)

Here and in what follows, we often omit the variable x, and we simply write j(r) instead of
j(x,r). The stationary heat conduction models with nonmonotone multivalued subdifferential
interior and boundary semipermeability relations can not be described by convex potentials.
They use locally Lipschitz potentials and their weak formulations lead to hemivariational in-
equalities, see [17, Chapter 5.5.3] and [18].

We mention that theory of hemivariational and variational inequalities was proposed in the
1980s by Panagiotopoulos, see [17, 22, 23], as variational formulations of important classes
of inequality problems in mechanics. In the last few years, new kinds of variational, hemi-
variational, and variational-hemivariational inequalities were investigated, see recent mono-
graphs [8, 24, 25], and the theory has emerged today as a new and interesting branch of applied
mathematics.

We formulate the following optimal control problems:

• A problem of the type studied in [26, 27, 28] given by:

find q∗ ∈ Q such that J(q∗) = min
q∈Q

J(q) (1.5)

with

J(q) =
1
2
||uq− zd||2H +

M2

2
||q||2Q

and, for each α > 0, the problem

find q∗α ∈ Q such that Jα(q∗α) = min
q∈Q

Jα(q) (1.6)

with

Jα(q) =
1
2
||uαq− zd||2H +

M2

2
||q||2Q (1.7)

where uq is the unique solution to the variational equality (1.2), uαq is a solution to
the hemivariational inequality (1.4), zd ∈ H given, and M2 a positive constant. This
complement to the one studied in [12, 13, 29].
• A simultaneous distributed and Neumann boundary optimal control problem, given by

[13, 28, 30]:

find (g,q) ∈ H×Q such that J(g,q) = min
(g,q)∈H×Q

J(g,q) (1.8)

with

J(g,q) =
1
2
||ugq− zd||2H +

M1

2
||g||2H +

M2

2
||q||2Q (1.9)

where ugq is the unique solution to the variational equality (1.2), zd ∈ H given and
M1 and M2 are positive constants given. For each α > 0, the following simultaneous
distributed and Neumann boundary optimal control problem

find (gα ,qα) ∈ H×Q such that Jα(gα ,qα) = min
(g,q)∈H×Q

Jα(g,q) (1.10)
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with
Jα(g,q) =

1
2
||uαgq− zd||2H +

M1

2
||g||2H +

M2

2
||q||2Q (1.11)

where uαgq is a solution to the hemivariational inequality (1.4), zd ∈ H is given and M1
and M2 are positive constants.

The paper is structured as follows. In Section 2, we establish preliminaries concepts of the
hemivariational inequalities theory, which are necessary for the development of the following
sections. In Section 3, we prove existence of the boundary optimal controls and asymptotic
behavior of the boundary optimal controls and the system states (1.6)-(1.7), when α → ∞.
In Section 4, for each α > 0, we obtain an existence result of solution to the simultaneous
distributed-boundary optimal control problem (1.10). In Section 5, the strong convergence of a
sequence of optimal controls and the system states to the problems (1.10)-(1.11) to the unique
optimal control and the system state to the problem (1.8)-(1.9), are obtained when the parameter
α goes to infinity. A novelty of this work is that we can obtain the asymptotic behavior of the
optimal system states uαgα qα

as α→ ∞ without any prior knowledge on the monotonicity on α

as it was given in [13, 14]. In Section 6, we formulate the conclusions of this paper.

2. PRELIMINARIES

In this section, we recall standard notation and preliminary concepts, which are necessary for
the development of this paper.

Let (X ,‖·‖X) be a reflexive Banach space, X∗ be its dual, and 〈·, ·〉 denote the duality between
X∗ and X . For a real valued function defined on X , we have the following definitions [15,
Section 2.1] and [24, 31].

Definition 2.1. A function ϕ : X → R is said to be locally Lipschitz if, for every x ∈ X , there
exist Ux a neighborhood of x and a constant Lx > 0 such that

|ϕ(y)−ϕ(z)| ≤ Lx‖y− z‖X for all y,z ∈Ux.

For such a function, the generalized (Clarke) directional derivative of ϕ at the point x ∈ X in the
direction v ∈ X is defined by

ϕ
0(x;v) = limsup

y→x,λ→0+

ϕ(y+λv)−ϕ(y)
λ

.

The generalized gradient (subdifferential) of ϕ at x is a subset of the dual space X∗ given by

∂ϕ(x) = {ζ ∈ X∗ | ϕ0(x;v)≥ 〈ζ ,v〉 for all v ∈ X}.

We consider the following hypothesis.

H( j): j : Γ3×R→ R is such that

(a) j(·,r) is measurable for all r ∈ R,
(b) j(x, ·) is locally Lipschitz for a.e. x ∈ Γ3,
(c) there exist c0, c1 ≥ 0 such that |∂ j(x,r)| ≤ c0 + c1|r| for all r ∈ R, a.e. x ∈ Γ3,
(d) j0(x,r;b− r)≤ 0 for all r ∈ R, a.e. x ∈ Γ3 with a constant b ∈ R.

Note that the existence results for elliptic hemivariational inequalities can be found in several
contributions; see, e.g., [8, 17, 24, 32, 33]. In [13, Theorem 4], the hypothesis H( j)(d) is
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considered in order to obtain the existence of a solution to problem (1.4). Moreover, under this
condition, the authors studied the asymptotic behavior when α → ∞ (see [13, Theorem 7]).

We note that, if the hypothesis H( j)(d) is replaced by the relaxed monotonicity condition
(see [13, Remark 10] for details)

(e) j0(x,r;s− r)+ j0(x,s;r− s)≤ m j |r− s|2

for all r, s ∈ R, a.e. x ∈ Γ3 with m j ≥ 0, and the following smallness condition

( f ) ma > α m j‖γ‖2

is assumed, then problem (1.4) is uniquely solvable, see [33, Lemma 20] for the proof. However,
this smallness condition is not suitable in the study to problem (1.4) since for a sufficiently large
value of α , it is not satisfied. Finally, in [13], we can find several examples of locally Lipschitz
(nondifferentiable and nonconvex) functions which satisfy the above hypothesis.

3. EXISTENCE AND ASYMPTOTIC BEHAVIOR OF THE BOUNDARY OPTIMAL CONTROLS

In this section, we study the existence of solutions of problem (1.6) and its asymptotic be-
havior when the parameter α goes to infinity.

We know, by [26], that there exists a unique optimal solution q∗ ∈Q of the boundary optimal
control problem (1.5). Here, we prove the existence of solution to the optimal control problem
(1.6) in which the system is governed by the hemivariational inequality (1.4).

Theorem 3.1. For each α > 0, if H( j)(a)− (d) holds, then the boundary optimal control pro-
blems (1.6) has a solution.

Proof. We denote, for each α > 0 and each q ∈ Q, by Tα(q) the set of solutions of (1.4), and
we have that

m = inf{Jα(q),q ∈ Q,uαq ∈ Tα(q)} ≥ 0. (3.1)
Next, for each α > 0, we consider qα

n ∈ Q a minimizing sequence to (3.1), and we prove that
there exist ξα ∈ Q and ηα ∈V0 such that, when n→ ∞

uαqα
n ⇀ ηα in V0 weakly and qα

n ⇀ ξα in Q weakly.

After that, we obtain that ηα = uαξα
, where uαξα

is a solution to the hemivariational inequality
(1.4) for data ξα ∈ Q and g ∈ H. Finally, we prove that m ≥ Jα(ξα). Thus ξα is an optimal
solution to optimal control problem (1.6). �

Now, we can prove the following asymptotic result by using the following additional hypo-
thesis on the superpotential j.

(H1): if j0(x,r;b− r) = 0 for all r ∈ R, a.e. x ∈ Γ3, then r = b.

Theorem 3.2. Assume H( j) and (H1). If q∗α is a optimal solution to problem (1.6) and q∗ is the
unique solution to problem (1.5), then q∗α → q∗ in Q strongly and uαq∗α → u∞q∗ in V strongly,
when α → ∞.

Proof. We make the prove in three steps.
Step 1 Since q∗α is a optimal solution to problem (1.6), we deduce that there exist positive
constants k1 and k2, independent of α , such that

||q∗α ||Q ≤ k1 and ||uαq∗α ||H ≤ k2. (3.2)
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Now, if we choose v = u∞q∗ − uαq∗α ∈ V0 as a test function in the elliptic boundary hemivaria-
tional inequality (1.4) and by H( j)(d), we have

a(u∞q∗−uαq∗α ,u∞q∗−uαq∗α )≤ a(u∞q∗,u∞q∗−uαq∗α )−L(u∞q∗−uαq∗α ).

Next, we obtain that ‖uαq∗α‖V ≤ k3, with k3 =
1

ma
(Ma‖u∞q∗‖V +‖L‖V ∗)+‖u∞q∗‖V and Ma > 0.

Moreover, there exists k4 > 0 such that −α
∫

Γ3
j0(uαq∗α ;u∞q∗−uαq∗α )dΓ≤ k4. Therefore, there

exists η ∈V such that
uαq∗α ⇀ η weakly in V, as α → ∞ (3.3)

and we have from (3.2) that there exists ξ ∈ Q such that

q∗α ⇀ ξ weakly in Q, as α → ∞.

Step 2 Here, we show that ξ = q∗ and η = u∞q∗ . Taking into account that η ∈V0, for w ∈ K, if
we consider v = w−uαq∗α ∈V0 in (1.4), since w = b on Γ3, by H( j)(d), we obtain

L(w−uαq∗α )≤ a(uαq∗α ,w−uαq∗α ). (3.4)

Next, we use the weak lower semicontinuity of the functional V 3 v 7→ a(v,v) ∈ R and (3.4) to
deduce that

η ∈V0 satisfies L(w−η)≤ a(η ,w−η) for all w ∈ K.

Subsequently, in a similar way to [12, 26] (see more details in Theorem 5.1, Step 2), from (3.3),
by the compactness of the trace operator, the upper semicontinuity of the function R×R 3
(r,s) 7→ j0(x,r;s) ∈R for a.e. x ∈ Γ3 and H( j)(d), we prove that j0(x,η ;b−η) = 0 a.e. x ∈ Γ3.
By using the hypothesis (H1), we have η(x) = b for a.e. x ∈ Γ3, that is, η ∈ K. Therefore, we
obtain that

η ∈ K satisfies L(w−η)≤ a(η ,w−η) for all w ∈ K.

Next, we have that
η ∈ K satisfies a(η ,v) = L(v) for all v ∈ K0,

i.e., η ∈ K is a solution to problem (1.2) and by the uniqueness of solution to problem (1.2), we
have η = u∞ξ . Hence uαq∗α ⇀ u∞ξ weakly in V as α → ∞. Now Jα(q∗α)≤ Jα(q), ∀q ∈ Q. Next

J(ξ ) =
1
2
||u∞ξ − zd||2H +

M2

2
||ξ ||2Q =

1
2
||η− zd||2H +

M2

2
||ξ ||2Q

≤ liminf
α→∞

Jα(q∗α)≤ liminf
α→∞

Jα(q)

= lim
α→∞

Jα(q) = J(q), ∀q ∈ Q.

From the uniqueness of the optimal control problem (1.5) (see [26]), we obtain that ξ = q∗.
Thus u∞ξ = u∞q∗ . Next, we have that, when α → ∞,

q∗α ⇀ q∗ weakly in Q and uαq∗α ⇀ u∞q∗ weakly in V.

Step 3 Taking v = u∞q∗−uαq∗α ∈V0 in problem (1.4), since u∞q∗ = b on Γ3, by H( j)(d) and the
coerciveness of the form a, we have

ma ‖u∞q∗−uαq∗α‖
2
V ≤ a(u∞q∗,u∞q∗−uαq∗α )+L(uαq∗α −u∞q∗).
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Next, by the weak continuity of a(u∞g∗ , ·), the compactness of the trace operator and the fact
that uαq∗α → u∞q∗ strongly in H, we conclude that uαq∗α → u∞q∗ strongly in V as α → ∞. Now,
from uαq∗α → u∞q∗ strongly in H, we deduce

lim
α→∞

1
2
||uαq∗α − zd||2H =

1
2
||u∞q∗− zd||2H . (3.5)

As q∗α ⇀ q∗ weakly in Q, one has

||q∗||2Q ≤ liminf
α→∞

||q∗α ||2Q. (3.6)

Next, from (3.5) and (3.6), we obtain

1
2
||u∞q∗− zd||2H +

M2

2
||q∗||2Q ≤ liminf

α→∞

(
1
2
||uαq∗α − zd||2H +

M2

2
||q∗α ||2Q

)
,

that is, J(q∗)≤ liminf
α→∞

Jα(q∗α).

On the other hand, from the definition of q∗α and uαq∗ → u∞q∗ strongly in H (see [13, Theo-
rem 7]), we obtain

limsup
α→∞

Jα(q∗α)≤ limsup
α→∞

Jα(q∗) = J(q∗).

Thus

lim
α→∞

(
1
2
||uαq∗α − zd||2H +

M2

2
||q∗α ||2Q

)
=

1
2
||u∞q∗− zd||2H +

M2

2
||q∗||2Q. (3.7)

Finally, from (3.5) and (3.7), when α → ∞, we have ||q∗α ||2Q→ ||q∗||2Q. As q∗α ⇀ q∗ weakly in
Q, we deduce that q∗α → q∗ strongly in Q. �

4. EXISTENCE OF THE SIMULTANEOUS OPTIMAL CONTROLS

We know, by [30], that there exists a unique optimal pair (g,q) ∈ H×Q of the simultaneous
distributed-boundary optimal control problem (1.8). In similar way to [12], we have a result on
existence of solution to the simultaneous optimal control problem (1.10) in which the system is
governed by the hemivariational inequality (1.4).

Theorem 4.1. For each α > 0, if H( j)(a)− (d) holds, then the simultaneous distributed-
boundary optimal control problem (1.10) governed by the hemivariational inequality (1.4) has
a solution.

Proof. By definition, for each α > 0, the functional Jα is bounded from bellow. Next, taking
into account that the hemivariational inequality (1.4) has a solution (see [13, Theorem 4]), for
each α > 0 and each (g,q)∈H×Q, we denote by Tα(g,q) the set of solutions of (1.4) and have
that

m = inf{Jα(g,q),(g,q) ∈ H×Q,uαgq ∈ Tα(g,q)} ≥ 0. (4.1)

For each α > 0, let (gα
n ,q

α
n ) ∈ H×Q be with n ∈ N a minimizing sequence to (4.1) such that

m≤ Jα(gα
n ,q

α
n )≤ m+

1
n
. (4.2)

Taking into account that the functional Jα satisfies

lim
||(g,q)||H×Q→+∞

Jα(g,q) = +∞
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where ||(g,q)||2H×Q = ||g||2H + ||q||2Q, we obtain that there exists C1 > 0, independent of α , such
that

||gα
n ||H ≤C1 and ||qα

n ||Q ≤C1.

Moreover, from (1.4), we can prove that there exists C2 > 0, independent of α , such that

||uαgα
n qα

n ||V0 ≤C2. (4.3)

In fact, let u∞ ∈ K be the solution to problem (1.2). We have

a(uαgα
n qα

n ,u∞−uαgα
n qα

n )+α

∫
Γ3

j0(uαgα
n qα

n ;u∞−uαgα
n qα

n )dΓ≥
∫

Ω

gα
n (u∞−uαgα

n qα
n )dx

−
∫

Γ2

qα
n (u∞−uαgα

n qα
n )dΓ.

Hence

a(u∞−uαgα
n qα

n ,u∞−uαgα
n qα

n )≤ a(u∞,u∞−uαgα
n qα

n )+α

∫
Γ3

j0(uαgα
n qα

n ;b−uαgα
n qα

n )dΓ

+
∫

Ω

gα
n (uαgα

n qα
n −u∞)dx−

∫
Γ2

qα
n (uαgα

n qα
n −u∞)dΓ.

From hypothesis H( j)(d), since the form a is bounded (with positive constant Ma), we have

‖u∞−uαgα
n qα

n ‖
2
V0
≤ a(u∞,u∞−uαgα

n qα
n )+

∫
Ω

gα
n (uαgα

n qα
n −u∞)dx−

∫
Γ2

qα
n (uαgα

n qα
n −u∞)dΓ

≤Ma‖u∞‖V‖u∞−uαgα
n qα

n ‖V +(||gα
n ||H + ||qα

n ||Q||γ||)‖u∞−uαgα
n qα

n ‖V
≤C3 (Ma‖u∞‖V +C1 +C1||γ||)‖u∞−uαgα

n qα
n ‖V0

where ||γ|| denotes the norm of trace operator, and C3 is a positive constant due to the equiva-
lence of norms. Subsequently, we obtain (4.3). Therefore, for each α > 0, there exist fα ∈ H,
ξα ∈ Q and ηα ∈V0 such that, as n→ ∞,

uαgα
n qα

n ⇀ ηα in V0, gα
n ⇀ fα in H and qα

n ⇀ ξα in Q.

Now, for each α > 0 and for all (gα
n ,q

α
n ) ∈ H×Q, we have

a(uαgα
n qα

n ,v)+α

∫
Γ3

j0(uαgα
n qα

n ;v)dΓ≥
∫

Ω

gα
n vdx−

∫
Γ2

qα
n vdΓ for all v ∈V0

and taking the upper limit, we obtain

a(ηα ,v)+α limsup
n→∞

∫
Γ3

j0(uαgα
n qα

n ;v)dΓ≥
∫

Ω

fαvdx−
∫

Γ2

ξαvdΓ for all v ∈V0. (4.4)

By the compactness of the trace operator from V into L2(Γ3), we have uαgα
n qα

n

∣∣
Γ3
→ ηα

∣∣
Γ3

in
L2(Γ3) as n→ +∞, and at least for a subsequence, uαgα

n qα
n (x)→ ηα(x) for a.e. x ∈ Γ3 and

|uαgα
n qα

n (x)| ≤ hα(x) a.e. x ∈ Γ3, where hα ∈ L2(Γ3). Since the function R×R 3 (r,s) 7→
j0(x,r;s) ∈ R a.e. is upper semicontinuous on Γ3 (see [13, Proposition 3]), we obtain

limsup
n→∞

j0(x,uαgα
n qα

n (x);v(x))≤ j0(x,ηα(x);v(x)) a.e. x ∈ Γ3.

Next, from H( j)(c), we deduce the estimate

| j0(x,uαgα
n qα

n (x);v(x))| ≤ (c0 + c1|uαgα
n qα

n (x)|) |v(x)| ≤ kα(x) a.e. x ∈ Γ3
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where kα ∈ L1(Γ3) and kα(x) = (c0+c1hα(x))|v(x)|. From the dominated convergence theorem
(see [31]), we have

limsup
n→∞

∫
Γ3

j0(uαgα
n qα

n ;v)dΓ≤
∫

Γ3

limsup
n→∞

j0(uαgα
n qα

n ;v)dΓ≤
∫

Γ3

j0(ηα ;v)dΓ.

Using the latter in (4.4), we obtain

a(ηα ,v)+α

∫
Γ3

j0(ηα ;v)dΓ≥
∫

Ω

fαvdx−
∫

Γ2

ξαvdΓ for all v ∈V0

that is, ηα ∈V0 is a solution to the hemivariational inequality (1.4). Next, we prove that

ηα = uα fα ξα

where uα fα ξα
is a solution to the hemivariational inequality (1.4) for data fα ∈ H and ξα ∈ Q,

for each α > 0. Finally, from (4.2) and the weak lower semicontinuity of Jα , we have

m≥ liminf
n→∞

Jα(gα
n ,q

α
n )

≥ 1
2

liminf
n→∞

||uαgα
n qα

n − zd||2H +
M1

2
liminf

n→∞
||gα

n ||2H +
M2

2
liminf

n→∞
||qα

n ||2Q

≥ 1
2
||uα fα ξα

− zd||2H +
M1

2
|| fα ||2H +

M2

2
||ξα ||2Q = Jα( fα ,ξα),

and therefore, for each α > 0, ( fα ,ξα) is an optimal pair to simultaneous distributed-boundary
optimal control problem (1.10). �

5. ASYMPTOTIC BEHAVIOR OF THE SIMULTANEOUS OPTIMAL CONTROLS

In this section, we investigate the asymptotic behavior of the optimal solutions to problem (1.10)
when α → ∞.

Theorem 5.1. Assume H( j) and (H1). If (gα ,qα) is a optimal solution to simultaneous dis-
tributed and Neumann boundary optimal control problem (1.10) and (g,q) is the unique solu-
tion to simultaneous optimal control problem (1.8), then (gα ,qα)→ (g,q) in H ×Q strongly
and uαgα qα

→ u∞gq in V strongly, when α → ∞.

Proof. As in Theorem 3.2, we make the prove in three steps.
Step 1. Since, for each α > 0, (gα ,qα) is a optimal solution to problem (1.10), we have the
following inequality, for all (g,q) ∈ H×Q

1
2
||uαgα qα

− zd||2H +
M1

2
||gα ||2H +

M2

2
||qα ||2Q ≤

1
2
||uαgq− zd||2H +

M1

2
||g||2H +

M2

2
||q||2Q.

Taking g = 0 in Ω and q = 0 on Γ2, we obtain that there exists a positive constant C1 such that

1
2
||uαgα qα

− zd||2H +
M1

2
||gα ||2H +

M2

2
||qα ||2Q ≤

1
2
||uα00− zd||2H ≤C1

because {uα00} is convergent when α → ∞ (see [13, Theorem 7]). Therefore, there exist posi-
tive constants C2, C3, and C4, independent of α , such that

||gα ||H ≤C2, ||qα ||Q ≤C3 and ||uαgα qα
||H ≤C4. (5.1)
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Now, we choose v = u∞gq−uαgα qα
∈V0 as a test function in elliptic boundary hemivariational

inequality (1.4) to obtain

a(uαgα qα
,u∞gq−uαgα qα

)+α

∫
Γ3

j0(uαgα qα
,u∞gq−uαgα qα

)dΓ≥ L(u∞gq−uαgα qα
).

From the equality

a(uαgα qα
,u∞gq−uαgα qα

) =−a(u∞gq−uαgα qα
,u∞gq−uαgα qα

)+a(u∞gq,u∞gq−uαgα qα
),

we obtain

a(u∞gq−uαgα qα
,u∞gq−uαgα qα

)−α

∫
Γ3

j0(uαgα qα
;u∞gq−uαgα qα

)dΓ

≤ a(u∞gq,u∞gq−uαgα qα
)−L(u∞gq−uαgα qα

).
(5.2)

Taking into account that j0(uαgα qα
;u∞gq−uαgα qα

)= j0(uαgα qα
;b−uαgα qα

) on Γ3, and H( j)(d),
we have j0(uαgα qα

;u∞gq−uαgα qα
)≤ 0 on Γ3. Hence

a(u∞gq−uαgα qα
,u∞gq−uαgα qα

)≤ a(u∞gq,u∞gq−uαgα qα
)−L(u∞gq−uαgα qα

).

By the boundedness and coerciveness of a, we infer

ma‖u∞gq−uαgα qα
‖2

V ≤ (Ma‖u∞gq‖V +‖L‖V ∗)‖u∞gq−uαgα qα
‖V

with Ma > 0. Subsequently,

‖uαgα qα
‖V ≤ ‖u∞gq−uαgα qα

‖V +‖u∞gq‖V

≤ 1
ma

(Ma‖u∞gq‖V +‖L‖V ∗)+‖u∞gq‖V

=: C5,

(5.3)

where C5 > 0 is a constant independent of α . Observe that a(u∞gq−uαgα qα
,u∞gq−uαgα qα

)≥ 0.
From (5.2), we have

−α

∫
Γ3

j0(uαgα qα
;u∞gq−uαgα qα

)dΓ≤ (Ma‖u∞gq‖V +‖L‖V ∗)‖u∞gq−uαgα qα
‖V

≤ 1
ma

(Ma‖u∞gq‖V +‖L‖V ∗)2

=: C6,

where C6 > 0 is independent of α . Thus

−
∫

Γ3

j0(uαgα qα
;u∞gq−uαgα qα

)dΓ≤ C6

α
. (5.4)

It follows from (5.3) that {uαgα qα
} remains in a bounded subset of V . Thus there exists η ∈V

such that, by passing to a subsequence if necessary,

uαgα qα
⇀ η weakly in V, as α → ∞. (5.5)

Moreover. from (5.1), we have that there exists h ∈ H and p ∈ Q such that

gα ⇀ h weakly in H, as α → ∞

and
qα ⇀ p weakly in Q, as α → ∞.
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Step 2. Next, we show that h = g, p = q, and η = u∞gq. We observe that η ∈ V0 because
{uαgα qα

} ⊂V0 and V0 is sequentially weakly closed in V . Let w ∈ K and v = w−uαgα qα
∈V0.

From (1.4), we have

L(w−uαgα qα
)≤ a(uαgα qα

,w−uαgα qα
)+α

∫
Γ3

j0(uαgα qα
;w−uαgα qα

)dΓ.

Since w = b on Γ3, by H( j)(d), we have

α

∫
Γ3

j0(uαgα qα
;w−uαgα qα

)dΓ = α

∫
Γ3

j0(uαgα qα
;b−uαgα qα

)dΓ≤ 0

which implies
L(w−uαgα qα

)≤ a(uαgα qα
,w−uαgα qα

). (5.6)

Next, we use the weak lower semicontinuity of the functional V 3 v 7→ a(v,v) ∈ R and (5.6)
to obtain

η ∈V0 satisfies L(w−η)≤ a(η ,w−η) for all w ∈ K. (5.7)

Subsequently, we show that η ∈ K. In fact, from (5.5), and the compactness of the trace op-
erator, we have uαgα qα

∣∣
Γ3
→ η

∣∣
Γ3

in L2(Γ3), as α → ∞. Passing to a subsequence if nec-
essary, we may suppose that uαgα qα

(x)→ η(x) for a.e. x ∈ Γ3 and there exists f ∈ L2(Γ3)
such that |uαgα qα

(x)| ≤ f (x) a.e. x ∈ Γ3. Using the upper semicontinuity of the function
R×R 3 (r,s) 7→ j0(x,r;s) ∈ R for a.e. x ∈ Γ3, see [13, Proposition 3 (iii)], we obtain

limsup
α→∞

j0(x,uαgα qα
(x);b−uαgα qα

(x))≤ j0(x,η(x);b−η(x)) a.e. x ∈ Γ3.

Next, taking into account the estimate

| j0(x,uαgα qα
(x);b−uαgα qα

(x))| ≤ (c0 + c1|uαgα qα
(x)|) |b−uαgα qα

(x)| ≤ k(x) a.e. x ∈ Γ3

with k ∈ L1(Γ3) given by k(x) = (c0 + c1 f (x))(|b|+ f (x)), and the dominated convergence
theorem (see [31]), we obtain

limsup
α→∞

∫
Γ3

j0(uαgα qα
;b−uαgα qα

)dΓ≤
∫

Γ3

j0(η ;b−η)dΓ.

Consequently, from H( j)(d) and (5.4), we have

0≤−
∫

Γ3

j0(η ;b−η)dΓ≤ liminf
α→∞

(
−
∫

Γ3

j0(uαgα qα
;b−uαgα qα

)dΓ

)
≤ 0

which gives
∫

Γ3
j0(η ;b−η)dΓ = 0. Again by H( j)(d), we have j0(x,η(x);b−η(x)) = 0 a.e.

x ∈ Γ3. By using now the hypothesis (H1), we have η(x) = b for a.e. x ∈ Γ3, which together
with (5.7) implies

η ∈ K satisfies L(w−η)≤ a(η ,w−η) for all w ∈ K.

Next, we prove that η = u∞hp. To this end, let v := w−η ∈ K0 with arbitrary w ∈ K. Hence,
L(v)≤ a(η ,v) for all v ∈ K0. Recalling that v ∈ K0 implies −v ∈ K0, we obtain a(η ,v)≤ L(v)
for all v ∈ K0. Hence, we conclude that

η ∈ K satisfies a(η ,v) = L(v) for all v ∈ K0,
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i.e., η ∈ K is a solution to problem (1.2). By the uniqueness of solution to problem (1.2), we
have η = u∞hp. Hence uαgα qα

⇀ u∞hp weakly in V , as α → ∞. Now

Jα(gα ,qα)≤ Jα(g,q), ∀(g,q) ∈ H×Q

and

J(h, p) =
1
2
||u∞hp− zd||2H +

M1

2
||h||2H +

M2

2
||p||2Q

=
1
2
||η− zd||2H +

M1

2
||h||2H +

M2

2
||p||2Q

≤ liminf
α→∞

Jα(gα ,qα)≤ liminf
α→∞

Jα(g,q)

= lim
α→∞

Jα(g,q) = J(g,q), ∀(g,q) ∈ H×Q.

From the uniqueness of the optimal control problem (1.8) (see [29]), we obtain that

h = g and p = q.

Thus u∞hp = u∞gq. Next, we prove that, as α → ∞

gα ⇀ g weakly in H, qα ⇀ q weakly in Q

and
uαgα qα

⇀ u∞gq weakly in V.

Step 3. Now, we prove the strong convergence uαgα qα
→ u∞gq in V , as α → ∞. Choosing

v = u∞gq−uαgα qα
∈V0 in problem (1.4), we obtain

a(uαgα qα
,u∞gq−uαgα qα

)+α

∫
Γ3

j0(uαgα qα
;u∞gq−uαgα qα

)dΓ≥ L(u∞gq−uαgα qα
).

Hence
a(u∞gq−uαgα qα

,u∞gq−uαgα qα
)≤ a(u∞gq,u∞gq−uαgα qα

)+L(uαgα qα
−u∞gq)

+α

∫
Γ3

j0(uαgα qα
;u∞gq−uαgα qα

)dΓ.

Since u∞gq = b on Γ3, by H( j)(d) and the coerciveness of the form a, we have

ma ‖u∞gq−uαgα qα
‖2

V ≤ a(u∞gq,u∞gq−uαgα qα
)+L(uαgα qα

−u∞gq).

Employing the weak continuity of a(u∞gq, ·), the compactness of the trace operator, and taking
into account that uαgα qα

→ u∞gq strongly in H, we conclude that uαgα qα
→ u∞gq strongly in V

as α → ∞.
Finally, we prove the strong convergence of gα to g in H and qα to q in Q as α → ∞. In fact,

from uαgα qα
→ u∞gq strongly in H, we deduce

lim
α→∞

1
2
||uαgα qα

− zd||2H =
1
2
||u∞gq− zd||2H . (5.8)

As gα ⇀ g weakly in H and qα ⇀ q weakly in Q, we have

||g||2H ≤ liminf
α→∞

||gα ||2H and ||q||2Q ≤ liminf
α→∞

||qα ||2Q. (5.9)
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Next, from (5.8) and (5.9), we obtain

1
2
||u∞gq−zd||2H +

M1

2
||g||2H +

M2

2
||q||2Q≤ liminf

α→∞

(
1
2
||uαgα qα

− zd||2H +
M1

2
||gα ||2H +

M2

2
||qα ||2Q

)
,

that is, J(g,q)≤ liminf
α→∞

Jα(gα ,qα).

On the other hand, from the definition of (gα ,qα), we have Jα(gα ,qα) ≤ Jα(g,q). Taking
into account that uαgα qα

→ u∞gq strongly in H (see [13, Theorem 7]), we obtain

limsup
α→∞

Jα(gα ,qα)≤ limsup
α→∞

Jα(g,q) = J(g,q).

Thus lim
α→∞

Jα(gα ,qα) = J(g,q) or equivalently

lim
α→∞

(
1
2
||uαgα qα

− zd||2H +
M1

2
||gα ||2H +

M2

2
||qα ||2Q

)
=

1
2
||u∞gq− zd||2H +

M1

2
||g||2H +

M2

2
||q||2Q.

(5.10)

Now, from (5.8) and (5.10), we have, as α → ∞,

||gα ||2H → ||g||2H and ||qα ||2Q→ ||q||2Q

and as gα ⇀ g weakly in H and qα ⇀ q weakly in Q, we deduce that gα → g strongly in H and
qα → q strongly in Q. This completes the proof. �

6. CONCLUSIONS

We studied two optimal control problems, with a parameter, for the systems governed by
elliptic boundary hemivariational inequalities with a non-monotone multivalued subdifferential
boundary condition on a portion of the boundary of the domain, which is described by the
Clarke generalized gradient of a locally Lipschitz function. The first optimal control problem
corresponds to a family of boundary optimal control problems and the second one corresponds
to a family of distributed-boundary optimal control problems. We proved an existence result
for the two optimal control problems and demonstrated an asymptotic result for the optimal
controls and the system states, when the parameter (the heat transfer coefficient on a portion
of the boundary) tends to infinity. These results generalize for a locally Lipschitz function j,
under the hypothesis H( j) and (H1) and the classical results obtained in [26, 30] for a quadratic
superpotential j. We remark that, by using the hypothesis (H1), the asymptotic behavior of the
systems for both optimal control problems were obtained without any previous knowledgement
on the monotonicity on the parameter like in [13, 14].
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[23] P. D. Panagiotopoulos, Hemivariational Inequalities, Applications in Mechanics and Engineering, Springer,

Berlin, 1993.
[24] S. Migórski, A. Ochal, M. Sofonea, Nonlinear Inclusions and Hemivariational Inequalities. Models and Anal-

ysis of Contact Problems, Springer, New York, 2013.
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