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Abstract: We consider a heat conduction problem S with mixed
boundary conditions in an n-dimensional domain 2 with regular
boundary and a family of problems S, with also mixed boundary
conditions in €2, where v > 0 is the heat transfer coefficient on the
portion of the boundary I';. In relation to these state systems, we
formulate Neumann boundary optimal control problems on the heat
flux ¢ which is definite on the complementary portion I's of the
boundary of 2. We obtain existence and uniqueness of the optimal
controls, the first order optimality conditions in terms of the adjoint
state and the convergence of the optimal controls, the system state
and the adjoint state when the heat transfer coeflicient a goes to
infinity. Furthermore, we formulate particular boundary optimal
control problems on a real parameter A, in relation to the parabolic
problems S and S, and to mixed elliptic problems P and P,. We
find a explicit form for the optimal controls, we prove monotony
properties and we obtain convergence results when the parameter
time goes to infinity.

Keywords: parabolic variational equalities, optimal control,
mixed boundary conditions, optimality conditions, convergence

1. Introduction

Following Gariboldi and Tarzia(2008), Menaldi and Tarzia 9 2007), and Tarzia,
Bollo and Gariboldi (2020), we will study some Neumann boundary parabolic
and elliptic optimal control problems. We consider a bounded domain €2 in R™,
whose regular boundary I' consists of the union of the two disjoint portions
I'y and T'y with [T'3] > 0 and |T's| > 0. We denote with |I';|] = meas(I;)
(for i = 1,2), the (n — 1)-dimensional Hausdorff measure of the portion I'; on
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2 C.M. BorLro, C. M. GARIBOLDI AND D. TARZIA

I'. Let [0,7] be a time interval, for a T > 0. We present the following heat
conduction problems S and S, (for each parameter a > 0) respectively, with
mixed boundary conditions (we denote by u(t) to the function wu(-,t)):

ou

E_AUZQ in Q u}m:b —%Fzzq u(0) = vp (1)
ou ) ou ou
E—Au-g in Q —%Fl—a(u—b) —%m—q u(0) = vp, (2)

where u is the temperature in Q x (0,7), g is the internal energy in €, b is the
temperature on I'y for (1) and the temperature of the external neighborhood of
Iy for (2), vp = b on I'y, ¢ is the heat flux on 'y, and « > 0 is the heat transfer
coefficient on I'; through a Robin condition, which satisfy the hypothesis: g €
H = L2(0,T; L)), ¢ € Q = L2(0,T; L2(T'y)) and b € H=(I';). In addition,
vp € HY(Q) is the initial temperature for (1) and (2), respectively.

Let u and u, be the unique solutions to the parabolic problems (1) and (2),
whose variational formulations are given by (Menaldi and Tarzia, 2007):

u—uvy € L2(0,T; Vo), u(0) =v, and u € L?(0,T;Vy) (3)
such that  (u(t),v) + a(u(t),v) = L(t,v), Yv € V,

uq € L2(0,T;V), ua(0) =v, and 4, € L2(0,T;V") ()
such that (U (t),v) + aa(ua(t),v) = Lo(t,v), Vv eV,

where (-, -) denotes the duality between the functional space (V or Vy) and its
dual space (V' or Vjj) and

V=H'(Q); W={veV:vl, =0}; Q=L*I2); H=L*Q)
(g,h)H:/Qghdx; (‘LW)Q:/F qn dy;

a(u,v) = / VuVoudz;  aq(u,v) = a(u,v) + a/uvd7
Q

L(t,v) = (g(t), ) — (@(t),)@;  La(t,v) = L(t,v) + 0 / budy.
Iy

All data, g, ¢, b, v, and the domain €2 with the boundary 92 = I'y U Ty are
assumed to be sufficiently smooth so that the problems (1) and (2) admit varia-
tional solutions in Sobolev spaces. The existence and uniqueness of the solutions
to the variational equalities (3) and (4), are well known, see, for example Brézis
(1972), Chrysafinos and Hou (2017), Duvant and Lions (1972),or Gunzburger
and Hou (1992)..

Let H = L?(0,T; H) be, with norm ||.|[% and internal product (g,h)y =

T
[(g(t), h(t))mdt, and the space @ = L?(0,T;Q), with norm ||.||o and internal
0



Neumann boundary optimal control problems governed by parabolic variational equalities 3

product (q.1)a = [(a(t), n(t))qd.

For the sake of sirr?plicity, for a Banach space X and 1 < p < oo, we will often
use LP(X) instead of LP(0,T; X).

If we denote by u, and uqq the unique solution to the problems (3) and (4),
respectively, we formulate the following boundary optimal control problems for
the heat flux ¢ as control variable, Gariboldi and Tarzia (2008), Lions (1968),
Troltzsch (2010):

find g€ Q suchthat J(g) = miél J(q), (5)
qe
find g, € Q suchthat J,(7,)= Hélél Ja(q), (6)
q

where the cost functionals .J : Q—)RSF and J, : Q—HR(J{ are given by:

. 1 M .. 1 M
i) J0) = 5 lua — 2all% + 5 lalld s ) Ja(@) = 5 ey — 2all% + 5 lally - (D)

with z4 € H given and M being a positive constant.

In Garibldi and Tarzia (2008), the authors studied boundary optimal control
problems on the heat flux ¢ in mixed elliptic problems and they proved exis-
tence, uniqueness and asymptotic behavior of the optimal solutions, when the
heat transfer coefficient goes to infinity. Similar results were obtained in Gari-
boldi and Tarzia (2015) for simultaneous distributed-boundary optimal control
problems on the internal energy g and the heat flux g in mixed elliptic problems.
In Menaldi and Tarzia (2007), convergence results were proved for heat conduc-
tion problems in relation to distributed optimal control problems on the internal
energy g as a control variable. Parabolic control problem with Robin boundary
conditions are considered in Bergounioux and Troltzsch (1999), Boukrouche and
Tarzia (2013), Chrysafinos, Gunzburger and Hou (2006), Gariboldi and Tarzia
(2008), and Menaldi and Tarzia (2007). Other papers on the subject are Ben
Belgacem, El Fekih and Raymond (2003), Sener and Subasi (2015), Sweilam
and Abd-Elal (2003), Wang and Yan (2019). In this paper, our main goal is to
study the existence and uniqueness of solutions and the asymptotic behaviour
of the optimal control problems (5) and (6), when a — co. Moreover, motivated
by Gonzalez and Tarzia (1990) we try find explicit solutions for the optimal con-
trols and a relationship between elliptic and parabolic boundary optimal control
problems, when the time goes to infinity. In this way, we consider the following
family of optimization problems on the heat flux dependent of a real parameter:
For fixed ¢o € Q, we define Qp = {A\qo : A € R} C Q, and we formulate the
following real Neumann parabolic boundary optimal control problems, for each
T>0and a > 0:

find A7) €R such that Hr(\(T)) = min Hr()\), (8)

find M\,(T) € R such that HQT(XQ(T)):@]% Hor(N), (9)
€
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where
HT()\) = J()\(]Q) and HQT()\) = Ja()\QQ). (10)

Moreover, we consider the elliptic mixed problems P and P,, for each o > 0,
Gariboldi and Tarzia (2008, 2015):

. Ju
—Au=g in u|F1:b —%F =q (11)
2
ou ou
—Au=g nQ ——| =au-b) ——| = 12
u=g o - —a@-b -5 =g (12)
1 2
whose variational equalities are given by
a(u,v) =L(v), YweVy, ue K (13)
(o (Ue,v) = Lo(), Yo eV, u, eV (14)

with K = vg + Vp for a given vg = b in I'y. For fixed ¢ € @, we define
Qo = {A\¢} : A € R} C @Q, and we formulate the following real Neumann elliptic
boundary optimal control problems, for each o > 0:

find X €R suchthat H(\) = min H(\), (15)
S
find X\, € R such that H,(\y) = min Hq (), (16)
€
where
H(A) =J"(Ag5) and  Ha(A) = J5(Aqp), (17)

with J* : Q—R{ and J* : Q—R{ given by Gariboldi and Tarzia (2008):

A 1 M A 1 M
i) I (0) = 5 toes = 2all3+ 5 lally ) Ta(@) = 5 luocas — zallfy + 5 laly (19)

where tsoq and Uecaq are the unique solutions to the variational equalities (13)
and (14), respectively, z4 € H is given and M is a positive constant.

The paper is structured as follows. In Section 2, we consider Neumann
boundary optimal control problems on the heat flux ¢ for heat conduction prob-
lems (1), (5) and (7i) and Neumann parabolic boundary optimal control prob-
lems on the heat flux ¢ for (2), (6) and (7ii), for each o > 0. We prove existence
and uniqueness of the optimal controls and we give the first order optimal-
ity conditions. In Section 3, for fixed ¢, we prove asymptotic estimates and
convergence results for the system states, the adjoint states and the optimal
controls, when the heat transfer coeflicient goes to infinity. In Section 4, we
prove estimates between the optimal controls of the problems (5) and (6) and
the second component of the simultaneous optimal controls of the problems
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studied in Tarzia, Bollo and Gariboldi (2020). In Section 5, for the real Neu-
mann parabolic boundary optimal control problems (8), (9), (15) and (16) we
prove the existence and uniqueness and we find explicit solutions for the optimal
control A(t), Ao (t), A and M\, respectively. Moreover, monotonicity properties
with respect to the data are also studied. Finally, in Section 6, convergence
results of the solutions to the problems (3) to the solution to the problem (13)

are obtained, when the parameter time ¢ — oco.

2. Boundary optimal control problems for systems S and
Sa

Here, we prove that the functionals J and J, are strictly convex and Gateaux
differentiable in Q. Moreover, we obtain the existence and uniqueness of the
boundary optimal controls g and g, and we give the optimality conditions in
terms of the adjoint states, for the optimal control problems (5) and (6), respec-
tively.

Following , Lions (1968),Menaldi and Tarzia(2007)and Troltzsch (2010), we
define the application C' : Q@ — L?(Vp) such that C(q) = u, — ug, where ug is
the solution of problem (3) for ¢ = 0.

We consider IT: @ x Q@ — R and £ : @ — R, defined by the expressions

(g, n) = (C(q),C()n + M(q,n)o Yqg,n€ Q
L(q) = (C(q), 24 —uo)n Yq€Q

and we prove the following result

LEMMA 1 i) C is a linear and continuous functional.
it) 11 is a bilinear, symmetric, continuous form and coercive in Q.
iii) L 1is linear and continuous functional in Q.
i) J can be written down as:

1 1
(@) = 5T(g,q) = £(a) + 5luo — zallz Vo€ Q.
v) J is a strictly convex functional on Q, that is, Vq1,q2 € Q, Vt € [0,1]
Mt(l—t
(1= 17(@2) + () — I((1 ~ g +t00) = L0 Dg g2,

vi) There exists a unique optimal control § € Q such that

J(q) = min J(q).
() = min.J(q)
PRrROOF It follows from Lions (1968) and Menaldi and Tarzia (2007), and

(1—=1)J(g2) +tJ(q1) = J((1 = t)g2 + tq1) =

t(1—t)
) [”uqz_UQ1||%-[+M||Q2_Q1||2Q]7

Vaq1,q2 € Q, YU € [1,00] 0.
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Now, we define the adjoint state pg, corresponding to the system (1) for each
q € Q, as the unique solution of the following mixed parabolic problem:

ap . Ip
_a_tq_qu:uq_Zd in Q7 pq‘rl 207 6—7;11—‘2207 pq(T):O;

whose variational formulation is given by

{ pq € L2(Vo), py(T) =0 and p, € L?(Vy) such that

—(Pg(t), V) + alpg(t), v) = (ug(t) — za(t), ), Vo € Vo, (19)

and we consider the following properties of the functional J, following Lions
(1968), Menaldi and Tarzia ( 2007) and Tarzia, Bollo and Gariboldi (2020).

LEMMA 2 i) The adjoint state pq satisfies:
(C(n),uq — za)n = —(n,pg)o: Va0 € Q.

ii) The functional J is Gateaux differentiable and J' is given by:

(J'(0),n —q) = (uy — ug,uqg — za)u + M(qg;n— q)o
=1l(¢g,n —q) — L(n—q), Yg,ne Q.

iii) The Gateaur derivative of J can be written as:
J'(q) =Mq—p, Yge Q.

iv) The optimality condition for the optimal control problem (5) is given by
Mg—pg=0 1in Q.

Next, we define the application C,, : @ — L?(V) such that C,(q) = g —
U0, Where uqg is the solution of the variational problem (4) for ¢ = 0.
If we consider I, : @ x Q@ — R and L, : @ — R, defined by

Ha(g,m) = (Calq), Ca(m)u + M(q,n)o Vg,n € Q

La(q) = (Cal(q), za — ta0)n Vg€ Q

in a similar way to Lemma 1 and 1, we have the following result:

LEMMA 3 (i) There exists a unique optimal control g, € Q such that
Ja(Tq) = min Ja(q).

(ii) The Gateauz derivative of Jo can be written as:

Jo(q) =Mq—pag Vg€ Q, (20)
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and the optimality condition for the optimal control problem (6) is given by:
MG, — pag, =0 in Q (21)

where the adjoint state paq corresponds to (2) for each q € Q, as the unique
solution of

Opag Opag

J— apaq = ap _—
) T on

ot

—Apag = Uaqg—24 0 Q, —

=0, paq(T) =0,
I'>

whose variational formulation is given by

{ Pag € L2(V), pag(T) =0 and pag € L*(V') such that (22)

—(Pag(t),v) + aa(Pag(t),v) = (Uaq(t) — za(t), V), Vo €V

for each oo > 0.

3. Convergence of Neumann boundary optimal control
problems when o — oo

Now, for fixed ¢ € ), we obtain estimates on uqq and poq uniformly when a > 1.
Next, we prove strong convergence for gu, taq and pag, when o goes to infinity.

PROPOSITION 1 (i) If uq and uaq are the unique solutions to the variational
equalities (3) and (4), respectively, we have the estimation

[tiag || L2 (vg) + [|uaqllLoe () + [[tag 2 vy + V(@ = D[uag = bl| Lo (£2(ry)) < C (23)

for all a > 1, where the constant C' depends only on the norms |[ig||z2(vy),

gl [L2(vry, [IVugllas NugllL2vy, [luglloe o, gl llalle and the coerciveness
constant A1 of the bilinear form a;.

(ii) For fired ¢ € Q we have uny — uq strongly in L*(V) N L*(H) and
liag — Ugq strongly in L*(V]), when o — oo.

PROOF Taking v = uaq(t) —uq(t) € V in the variational equation (4), taking
into account that u‘J(t)’m = b, by using Young’s inequality and integrating
between [0, T|, we obtain

1

A
5 ltaa(T) —ug(DI[ + 5

2
2 .
< A—l[llglli + 1ol ?llgllg + IVugl[3 + gl 721,

|tag = uql[ T2y + (@ = Dltiag = bl F2(2(r, )

where 7 is the trace operator on T
Here, we prove that there exists a positive constant K, independent of «,
which depends on

K = K, [lugllzee (s luall2 vy, gllwlall el Vugllllial |22 vry)



8 C.M. BorLro, C. M. GARIBOLDI AND D. TARZIA

such that for all a > 1, we have:

[twaql|Lo () + [tagllz(vy) + V(@ = Dl[wag = bl|L2zery)) < K. (24)

Next, by taking v € Vj in the variational equality (4) and subtracting the
variational equality (3), we have

(ag(t) = g(t), V) < Jug(t) — uag@)|lv||vllv, Yo € Vo,

and integrating in [0, T], we obtain

||taq — uqHL?(VO') < [ug = Uagl[L2(v)-
Next, by using (24), we conclude that there exists a positive constant C' =
C(K, [|tg||r2(vy)) such that (23) holds.

(ii) Let there be a fixed ¢ € Q, we consider a sequence {uq, 4} in L*(V) N
L°°(H) and by estimation (23), we have that ||uanq| |L2(V) < C and ||1.14anq| |L2(VO’) <
C, therefore, there exists a subsequence {uq, } which is weakly convergent to
wy, € L?(V) and weakly* in L°°(H) and there exists a subsequence {iq, 4}
which is weakly convergent to w, € L?(VJ). Now, from the third term of left
hand side of (24) and the weak lower semicontinuity of the norm in L?(L?(I'1)),
we have that w, = b on I'; and therefore w, — v, € L?(Vj). Next, we prove that
wqy satisfies

<wq(t)a v> + a(wq(t)vv) = L(ta 1)), Vv e W
and wy(0) = v, with w, € L2(V{)).
Therefore, by uniqueness of the solution of the variational problem (3), we obtain
wq = uq. That is, when o — oo we have

Uag — Ug in LA(V),  Unq — ug in L°(H) and  tiaq — g in L*(VY).

Now, we have

1 2 2 2
5 l1waq(T) = ug(T)|[a + Arlluag = ugllp2(vy + (@ = Dlfuag = ugllL2z2(ry))

< /{L(u taq(t) = ug(t)) — alug(t), uaq(t) — uq(t)) = (tq(t), uaq(t) — uq(t)) }dt
0

and by using the weak convergence of w4 to u4, we prove the strong convergence
in L?(V). Next, taking into account that

g = el ey < 7 [ AL o (6) = g (0)) = alug(8), g (8) = g (1)

= (g (), taq(t) — uq(t)) }dt

and the weak convergence of uq, to ug, we prove the strong convergence in
L?(L*(T1)). Now, from the variational equalities (3) and (4), we have

|[ttaq — uq”%?(vo') < ug — “aq”%?(v) — 0, when a— oo
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We deduce that 1., is strongly convergent to 1, en L?(V{). Finally, we have

2 .
lluaq = uqllzoo (zry < 219l + [ollllalle + lluallz2 (v + [ldall2)lltag — uqllL2(v)

and from the strong convergence of uyq to u, in L?(V'), we prove that ua, is
strongly convergent to uy in L°°(H), when o — 0. O

PROPOSITION 2 (1) If p, and paq are the unique solutions to the variational
equalities (19) and (22), respectively, we have the estimation

[[PagllL2(vg) + IPagllLe(m) +|PagllL2(v) + V(@ = D|pagllL2z2ry)) < C (25)

for all a > 1, where the constant C depends on the morms ||pg||L2(vy),

lallzzy, ol Npallzzery Weallzem,  Ngllzo llalles — Ilzalls,
[igll2cvrys [[Vuglla, ugllnzovy, ugllze )y and of the coerciveness constant
A1

(ii) For fized q € Q, we have that pag — py strongly in L*(V)N L*(H) and
Pag — Pq strongly in L*(VY), when a — .

PROOF Let there be fixed ¢ € Q, the estimation (25) follows from analogous
reasoning to Proposition 1. We have that there exists a subsequence {pa, ¢},
which is weakly convergent to 1, € L*(V) and weakly* in L>(H). From the
weak semicontinuity of the norm, we have that 7, = 0 on I'y and therefore
ng € L*(Vy). Moreover, 7, satisfies

—(1q(t),v) + alng(t),v) = (uq(t) = za(t),v)m Vv Vo

and 7,(T) = 0 with 7, € L?(Vj). Therefore, by the uniqueness of the solution
of the variational problem (19), we obtain 1, = p, and when a — oo, we have

Pag = Pq 0 L*(V),  pag = pg in L¥(H) and  pag—p, in L*(Vy).

Finally, the strong convergence of paq to py in L*(V) N L®(H) and of pag to py
in norm L?(V{) is obtained in a similar way to that in Proposition 1. O

Now, we consider the boundary optimal control problems (5) and (6) and
our goal is to prove the following theorem:

THEOREM 1 Letq andq, be the unique solutions of the optimal control problems
(5) and (6), respectively. Then, we have that G, — G strongly in Q, when the
parameter o — oo. Moreover, the system state and the adjoint state satisfy
(Uag, lag, ) — (uglg) and (Pag, Pag.) — (Pgbg) strongly in L*(V') x L*(Vy).

PrROOF We will establish the proof in three steps.
Step 1. From the estimation (23) for ¢ = 0, there exists a constant C; > 0
such that
|[uaollx < [luaollz2(vy < Cr, Vo> 1,



10 C.M. BorLro, C. M. GARIBOLDI AND D. TARZIA

and from J,(q,) < Jo(0), we have

1 M, _ 1
St — zallf + 1l < llua0 — zal B
Therefore, there exist positive constants Co and C3 such that
[tag, |[# < C2 and |[g,lle < C3, Va>1.

Now, by an analogous reasoning to that for the estimates (23) and (25), there
exist positive constants Cy and C5 such that, for all & > 1, we obtain

[uag, lL2(vy + |[tag, |22(vg) + V(@ = Dlluag, = bllL22r,)) < Ca

[1Pag, |IL2(vy + IBag, |22(vy) + V(@ = Dllpag, [l22z2(ry)) < Cs.
From the previous estimations, we have that there exist f € Q, u € L*(V),
fe L2(Vy), p€ L*(V) and p € L*(V{) such that
To = fEQ Uag, = nELXV), i, =€ L*(V),
Pag, = p € LXV), Pag, — p € L*(V).
Step 2. Taking into account the weak convergence of uag, to p in L2(V)
and the estimation /(o — 1)||tag, —bl|z2(22(r,)) < C4, in a similar way to that

of Proposition 1, we obtain that ;1 = uy. Moreover, for the adjoint state, we
have that p.g is weakly convergent to p in L*(V) and from the estimation

V(e =Dllpag, |lz2z2ry)) < Cs, ina similar way to thatof Proposition 2, we
obtain that p = py. Therefore, we have ungz, — uy in L?(V) and Pag, — Pf
in L2(V). Now, the optimality condition for the optimal control problem (6) is
given by (M@, — pag,n)o = 0, Vn € Q, and taking into account that

Pag, — Py in L*(V) and G, —f in Q,
we obtain —py + M f = 0, and by the uniqueness of the optimal control we

deduce that f =gq. Therefore, uy = ug, py = pg, Uy = g and py = 1ugz.
Step 3. We have, for all ¢ € Q

1 M, _ a1 M, _
@) = v — 2olB-+ s < mint | Slhueg, -l + 5 Il <
. 1 M, _ .

limsup | = [uag, — zall3 + - |ldallS | < limsup Jo(q) =

a—00 2 2 a—00

. 1 M 1 M
[0y = 2l + 3 ala] = 3hug = 2ol + S llalls = T

By taking infimum on ¢, all the above inequalities become equalities and there-
fore

i [l[uag, — 2allB + MIa113] = llug — 2al B + Mg
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that is

lim ||(V MGy, tag, — 2a)l[oxn = 1(VMT,ug — 24)|[Gn-

a—r00

The previous equality, the convergence g, — 7 in @ and unz, — ug in L2(V)
imply that (g, uag, ) = (T, ug) strongly in Q@ x H, when o — oo.

Finally, if we take v = uag_ (1) — ug(t) € V in (4) for u = uag_ and if we call
Za = Uag, — Ug, we have

Mllza @I < (9(t) = g(t), za(t) i = (@a(t), 2a(t))q — alug(t), za(t)).

Integrating between 0 and 7" and taking into account that z, — 0 weakly in
L?(V), z, is bounded independently of «, and g, — @ strongly in Q when
a — 00, following Boukrouche and Tarzia (2013), we obtain

/ [(9(t) = iq(t), za (1) 1 = (@a (1), 2a(t)) @ — aluqg(t), za(t))] dt — 0.

Next, we have lim ||zq|[z2(y) = 0. From the variational equalities (3) and
a—r00
(4), we have
(éa(t)7U)H + G(Za(t), ’U) = (q(t) - qa(t)v U)Qa Vo € ‘/0
Therefore, [|2a(t)12, < 2llza@®II2 + 2ol P11 — G (B]13, and by integrating
on [0,T], we obtain
||2a||%2(vo/) < 2||Za||%2(v) +2[[70l1?[l7 — 2ull2-

Since that [?777]g, — g strongly in Q and uag_ — ug strongly in L*(V) when
o — 00, we can say that Z, — 0 strongly in L*(V{), that is, iag, — iUz
strongly in L?(Vy). In similar way, we prove that (pag, Pag,) — (Pgpg) strongly
in L2(V) x L?(V{), when a — oo. O

4. Estimations between the optimal controls

In this section, we obtain estimations between the solutions of some Neu-
mann boundary optimal control problems and the solutions of the simultaneous
distributed-boundary optimal control problems studied in Tarzia, Bollo and
Gariboldi (2020) [?? please, explain ”estimations between”].

4.1. Estimations with respect to the problem S

We consider the Neumann boundary optimal control problem

find g€ Q suchthat Ji(q) = miél J1(q) for fixed geH, (26)
qe
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where J; is the cost functional, given in (5), plus the constant %||g| |3,, that is,
J: 9 — Rar is given by

1 M, M
Ji(a) = Sllug = zall3 + =~ lloll3 + —-llalls (fixed g € H),
2 2 2

where u, is the unique solution of the problem (3) for fixed g.

REMARK 1 The functional J(g,q), defined in Tarzia, Bollo and Gariboldi
(2020), see (7), and the functional Jy previously defined, satisfy the following
elemental estimation

Jt(@9) < (@), VYgeH.

In the following theorem we obtain estimations between the solution of the
boundary optimal control problem (26) and the second component of the solu-
tion to simultaneous distributed-boundary optimal control problem studied in
Tarzia, Bollo and Gariboldi (2020).

THEOREM 2 If (gq) € H x Q is the unique solution to the distributed-boundary
optimal control problem in [?, see (7)] and G is the unique solution to the optimal
control problem (26), then

__= 1ol
la-lo < X jugs — gl vy e (27)
where o is the trace operator with ||y|| = sup ”’Y‘Tiﬁ)‘llcg and N\o the coer-

veV—{0}
civeness constant of the bilinear form a.

PROOF By the optimality condition for g, for fixed g € H, we have
(MG —pgqn)e =0, VneQ,
and taking upon 1 = g — ¢ we obtain
(MG — pyqd — 7)o = 0. (28)

On the other hand, if we take h = 0 € H in the optimality condition for (gq),
given in Tarzia, Bollo and Gariboldi (2020), we have (Mg—p==n)o = 0, ¥ € Q;
next, by taking n = g — g, we obtain

(~MT + p;5T Do = 0. (20)

By adding the expressions (28) and (29), we have

(M@-D+ (Pﬁ—pga)ﬁ—a)g —0.
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So, by the Cauchy-Schwarz inequality and the trace theorem, we have

= Yol|
llg—alle < i P55 — Poallrzv)-

Now, if we prove that
1
||p§§ _pg§||L2(V) < —0||U§§ — “96||H

the estimation (27) holds. In fact, by the variational equality for the adjoint
state given in Tarzia, Bollo and Gariboldi (2020), see (5), for g =g and ¢ = q,
we have

—~(paa(8),0) + alpss(8),0) = (ug(t) — zat), ). Yo € Vo,
and for fixed g € H and ¢ =7

—(Pgq(t),v) + a(pgg(t),v) = (ugq(t) — za(t),v)n, Yv € Vo,

Subtracting these equations, we obtain

~5(1)~Pya(t), ) +alpy5(t)~Pya(t),v) = (5 (1) —ugq(t). ), Vv € V.

By replacing v = pz=(t) — pgq(t) € Vo and using the fact that

2pg5(0) ~ Boa(t),py7t) — poa(0) = llps®) — poa()li

we obtain

2 oga(t) — poa I + IV (p330) — pgt)) I

< luzz(t) — ugg ()1 llp55(t) — Peg(®)llH-
and by using Young inequality for e = )y, we have

1d

- 5%”1’53(0 - pga(t)H?{ =+ /\0||p§§(t) —pgﬁ(t)H%/

1 o
< oac lhiga® = oIl + SlIpgz(t) = poa I

Then
d 2 2 1 2
- E”pﬁﬁ(t) —pgz(®)||zr + Xollpg5(t) — pez(Wllv < )\_OHUEE("’) —ugg(t)||7-

By integrating between 0 and T, and using that p==(T) = py3(T) = 0, we
deduce ‘

1
1p57(0) — pgg(0)l13 + Nollpsz — PoallZ(y < )\—0||U§§ — ugql |3
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ie.
1
|Ip55 — PyallLz(v) < )\—O||U§5 — Ugq]|n-
and then (27) holds. O
Now, if we consider the distributed optimal control problem

find geM suchthat Jo(g) =minto(g) forfied ¢€Q  (30)
g

where Jy is the cost functional given in menaldi and tarzia (2007) plus the
constant &||q||%, that is, Jo : H — R{ is given by

1 M,y M
Ta(9) = 5llug = zallo + Mgl + S llalle - (fixed g€ Q),

where u, is the unique solution of the problem (3) for fixed ¢, we can prove the
following corollary.

COROLLARY 1 If (gq) € H x Q is the unique solution to the simultaneous op-
timal control problem studied in Tarzia, Bollo and Gariboldi (2020), see (5), §
is the unique solution to the distributed optimal control problem (30) for fized
q (9 =), and q is the unique solution to the problem (26) for fived g (9 =79),
theng=79 and q = q.

PROOF If we take h = g
in Menaldi and Tarzia (2

(
(M1 + 557 - 9)

On the other hand, if we consider h = § — g and = 0 in the optimality
condition for the simultaneous optimal control problem studied in Tarzia, Bollo
and Gariboldi (2020), we obtain

(Mlﬁ-f—]?ﬁﬁ—?)ﬂ- (32)

Subtracting (31) and (32), we deduce that

— 7 in the optimality condition for the problem given
007), we have

=0 (31)

(M1§+p§§ — Mg — p559 — ?)H =0,

and therefore

Next, by using the fact that
(P~ ps79 =), =~z — sl
we have
—|lugg — ug5ll3 = Millg — gl

Hence, we deduce that ||g — g||?, = 0 and therefore g = 3.
In a similar way we prove that § = 7. O
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4.2. Estimations with respect to the problem S,
For each o > 0, we consider the following optimal control problem

find g, € Q@ such that Ji,(q,) = ngg J1a(q), (33)
q
where Ji, : Q — R is given by
1 M,y M
Tiala) = Hltog — zalll + 2 Ygllh + Ly (ixed g€ %),
that is, Ji, is the functional (6) plus the constant 4:|[g||3,, and wua, is the

unique solution of the problem (4) for fixed g.

REMARK 2 The functional JI defined in Tarzia, Bollo and Gariboldi (2020),
see (8), and the functional Jio, previously defined, satisfy the following estimate

J;(Eavaa) < Jloz(qa)v Vg e H.

Estimation between the solution of the Neumann boundary optimal control
problem (33) with the second component of the solution to the simultaneous
optimal control problem studied in Tarzia, Bollo and Gariboldi (2020), is given
in the following theorem whose prove is omitted.

THEOREM 3 If (§,,q,) € H X Q is the unique solution of the simultaneous
optimal control problem from Tarzia, Bollo and Gariboldi (2020), see (6), and
q,, is the unique solutions to the optimal control problem (33), then we have:

1ol
AaM

with Ao, = A\ min{l, a} and A1 the coerciveness constant of the bilinear form
ai.

@0 = Tallo < I —Uagg,lln VgEH

0G0 T

If we consider the following distributed optimal control problem, for each o > 0

find g, € H suchthat J2n(7,) = Hélill J20(9), (34)
g
where Jo, : H — R{ is given by

1 M, M
Jaa(9) = 5lluag = 2alle + St lglBe+ S llally,  (fxed g€ Q)

that is, Jo, is the functional studied in Menaldi and Tarzia (2007) plus the
constant &||¢||%, and uag is the unique solution of the problem (4) for fixed g,
we give the following corollary, whose proof is omitted.

COROLLARY 2 If (3,,q,) € H x Q is the unique solution of the simultaneous
optimal control problem studied in Tarzia, Bollo and Gariboldi (2020), see (6),
T, 18 the unique solution of the problem (34) for fized q¢ (¢ = q,), and q,, is
the unique solution of the problem (33) for fivred g (9 =79,), then g, =9, and
qa = QQ'
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5. Real Neumann boundary optimal control problems

In this section, we consider the non-stationary real-boundary optimal control
problems (8) and (9) and the stationary real-boundary optimal control problems
(15) and (16). We prove existence and uniqueness of the solutions to these
optimal control problems and monotonicity results are also obtained.

5.1. Real Neumann boundary optimal control problem in relation
to the parabolic system S

If we consider the real-boundary optimal control problem (8) and we denote by
Upqg the unique solution of the variational equality (3) for the data b, ¢ and g,
and we take ¢ = Aqo for fixed ¢ € Q (g0 # 0) and X\ € R, we can prove that

Ubgg(t) = uprg(t) = up(t) + uq(t) +uy(t), Vo e,

where uy, is the unique solution to the parabolic variational equality

u—uy € L2(Vp), uw(0) =v, and € L*(V) (35)
such that  (u(t),v) + a(u(t),v) =0, Yv eV,

uq is the unique solution to the parabolic variational equality
u € L2(Vp), w(0)=0 and e L*(Vf) (36)
such that  (u(t),v) + a(u(t),v) = =A(q(t),v)g, Vv eV,

and u4 is the unique solution to the parabolic variational equality
ue LA2(V), w(0) =0 and ue€ L*(V{) (37)
such that  (a(t),v) + a(u(t),v) = (9(t),v)m, Yv € V.

We note that, by the linearity, we can prove that uq(t) = Aug, (t), where ug, is
the unique solution of (3) for ¢ = go and b = g = 0.
Next, for each T' > 0, the functional Hr(X) can be written as

T

Hr(\ :%// up (1) + Mgy (t) +ug (t) — z4(t))* dodt + M;Q/T/qg(t)dydt

0 0 T

therefore, Hr(\) = A2A(T) + AB(T) + C(T), where
M ’ 1 ’
2 2
= 7//q0(t)d7dt+ 5//uq0(t)d:vdt
0T, 0 Q

/T/uqo ) (up(t) + ug(t) — zq(t))dxdt
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O(T) =

N =

T
//(Ub(t) + ug(t) — zq(t))*dadt.
0 Q

Here, taking into account that

0 Q

> ( / / uﬁo(t)dmt> ( O/ Q/ (ub(t)+ug(t)—zd(t))2dxdt>
5>

= |fugo | 5ellus + ug — zall3 > (uagus +ug — za)%

- ( [/ uqo<t><ub<t>+ug<t>—m(t))dzdt) — (B(T))*
0 Q

we deduce that (B(T'))* —4A(T)C(T) < 0 and since A(T') > 0, because gy # 0,
then there exists a unique A(T') € R for each T > 0, such that it satisfies the
problem (8), whose solution is given by the following expression:

T
Xy = - B0 _ _{ J a0 () (un(t) + () - Zd(t))dxdt. N
T
2A(T) M @t)dydt + [ [ u2, (t)dadt
0Q

s
Therefore, we have proven the following property.

THEOREM 4 For each T > 0, there exists a unique solution \(T) € R to the
optimization problem (8).

Now, we will prove some monotonicity properties.

PROPOSITION 3 Let ¢1 = Aiqo and g2 = Xaqo (g0 > 0), with Ao < A\ and
g1 < g2, then upxn, g, < Upryg, 1 Q x [0,T.

PROOF We define w = upy, g, —Upr,g, and we take v = —wT(t) € V for upy, 4, in
(3) and v = wh (t) € V for upr,g, in (3) (for the regularity of w™ see Kinderlehrer
and Stampalchia,2000). Adding the variational equalities, we have

<ub)\2.(]2 (t) — Ubx, gy (t)v w* (t)> + a(ubkzgz (t) — Ubxi gy (t)7 w* (t))

- / (92(t) — g1 (0w (D + (A — ) / aoltyw* ().

Q
s
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Next,
—(wt(t), w (t)) — a(w™ (t), wh (t) = /(gz(t) — g1(t))w™ (t)dz
Q
— A2 0

(= A) / ao(tyw* (t)dy.

>
Now, using the fact that

(1)t (1) = 3t O

and integrating between 0 and 7', we prove that

N —

T T
(Il @l = [ O + [ o @1 Ryde < [ [(0106) = galt)w* @
0 0 Q

T
+ (A2 —Al)//QO(f)er(t)def-

0 Ty

Since w* (O) = (uw\lgl - ubA292)+ (O) = maX{O? (ub)\lgl - ub>\292) (0)} =0,
1 T T
Sl + [ 1@l < [ 00 - o) @arar
0 0 Q

T
+ N2 —N\) //qo(t)er(t)d*ydt <0,

0 I'y

by using the facts that g1 < go, A2 < A\; and qo > 0, here ||w+||%2(O)T;VO) =0,
then w™ =0 in Q x [0,7] and therefore w < 0 in Q x [0, T, that is, the thesis
holds. |

COROLLARY 3 If q = )\1‘]0 and q2 = AQ(]O (qO > 0), with Ay < )\1, then
Upr g < Upryg 0 % [0,T7].

PRrROOF This results from taking g = g1 = g2 in the proof of the Proposition 3.
O

REMARK 3 The previous monotonicity properties are still true if we consider
A1 < Ao with qo < 0.
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5.2. Real Neumann boundary optimal control problems in relation
to the parabolic S,

If we consider the real Neumann boundary optimal control problem (9) and for
each o > 0 we denote by uqpqg the unique solution of the variational equality
(4) for data b, ¢ and g, and we take g = \qp for fixed qo € Q (g0 # 0) and X € R,
we can see that

Uabqg (t) = Uabg (t) = uap(t) + Uag (t) + Uag (1), VxeQ,

where Uap, Uaq; Uag are the unique solutions of (4) for ¢ =g =0, b= g =0 and
b = q = 0, respectively.

We note that, by the linearity, we can see that weq(t) = Auag, (t), where uqq,
is the unique solution of (4) for ¢ = qp and b = g = 0. Next, for each T > 0, the
functional H,7(\) can be written down as

T

Hyr(N\) = %//(uab(t) + Miagy () + Uag (t) — z4(t))*dadt
0 Q

Qi (t)drydt = N2 An(T) + ABo(T) + Co(T),

where

M f 1 f
= 7//qg(t)d’ydt+§//u avgo (t)dxdt
0Ty 0

T
O/Q/uaq(’ (wab(t) + tag(t) — za(t))dzdt

1
= 2 [ (a () + g (£) — za(t))?dadt.
[

Now, taking into account that A, (T) > 0, in a similar way as in the previous
subsection, we can prove that (B, (T))? —4A,(T)Ca(T) < 0 and therefore there
exists a unique solution A\, (7T") € R, for each a > 0 and for each T > 0, for the
optimal control problem (9), which is given by the following expression:

ffw% ) (Uab () + tiag(t) — za(t))dzdt
XO((T) =-2¢ . (39)

Mffqo dwdt—f—ffuaqo t)dzdt
0 T 0Q

Therefore, we have proven the following property.
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THEOREM 5 For each a > 0 and T > 0, there exists a unique solution \o(T) €
R to the optimization problem (9).

Now, in similar way to the previous subsection, we can prove the following
monotonicity properties, whose proof is omitted.

PROPOSITION 4 For each a > 0, if 1 = Mqo and g2 = Xaqgo (g0 > 0), with
A2 <A1, g1 < g2, by < ba on 'y and initial conditions vy, < vp,, then uap, n g, <
Uaby N2 g in ) x [O,T].

5.3. Real Neumann boundary optimal control problem in relation
to the elliptic system P

Here, we consider the stationary real Neumann boundary optimal control prob-
lem (15). If we denote by wocpqg the unique solution of the variational equality
(13) for data b, ¢ and g. and if we consider ¢ = Agg for fixed ¢} € Q (¢ # 0)
and A € R, we can see that

Uoobgg = Uocobrg = Uocob + Uocog + Uocog s Vr € Qv

where Usop, Uoog; Usog are the unique solutions of the variational equality (13)
forq=g=0,b=¢g=0and b= g =0, respectively.

Now, taking into account that teeq = AMiocgs, Where usq: is the solution of (13)
for ¢ = ¢ and b = g = 0. Next, the functional H(\) can be written down as

1

2 M/\2 *\2
H(\) = 3 (Uoob + Mloogs + Usog — 24)“dx + 5 (g3)*dr.

Q 1Y

Therefore H(A\) = A\2A + AB + C, where

M . 1
A= > /(q0)2d7 + 3 /ugoqadx, B = /Uooqg (Uoob + Uoog — 24)dx
Iy Q Q

1

C = 3 /(uoob + Uoog — 2q)%da.

Q

Here, since B? — 4AC < 0, there exists a unique Ao, € R such that solves the
problem (15), that is

J toogs (oo + Uoog — 2za)dx
. —_B__2 (40)
> 24 Mrf(qS)de—i—gjl‘ugoqux
2

Therefore, we have proven the following theorem.

THEOREM 6 There exists a unique solution Aoy € R to the optimization problem

(15).
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Now, we will give some monotonicity property, whose proof is omitted.

PROPOSITION 5 Let ¢1 = Agf and g2 = Xagi (g5 > 0), with Ao < A\ and
91 < g2, then tcopr, g < Ucobrags -

5.4. Real Neumann boundary optimal control problems in relation
to the elliptic system P,

We consider the stationary real Neumann boundary optimal control problem
(16) and we denote by Uscabgg the unique solution to the variational equality
(14) for the data b, ¢ and g. If we consider ¢ = Ag; for fixed ¢} € Q (¢ # 0)
and A € R, we can see that

Uooabgg = Uocabrg = Ucoab + Usoagq + Uooag Vo € Qa

where Uooab, Uscags Usoag are the unique solutions of the variational equality (14)
forq=g=0,b=¢g=0and b= g =0, respectively.

Now, taking into account the fact that uccaq = )\Uooaq;;, where Usoaqs 1S the
solution of (14) for ¢ = ¢ and b = g = 0, the functional H, () can be written
down as

1 MN? .
Ha()\) = 5 /(uooab+)\uooaq8 +uooag_zd)2dfc+ 2 /(q0)2d7 - )\QAa+)\Ba +Ca7

Q 2,

where
M . 1
Aa - 7 /(QO)2d’7 + 5 /ugoaqa«dxg Ba - /uooaq(’; (uooab + uooag — Zd)dx
T2 Q Q
1 2
CO‘ = 5 (uooozb + Uooag — Zd) dx.
Q

Here, since B2 — 4A4,C, < 0, there exists a unique )\, € R, which satisfies the
optimization problem (16), that is

B B f uooaq(’; (uooab + Uooag — Zd)d(E
Mo =~ = =2 ’ : (41)
2A0‘ M f(q6)2d7 + fuooaqadx
Iy Q

Therefore, we have proven the following theorem.

THEOREM 7 For each o > 0, there exists a unique solution Ao € R to the
optimization problem (16).

Now, we will give some monotonicity property, whose proof is omitted.

PROPOSITION 6 For each o > 0, if 1 = Mg and q2 = Xogg (¢5 > 0), with
A2 <A1, g1 < g2, b1 <o on Ty, then uabay g1 < Uabyrags 2.
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6. Asymptotic behaviour of solutions when t — 400

In this section, we study the convergence of the solutions to the problem (3) for
fixed data b € H2 (1), ¢ € Q and g € H, to the solution to the problem (13)
for the same b € H%(l—‘l) and fixed ¢ € Q and g € H, when t — 4o00. Here, for
the sake of simplicity, we denote by u., the unique solution to the variational
equality (13) for data g € Q and g € H.

If we define

Fi(t) = e™lg(t) = goolltr,  Fa(t) = [0l Plla(t) — gl

with g € H, ¢ € Q, Ag the coerciveness constant of the bilinear form a and g
the trace operator, we can prove the following theorem.

THEOREM 8 Ifbe H2(T'y), e Q, g€ H, Fy € L*(0,00) and Fy € L'(0,00),
then
—Xot 267>\0t

+ v (11121 0,00) + P2 ][22 (0,00))

[[thag (8) = oo |[Fr < [[tthgg (0) — s |Fre
and therefore

lIm upgy(t) = uso in H strong (exponentially).
t——+oo b

PROOF If we consider w(t) = upgq(t) — tso, we have that w(t) € Vo, w(0) =
Up—Uso and W = Upqe. Therefore, by taking v = w(t) in the variational equalities
(3) and (13) respectively, and subtracting then [?7?7] we obtain

(w(t), w(t)) + a(w(t), w(t)) = (L(t) = Loo, w(t)),

that is

1 + Aol DI < (9(0) — goo, w®)ir — (a(8) — e, w1
Next,

2l @I+ ol @) < llg(®) — gocllarlw(@llv + lla(t) — g llallw®le

< (l9() = goollrr + [I0lllla(®) = gecll@) [[w(®) v

Ao
< 2 ()}
1
+ 5= (lg(t) = goolla + I1olllla(t) — gooll@)?
2o

where v is the trace operator. Then

1d )
S llw @) +

1
5wl < " (Ilg(t) = gooll3 + 10l P[la(t) — go[3y) -
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Next, i we call F(t) = [[g(t) — gaoll3 + [ol2lla(t) — guolly, we have

d 2
— (llw(®)[1F) e + Xo|[w(t)||Fe*" < —F(t)e"
dt Ao

or, equivalently,

d 2
= (lw®llFe™") < /\—OF(t)ek“t-

Now, by integrating between 0 and ¢, we obtain

2 t
he®) e — Oy < = [ F(r)erar
0.Jo
therefore
_ 2e— Aot i B}
o)l < O)fre " + 25 [ F@)eman

and the thesis holds. O

COROLLARY 4 Ifbe Hz ('), Fy € L'(0,00) and Fy € L'(0,00), with g(t) =
Joo € H and q(t) = o € Q, then we have

Y
[[tbgg (t) — too| |rr < [|tngq (0) — tioo||re™ =" (42)

PRrROOF This results directly from Theorem 8. 0

REMARK 4 We note that if we consider the hypothesis: there exist m € (0, o)
and C1 = const. > 0 such that

i Mz + [1F2]]
11m

t——+o00 emt

LYo o

then we can prove the asymptotic behaviour obtained in Theorem 8.

COROLLARY 5 a) If b € H=(Ty), with q(t) = qoo € Q and there exist m €

F
(0, o) and Cy = const. > 0 such that lim Hl”% < Oy, then
t—+oo €

t—1>i-|rfloo [tbgg () — voo|lr = 0.

b) If b € H2(Ty), with g(t) = goo € H and there exist m € (0,\o) and
12

C3 = const. > 0 such that lim % < (s, then

t—+oo

t—1>i-|rfloo ||ubqg(t) - UOOHQ =0.
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REMARK 5 An open problem is to study whether (38) is convergent to (40) and
(39) is convergent to (41) (for each o > 0), when T — +o00. We hope that these
convergences do not happen. This assumption [22929] is based on the fact that
a function g(t) (Vt > 0) can be strongly convergent in H to a function geo, but
g s not necessarily strongly convergent to the same function goo in H, which is
shown in the following counterexample.

EXAMPLE 1 Let Q = (0,1) be and g(t) = goo + €~ ¢, then we have that

1 1
/ (g(t) — goo)de = / (e_t)2d:17 =e 2 50, if t — 400,
0 0

if t — +o0.

and
t 1(g(T) - goo)dedT = t(efT)QdT = 1(1 - efzt) —
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