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Abstract: We consider a heat conduction problem S with mixed
boundary conditions in an n-dimensional domain Ω with regular
boundary and a family of problems Sα with also mixed boundary
conditions in Ω, where α > 0 is the heat transfer coefficient on the
portion of the boundary Γ1. In relation to these state systems, we
formulate Neumann boundary optimal control problems on the heat
flux q which is definite on the complementary portion Γ2 of the
boundary of Ω. We obtain existence and uniqueness of the optimal
controls, the first order optimality conditions in terms of the adjoint
state and the convergence of the optimal controls, the system state
and the adjoint state when the heat transfer coefficient α goes to
infinity. Furthermore, we formulate particular boundary optimal
control problems on a real parameter λ, in relation to the parabolic
problems S and Sα and to mixed elliptic problems P and Pα. We
find a explicit form for the optimal controls, we prove monotony
properties and we obtain convergence results when the parameter
time goes to infinity.

Keywords: parabolic variational equalities, optimal control,
mixed boundary conditions, optimality conditions, convergence

1. Introduction

Following Gariboldi and Tarzia(2008), Menaldi and Tarzia 9 2007), and Tarzia,
Bollo and Gariboldi (2020), we will study some Neumann boundary parabolic
and elliptic optimal control problems. We consider a bounded domain Ω in R

n,
whose regular boundary Γ consists of the union of the two disjoint portions
Γ1 and Γ2 with |Γ1| > 0 and |Γ2| > 0. We denote with |Γi| = meas(Γi)
(for i = 1, 2), the (n − 1)-dimensional Hausdorff measure of the portion Γi on

∗Submitted:.... ; Accepted:...
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Γ. Let [0, T ] be a time interval, for a T > 0. We present the following heat
conduction problems S and Sα (for each parameter α > 0) respectively, with
mixed boundary conditions (we denote by u(t) to the function u(·, t)):

∂u

∂t
−∆u = g in Ω u

∣

∣

Γ1
= b − ∂u

∂n

∣

∣

∣

∣

Γ2

= q u(0) = vb (1)

∂u

∂t
−∆u = g in Ω − ∂u

∂n

∣

∣

∣

∣

Γ1

= α(u− b) − ∂u

∂n

∣

∣

∣

∣

Γ2

= q u(0) = vb, (2)

where u is the temperature in Ω× (0, T ), g is the internal energy in Ω, b is the
temperature on Γ1 for (1) and the temperature of the external neighborhood of
Γ1 for (2), vb = b on Γ1, q is the heat flux on Γ2, and α > 0 is the heat transfer
coefficient on Γ1 through a Robin condition, which satisfy the hypothesis: g ∈
H = L2(0, T ;L2(Ω)), q ∈ Q = L2(0, T ;L2(Γ2)) and b ∈ H

1
2 (Γ1). In addition,

vb ∈ H1(Ω) is the initial temperature for (1) and (2), respectively.
Let u and uα be the unique solutions to the parabolic problems (1) and (2),

whose variational formulations are given by (Menaldi and Tarzia, 2007):

{

u− vb ∈ L2(0, T ;V0), u(0) = vb and u̇ ∈ L2(0, T ;V ′
0)

such that 〈u̇(t), v〉+ a(u(t), v) = L(t, v), ∀v ∈ V0,
(3)

{

uα ∈ L2(0, T ;V ), uα(0) = vb and u̇α ∈ L2(0, T ;V ′)
such that 〈u̇α(t), v〉+ aα(uα(t), v) = Lα(t, v), ∀v ∈ V,

(4)

where 〈·, ·〉 denotes the duality between the functional space (V or V0) and its
dual space (V ′ or V ′

0) and

V = H1(Ω) ; V0 = {v ∈ V : v
∣

∣

Γ1
= 0} ; Q = L2(Γ2); H = L2(Ω)

(g, h)H =

∫

Ω

gh dx; (q, η)Q =

∫

Γ2

qη dγ;

a(u, v) =

∫

Ω

∇u∇vdx; aα(u, v) = a(u, v) + α

∫

Γ1

uvdγ

L(t, v) = (g(t), v)H − (q(t), v)Q; Lα(t, v) = L(t, v) + α

∫

Γ1

bvdγ.

All data, g, q, b, vb and the domain Ω with the boundary ∂Ω = Γ1 ∪ Γ2 are
assumed to be sufficiently smooth so that the problems (1) and (2) admit varia-
tional solutions in Sobolev spaces. The existence and uniqueness of the solutions
to the variational equalities (3) and (4), are well known, see, for example Brézis
(1972), Chrysafinos and Hou (2017), Duvant and Lions (1972),or Gunzburger
and Hou (1992)..

Let H = L2(0, T ;H) be, with norm ||.||H and internal product (g, h)H =
T
∫

0

(g(t), h(t))Hdt, and the space Q = L2(0, T ;Q), with norm ||.||Q and internal
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product (q, η)Q =
T
∫

0

(q(t), η(t))Qdt.

For the sake of simplicity, for a Banach space X and 1 ≤ p ≤ ∞, we will often
use Lp(X) instead of Lp(0, T ;X).

If we denote by uq and uαq the unique solution to the problems (3) and (4),
respectively, we formulate the following boundary optimal control problems for
the heat flux q as control variable, Gariboldi and Tarzia (2008), Lions (1968),
Tröltzsch (2010):

find q ∈ Q such that J(q) = min
q∈Q

J(q), (5)

find qα ∈ Q such that Jα(qα) = min
q∈Q

Jα(q), (6)

where the cost functionals J : Q→R
+
0 and Jα : Q→R

+
0 are given by:

i) J(q) =
1

2
‖uq − zd‖

2
H
+

M

2
‖q‖2

Q
, ii) Jα(q) =

1

2
‖uαq − zd‖

2
H
+

M

2
‖q‖2

Q
(7)

with zd ∈ H given and M being a positive constant.
In Garibldi and Tarzia (2008), the authors studied boundary optimal control

problems on the heat flux q in mixed elliptic problems and they proved exis-
tence, uniqueness and asymptotic behavior of the optimal solutions, when the
heat transfer coefficient goes to infinity. Similar results were obtained in Gari-
boldi and Tarzia (2015) for simultaneous distributed-boundary optimal control
problems on the internal energy g and the heat flux q in mixed elliptic problems.
In Menaldi and Tarzia (2007), convergence results were proved for heat conduc-
tion problems in relation to distributed optimal control problems on the internal
energy g as a control variable. Parabolic control problem with Robin boundary
conditions are considered in Bergounioux and Tröltzsch (1999), Boukrouche and
Tarzia (2013), Chrysafinos, Gunzburger and Hou (2006), Gariboldi and Tarzia
(2008), and Menaldi and Tarzia (2007). Other papers on the subject are Ben
Belgacem, El Fekih and Raymond (2003), Sener and Subasi (2015), Sweilam
and Abd-Elal (2003), Wang and Yan (2019). In this paper, our main goal is to
study the existence and uniqueness of solutions and the asymptotic behaviour
of the optimal control problems (5) and (6), when α → ∞. Moreover, motivated
by Gonzalez and Tarzia (1990) we try find explicit solutions for the optimal con-
trols and a relationship between elliptic and parabolic boundary optimal control
problems, when the time goes to infinity. In this way, we consider the following
family of optimization problems on the heat flux dependent of a real parameter:
For fixed q0 ∈ Q, we define Q0 = {λq0 : λ ∈ R} ⊂ Q, and we formulate the
following real Neumann parabolic boundary optimal control problems, for each
T > 0 and α > 0:

find λ(T ) ∈ R such that HT (λ(T )) = min
λ∈R

HT (λ), (8)

find λα(T ) ∈ R such that HαT (λα(T )) = min
λ∈R

HαT (λ), (9)
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where

HT (λ) = J(λq0) and HαT (λ) = Jα(λq0). (10)

Moreover, we consider the elliptic mixed problems P and Pα, for each α > 0,
Gariboldi and Tarzia (2008, 2015):

−∆u = g in Ω u
∣

∣

Γ1
= b − ∂u

∂n

∣

∣

∣

∣

Γ2

= q (11)

−∆u = g in Ω − ∂u

∂n

∣

∣

∣

∣

Γ1

= α(u − b) − ∂u

∂n

∣

∣

∣

∣

Γ2

= q, (12)

whose variational equalities are given by

a(u, v) = L(v), ∀v ∈ V0, u ∈ K (13)

aα(uα, v) = Lα(v), ∀v ∈ V, uα ∈ V (14)

with K = v0 + V0 for a given v0 = b in Γ1. For fixed q∗0 ∈ Q, we define
Q0 = {λq∗0 : λ ∈ R} ⊂ Q, and we formulate the following real Neumann elliptic
boundary optimal control problems, for each α > 0:

find λ ∈ R such that H(λ) = min
λ∈R

H(λ), (15)

find λα ∈ R such that Hα(λα) = min
λ∈R

Hα(λ), (16)

where

H(λ) = J∗(λq∗0) and Hα(λ) = J∗
α(λq

∗
0), (17)

with J∗ : Q→R
+
0 and J∗

α : Q→R
+
0 given by Gariboldi and Tarzia (2008):

i) J∗(q) =
1

2
‖u∞q − zd‖

2
H
+

M

2
‖q‖2

Q
, ii) J

∗
α(q) =

1

2
‖u∞αq − zd‖

2
H
+

M

2
‖q‖2

Q
(18)

where u∞q and u∞αq are the unique solutions to the variational equalities (13)
and (14), respectively, zd ∈ H is given and M is a positive constant.

The paper is structured as follows. In Section 2, we consider Neumann
boundary optimal control problems on the heat flux q for heat conduction prob-
lems (1), (5) and (7i) and Neumann parabolic boundary optimal control prob-
lems on the heat flux q for (2), (6) and (7ii), for each α > 0. We prove existence
and uniqueness of the optimal controls and we give the first order optimal-
ity conditions. In Section 3, for fixed q, we prove asymptotic estimates and
convergence results for the system states, the adjoint states and the optimal
controls, when the heat transfer coefficient goes to infinity. In Section 4, we
prove estimates between the optimal controls of the problems (5) and (6) and
the second component of the simultaneous optimal controls of the problems
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studied in Tarzia, Bollo and Gariboldi (2020). In Section 5, for the real Neu-
mann parabolic boundary optimal control problems (8), (9), (15) and (16) we
prove the existence and uniqueness and we find explicit solutions for the optimal
control λ(t), λα(t), λ and λα, respectively. Moreover, monotonicity properties
with respect to the data are also studied. Finally, in Section 6, convergence
results of the solutions to the problems (3) to the solution to the problem (13)
are obtained, when the parameter time t → ∞.

2. Boundary optimal control problems for systems S and

S
α

Here, we prove that the functionals J and Jα are strictly convex and Gâteaux
differentiable in Q. Moreover, we obtain the existence and uniqueness of the
boundary optimal controls q and qα and we give the optimality conditions in
terms of the adjoint states, for the optimal control problems (5) and (6), respec-
tively.

Following , Lions (1968),Menaldi and Tarzia(2007)and Tröltzsch (2010), we
define the application C : Q → L2(V0) such that C(q) = uq − u0, where u0 is
the solution of problem (3) for q = 0.

We consider Π : Q×Q → R and L : Q → R, defined by the expressions

Π(q, η) = (C(q), C(η))H +M(q, η)Q ∀q, η ∈ Q

L(q) = (C(q), zd − u0)H ∀q ∈ Q
and we prove the following result

Lemma 1 i) C is a linear and continuous functional.
ii) Π is a bilinear, symmetric, continuous form and coercive in Q.
iii) L is linear and continuous functional in Q.
iv) J can be written down as:

J(q) =
1

2
Π(q, q)− L(q) + 1

2
||u0 − zd||2H ∀q ∈ Q.

v) J is a strictly convex functional on Q, that is, ∀q1, q2 ∈ Q, ∀t ∈ [0, 1]

(1− t)J(q2) + tJ(q1)− J((1 − t)q2 + tq1) ≥
Mt(1− t)

2
||q2 − q1||2Q.

vi) There exists a unique optimal control q ∈ Q such that

J(q) = min
q∈Q

J(q).

Proof It follows from Lions (1968) and Menaldi and Tarzia (2007), and

(1− t)J(q2) + tJ(q1)− J((1− t)q2 + tq1) =

t(1− t)

2

[

||uq2 − uq1 ||2H +M ||q2 − q1||2Q
]

,

∀q1, q2 ∈ Q, ∀⊔ ∈ [′,∞] �.
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Now, we define the adjoint state pq, corresponding to the system (1) for each
q ∈ Q, as the unique solution of the following mixed parabolic problem:

−∂pq

∂t
−∆pq = uq − zd in Ω, pq

∣

∣

Γ1
= 0,

∂pq

∂n

∣

∣

∣

∣

Γ2

= 0, pq(T ) = 0,

whose variational formulation is given by

{

pq ∈ L2(V0), pq(T ) = 0 and ṗq ∈ L2(V ′
0 ) such that

−〈ṗq(t), v〉+ a(pq(t), v) = (uq(t)− zd(t), v)H , ∀v ∈ V0,
(19)

and we consider the following properties of the functional J , following Lions
(1968), Menaldi and Tarzia ( 2007) and Tarzia, Bollo and Gariboldi (2020).

Lemma 2 i) The adjoint state pq satisfies:

(C(η), uq − zd)H = −(η, pq)Q, ∀q, η ∈ Q.

ii) The functional J is Gâteaux differentiable and J ′ is given by:

〈J ′(q), η − q〉 = (uη − uq, uq − zd)H +M(q, η − q)Q

= Π(q, η − q)− L(η − q), ∀q, η ∈ Q.

iii) The Gâteaux derivative of J can be written as:

J ′(q) = Mq − pq ∀q ∈ Q.

iv) The optimality condition for the optimal control problem (5) is given by

Mq − pq = 0 in Q.

Next, we define the application Cα : Q → L2(V ) such that Cα(q) = uαq −
uα0, where uα0 is the solution of the variational problem (4) for q = 0.

If we consider Πα : Q×Q → R and Lα : Q → R, defined by

Πα(q, η) = (Cα(q), Cα(η))H +M(q, η)Q ∀q, η ∈ Q

Lα(q) = (Cα(q), zd − uα0)H ∀q ∈ Q
in a similar way to Lemma 1 and 1, we have the following result:

Lemma 3 (i) There exists a unique optimal control qα ∈ Q such that

Jα(qα) = min
q∈Q

Jα(q).

(ii) The Gateaux derivative of Jα can be written as:

J ′
α(q) = Mq − pαq ∀q ∈ Q, (20)
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and the optimality condition for the optimal control problem (6) is given by:

Mqα − pαqα = 0 in Q (21)

where the adjoint state pαq corresponds to (2) for each q ∈ Q, as the unique
solution of

−∂pαq

∂t
−∆pαq = uαq−zd in Ω, −∂pαq

∂n

∣

∣

∣

∣

Γ1

= αpαq,
∂pαq

∂n

∣

∣

∣

∣

Γ2

= 0, pαq(T ) = 0,

whose variational formulation is given by

{

pαq ∈ L2(V ), pαq(T ) = 0 and ṗαq ∈ L2(V ′) such that
−〈ṗαq(t), v〉+ aα(pαq(t), v) = (uαq(t)− zd(t), v)H , ∀v ∈ V

(22)

for each α > 0.

3. Convergence of Neumann boundary optimal control

problems when α → ∞
Now, for fixed q ∈ Q, we obtain estimates on uαq and pαq uniformly when α > 1.
Next, we prove strong convergence for qα, uαq and pαq, when α goes to infinity.

Proposition 1 (i) If uq and uαq are the unique solutions to the variational
equalities (3) and (4), respectively, we have the estimation

||u̇αq ||L2(V ′

0)
+ ||uαq ||L∞(H)+ ||uαq ||L2(V )+

√

(α− 1)||uαq −b||L∞(L2(Γ1))
≤ C (23)

for all α > 1, where the constant C depends only on the norms ||u̇q||L2(V ′

0 )
,

||u̇q||L2(V ′), ||∇uq||H, ||uq||L2(V ), ||uq||L∞(H), ||g||H, ||q||Q and the coerciveness
constant λ1 of the bilinear form a1.

(ii) For fixed q ∈ Q we have uαq → uq strongly in L2(V ) ∩ L∞(H) and
u̇αq → u̇q strongly in L2(V ′

0), when α → ∞.

Proof Taking v = uαq(t)−uq(t) ∈ V in the variational equation (4), taking
into account that uq(t)

∣

∣

Γ1
= b, by using Young’s inequality and integrating

between [0, T ], we obtain

1

2
||uαq(T )− uq(T )||2H +

λ1

2
||uαq − uq||2L2(V ) + (α− 1)||uαq − b||2L2(L2(Γ1))

≤ 2

λ1
[||g||2H + ‖γ0‖2||q||2Q + ||∇uq||2H + ||u̇q||2L2(V ′)],

where γ0 is the trace operator on Γ.
Here, we prove that there exists a positive constant K, independent of α,

which depends on

K = K(λ1, ||uq ||L∞(H), ||uq ||L2(V ), ||g||H||q||Q||∇uq ||H||u̇q ||L2(V ′))
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such that for all α > 1, we have:

||uαq||L∞(H) + ||uαq||L2(V ) +
√

(α− 1)||uαq − b||L2(L2(Γ1)) ≤ K. (24)

Next, by taking v ∈ V0 in the variational equality (4) and subtracting the
variational equality (3), we have

(u̇αq(t)− u̇q(t), v)H ≤ ||uq(t)− uαq(t)||V ||v||V0 ∀v ∈ V0,

and integrating in [0, T ], we obtain

||u̇αq − u̇q||L2(V ′

0)
≤ ||uq − uαq||L2(V ).

Next, by using (24), we conclude that there exists a positive constant C =
C(K, ||u̇q||L2(V ′

0 )
) such that (23) holds.

(ii) Let there be a fixed q ∈ Q, we consider a sequence {uαnq} in L2(V ) ∩
L∞(H) and by estimation (23), we have that ||uαnq||L2(V ) ≤ C and ||u̇αnq||L2(V ′

0)
≤

C, therefore, there exists a subsequence {uαnq} which is weakly convergent to
wq ∈ L2(V ) and weakly* in L∞(H) and there exists a subsequence {u̇αnq}
which is weakly convergent to ẇq ∈ L2(V ′

0). Now, from the third term of left
hand side of (24) and the weak lower semicontinuity of the norm in L2(L2(Γ1)),
we have that wq = b on Γ1 and therefore wq − vb ∈ L2(V0). Next, we prove that
wq satisfies

〈ẇq(t), v〉 + a(wq(t), v) = L(t, v), ∀v ∈ V0

and wq(0) = vb with ẇq ∈ L2(V ′
0).

Therefore, by uniqueness of the solution of the variational problem (3), we obtain
wq = uq. That is, when α → ∞ we have

uαq ⇀ uq in L2(V ), uαq
∗
⇀ uq in L∞(H) and u̇αq ⇀ u̇q in L2(V ′

0).

Now, we have

1

2
||uαq(T )− uq(T )||

2
H + λ1||uαq − uq||

2
L2(V ) + (α− 1)||uαq − uq ||

2
L2(L2(Γ1))

≤

T
∫

0

{L(t, uαq(t)− uq(t))− a(uq(t), uαq(t)− uq(t))− 〈u̇q(t), uαq(t)− uq(t)〉}dt

and by using the weak convergence of uαq to uq, we prove the strong convergence
in L2(V ). Next, taking into account that

||uαq − uq||
2
L2(L2(Γ1))

≤
1

α− 1

T
∫

0

{L(t, uαq(t)− uq(t))− a(uq(t), uαq(t)− uq(t))

− 〈u̇q(t), uαq(t)− uq(t)〉}dt

and the weak convergence of uαq to uq, we prove the strong convergence in
L2(L2(Γ1)). Now, from the variational equalities (3) and (4), we have

||u̇αq − u̇q||2L2(V ′

0 )
≤ ||uq − uαq||2L2(V ) → 0, when α → ∞.
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We deduce that u̇αq is strongly convergent to u̇q en L2(V ′
0). Finally, we have

||uαq − uq||
2
L∞(H) ≤ 2(||g||H + ‖γ0‖||q||Q + ||uq ||L2(V0)

+ ||u̇q ||H)||uαq − uq ||L2(V )

and from the strong convergence of uαq to uq in L2(V ), we prove that uαq is
strongly convergent to uq in L∞(H), when α → ∞. �

Proposition 2 (i) If pq and pαq are the unique solutions to the variational
equalities (19) and (22), respectively, we have the estimation

||ṗαq||L2(V ′

0 )
+ ||pαq||L∞(H)+ ||pαq||L2(V )+

√

(α− 1)||pαq||L2(L2(Γ1)) ≤ C (25)

for all α > 1, where the constant C depends on the norms ||ṗq||L2(V ′

0 )
,

||ṗq||L2(V ′), ||∇pq||H, ||pq||L2(V ), ||pq||L∞(H), ||g||H, ||q||Q, ||zd||H,
||u̇q||L2(V ′), ||∇uq||H, ||uq||L2(V ), ||uq||L∞(H) and of the coerciveness constant
λ1.

(ii) For fixed q ∈ Q, we have that pαq → pq strongly in L2(V )∩L∞(H) and
ṗαq → ṗq strongly in L2(V ′

0 ), when α → ∞.

Proof Let there be fixed q ∈ Q, the estimation (25) follows from analogous
reasoning to Proposition 1. We have that there exists a subsequence {pαnq},
which is weakly convergent to ηq ∈ L2(V ) and weakly* in L∞(H). From the
weak semicontinuity of the norm, we have that ηq = 0 on Γ1 and therefore
ηq ∈ L2(V0). Moreover, ηq satisfies

−〈η̇q(t), v〉 + a(ηq(t), v) = (uq(t)− zd(t), v)H ∀v ∈ V0

and ηq(T ) = 0 with η̇q ∈ L2(V ′
0 ). Therefore, by the uniqueness of the solution

of the variational problem (19), we obtain ηq = pq and when α → ∞, we have

pαq ⇀ pq in L2(V ), pαq
∗
⇀ pq in L∞(H) and ṗαq⇀ṗq in L2(V ′

0).

Finally, the strong convergence of pαq to pq in L2(V )∩L∞(H) and of ṗαq to ṗq
in norm L2(V ′

0) is obtained in a similar way to that in Proposition 1. �

Now, we consider the boundary optimal control problems (5) and (6) and
our goal is to prove the following theorem:

Theorem 1 Let q and qα be the unique solutions of the optimal control problems
(5) and (6), respectively. Then, we have that qα → q strongly in Q, when the
parameter α → ∞. Moreover, the system state and the adjoint state satisfy
(uαqα

u̇αqα
) → (uqu̇q) and (pαqα ṗαqα) → (pqṗq) strongly in L2(V )× L2(V ′

0).

Proof We will establish the proof in three steps.
Step 1. From the estimation (23) for q = 0, there exists a constant C1 > 0

such that

||uα0||H ≤ ||uα0||L2(V ) ≤ C1, ∀α > 1,
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and from Jα(qα) ≤ Jα(0), we have

1

2
||uαqα

− zd||2H +
M

2
||qα||2Q ≤ 1

2
||uα0 − zd||2H.

Therefore, there exist positive constants C2 and C3 such that

||uαqα
||H ≤ C2 and ||qα||Q ≤ C3, ∀α > 1.

Now, by an analogous reasoning to that for the estimates (23) and (25), there
exist positive constants C4 and C5 such that, for all α > 1, we obtain

||uαqα
||L2(V ) + ||u̇αqα

||L2(V ′

0 )
+
√

(α− 1)||uαqα
− b||L2(L2(Γ1)) ≤ C4

||pαqα ||L2(V ) + ||ṗαqα ||L2(V ′

0 )
+
√

(α− 1)||pαqα ||L2(L2(Γ1)) ≤ C5.

From the previous estimations, we have that there exist f ∈ Q, µ ∈ L2(V ),
µ̇ ∈ L2(V ′

0 ), ρ ∈ L2(V ) and ρ̇ ∈ L2(V ′
0) such that

qα ⇀ f ∈ Q, uαqα
⇀ µ ∈ L2(V ), u̇αqα

⇀ µ̇ ∈ L2(V ′
0 ),

pαqα ⇀ ρ ∈ L2(V ), ṗαqα ⇀ ρ̇ ∈ L2(V ′
0).

Step 2. Taking into account the weak convergence of uαqα
to µ in L2(V )

and the estimation
√

(α− 1)||uαqα
− b||L2(L2(Γ1)) ≤ C4, in a similar way to that

of Proposition 1, we obtain that µ = uf . Moreover, for the adjoint state, we
have that pαqα is weakly convergent to ρ in L2(V ) and from the estimation
√

(α− 1)||pαqα ||L2(L2(Γ1)) ≤ C5, ina similar way to thatof Proposition 2, we
obtain that ρ = pf . Therefore, we have uαqα

⇀ uf in L2(V ) and pαqα ⇀ pf
in L2(V ). Now, the optimality condition for the optimal control problem (6) is
given by (Mqα − pαqαη)Q = 0, ∀η ∈ Q, and taking into account that

pαqα ⇀ pf in L2(V ) and qα ⇀ f in Q,

we obtain −pf + Mf = 0, and by the uniqueness of the optimal control we
deduce that f = q. Therefore, uf = uq, pf = pq, u̇f = u̇q and ṗf = u̇q.

Step 3. We have, for all q ∈ Q

J(q) =
1

2
||uq − zd||2H +

M

2
||q||2Q ≤ lim inf

α→∞

[

1

2
||uαqα

− zd||2H +
M

2
||qα||2Q

]

≤

lim sup
α→∞

[

1

2
||uαqα

− zd||2H +
M

2
||qα||2Q

]

≤ lim sup
α→∞

Jα(q) =

lim
α→∞

[

1

2
||uαq − zd||2H +

M

2
||q||2Q

]

=
1

2
||uq − zd||2H +

M

2
||q||2Q = J(q).

By taking infimum on q, all the above inequalities become equalities and there-
fore

lim
α→∞

[

||uαqα
− zd||2H +M ||qα||2Q

]

= ||uq − zd||2H +M ||q||2Q
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that is

lim
α→∞

||(
√
Mqα, uαqα

− zd)||2Q×H = ||(
√
Mq, uq − zd)||2Q×H.

The previous equality, the convergence qα ⇀ q in Q and uαqα
⇀ uq in L2(V )

imply that (qα, uαqα
) → (q, uq) strongly in Q×H, when α → ∞.

Finally, if we take v = uαqα
(t) − uq(t) ∈ V in (4) for u = uαqα

and if we call
zα = uαqα

− uq, we have

λ1||zα(t)||2V ≤ (g(t)− u̇q(t), zα(t))H − (qα(t), zα(t))Q − a(uq(t), zα(t)).

Integrating between 0 and T and taking into account that zα ⇀ 0 weakly in
L2(V ), zα is bounded independently of α, and qα → q strongly in Q when
α → ∞, following Boukrouche and Tarzia (2013), we obtain

T
∫

0

[(g(t)− u̇q(t), zα(t))H − (qα(t), zα(t))Q − a(uq(t), zα(t))] dt → 0.

Next, we have lim
α→∞

||zα||L2(V ) = 0. From the variational equalities (3) and

(4), we have

(żα(t), v)H + a(zα(t), v) = (q(t)− qα(t), v)Q, ∀v ∈ V0.

Therefore, ||żα(t)||2V ′

0
≤ 2||zα(t)||2V + 2||γ0||2||q(t) − qα(t)||2Q and by integrating

on [0, T ], we obtain

||żα||2L2(V ′

0 )
≤ 2||zα||2L2(V ) + 2||γ0||2||q − qα||2Q.

Since that [????]qα → q strongly in Q and uαqα
→ uq strongly in L2(V ) when

α → ∞, we can say that żα → 0 strongly in L2(V ′
0), that is, u̇αqα

→ u̇q

strongly in L2(V ′
0). In similar way, we prove that (pαqα ṗαqα) → (pq ṗq) strongly

in L2(V )× L2(V ′
0 ), when α → ∞. �

4. Estimations between the optimal controls

In this section, we obtain estimations between the solutions of some Neu-
mann boundary optimal control problems and the solutions of the simultaneous
distributed-boundary optimal control problems studied in Tarzia, Bollo and
Gariboldi (2020) [?? please, explain ”estimations between”].

4.1. Estimations with respect to the problem S

We consider the Neumann boundary optimal control problem

find q ∈ Q such that J1(q) = min
q∈Q

J1(q) for fixed g ∈ H, (26)
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where J1 is the cost functional, given in (5), plus the constant M1

2 ||g||2H, that is,

J1 : Q → R
+
0 is given by

J1(q) =
1

2
||uq − zd||2H +

M1

2
||g||2H +

M

2
||q||2Q (fixed g ∈ H),

where uq is the unique solution of the problem (3) for fixed g.

Remark 1 The functional J+(g, q), defined in Tarzia, Bollo and Gariboldi
(2020), see (7), and the functional J1 previously defined, satisfy the following
elemental estimation

J+(gq) ≤ J1(q), ∀g ∈ H.

In the following theorem we obtain estimations between the solution of the
boundary optimal control problem (26) and the second component of the solu-
tion to simultaneous distributed-boundary optimal control problem studied in
Tarzia, Bollo and Gariboldi (2020).

Theorem 2 If (gq) ∈ H×Q is the unique solution to the distributed-boundary
optimal control problem in [?, see (7)] and q is the unique solution to the optimal
control problem (26), then

||q − q||Q ≤ ||γ0||
λ0M

||ug q − ug q||H ∀g ∈ H (27)

where γ0 is the trace operator with ||γ0|| = sup
v∈V −{0}

||γ0(v)||Q
||v||V

and λ0 the coer-

civeness constant of the bilinear form a.

Proof By the optimality condition for q, for fixed g ∈ H, we have

(Mq − pg qη)Q = 0, ∀η ∈ Q,

and taking upon η = q − q we obtain

(Mq − pg qq − q)Q = 0. (28)

On the other hand, if we take h = 0 ∈ H in the optimality condition for (gq),
given in Tarzia, Bollo and Gariboldi (2020), we have (Mq−pg qη)Q = 0, ∀η ∈ Q;

next, by taking η = q − q, we obtain

(−Mq + pg qq − q)Q = 0. (29)

By adding the expressions (28) and (29), we have

(

M(q − q) + (pg q − pg q), q − q
)

Q
= 0.
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So, by the Cauchy-Schwarz inequality and the trace theorem, we have

||q − q||Q ≤ ||γ0||
M

||pg q − pg q||L2(V ).

Now, if we prove that

||pg q − pg q||L2(V ) ≤
1

λ0
||ug q − ug q||H

the estimation (27) holds. In fact, by the variational equality for the adjoint
state given in Tarzia, Bollo and Gariboldi (2020), see (5), for g = g and q = q,
we have

−〈ṗg q(t), v〉+ a(pg q(t), v) = (ug q(t)− zd(t), v)H , ∀v ∈ V0,

and for fixed g ∈ H and q = q

−〈ṗg q(t), v〉+ a(pg q(t), v) = (ug q(t)− zd(t), v)H , ∀v ∈ V0.

Subtracting these equations, we obtain

−〈ṗg q(t)− ṗg q(t), v〉+a(pg q(t)−pg q(t), v) = (ug q(t)−ug q(t), v)H , ∀v ∈ V0.

By replacing v = pg q(t)− pg q(t) ∈ V0 and using the fact that

2〈ṗg q(t)− ṗg q(t), pg q(t)− pg q(t)〉 =
d

dt
||pg q(t)− pg q(t)||2H ,

we obtain

− 1

2

d

dt
||pg q(t)− pg q(t)||2H + λ0||∇

(

pg q(t)− pg q(t)
)

||2H
≤ ||ug q(t)− ug q(t)||H ||pg q(t)− pg q(t)||H .

and by using Young inequality for ǫ = λ0, we have

− 1

2

d

dt
||pg q(t)− pg q(t)||2H + λ0||pg q(t)− pg q(t)||2V

≤ 1

2λ0
||ug q(t)− ug q(t)||2H +

λ0

2
||pg q(t)− pg q(t)||2V .

Then

−
d

dt
||pg q(t)− pg q(t)||

2
H + λ0||pg q(t)− pg q(t)||

2
V ≤

1

λ0
||ug q(t)− ug q(t)||

2
H .

By integrating between 0 and T , and using that pg q(T ) = pg q(T ) = 0, we
deduce

||pg q(0)− pg q(0)||2H + λ0||pg q − pg q||2L2(V ) ≤
1

λ0
||ug q − ug q||2H
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i.e.

||pg q − pg q||L2(V ) ≤
1

λ0
||ug q − ug q||H.

and then (27) holds. �

Now, if we consider the distributed optimal control problem

find g ∈ H such that J2(g) = min
g∈H

J2(g) for fixed q ∈ Q, (30)

where J2 is the cost functional given in menaldi and tarzia (2007) plus the
constant M

2 ||q||2Q, that is, J2 : H → R
+
0 is given by

J2(g) =
1

2
||ug − zd||2H +

M1

2
||g||2H +

M

2
||q||2Q (fixed q ∈ Q),

where ug is the unique solution of the problem (3) for fixed q, we can prove the
following corollary.

Corollary 1 If (gq) ∈ H ×Q is the unique solution to the simultaneous op-
timal control problem studied in Tarzia, Bollo and Gariboldi (2020), see (5), g
is the unique solution to the distributed optimal control problem (30) for fixed
q (q = q), and q is the unique solution to the problem (26) for fixed g (g = g),
then g = g and q = q.

Proof If we take h = g − g in the optimality condition for the problem given
in Menaldi and Tarzia (2007), we have

(

M1g + pg qg − g
)

H
= 0. (31)

On the other hand, if we consider h = g − g and η = 0 in the optimality
condition for the simultaneous optimal control problem studied in Tarzia, Bollo
and Gariboldi (2020), we obtain

(

M1g + pg qg − g
)

H
. (32)

Subtracting (31) and (32), we deduce that
(

M1g + pg q −M1g − pg qg − g
)

H
= 0,

and therefore
(

pg q − pg qg − g
)

H
−M1

(

g − g, g − g
)

H
= 0.

Next, by using the fact that
(

pg q − pg qg − g
)

H
= −||ug q − ug q||2H

we have

−||ug q − ug q||2H = M1||g − g||2H.

Hence, we deduce that ||g − g||2H = 0 and therefore g = g.
In a similar way we prove that q = q. �
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4.2. Estimations with respect to the problem Sα

For each α > 0, we consider the following optimal control problem

find qα ∈ Q such that J1α(qα) = min
q∈Q

J1α(q), (33)

where J1α : Q → R
+
0 is given by

J1α(q) =
1

2
||uαq − zd||2H +

M1

2
||g||2H +

M

2
||q||2Q (fixed g ∈ H),

that is, J1α is the functional (6) plus the constant M1

2 ||g||2H, and uαq is the
unique solution of the problem (4) for fixed g.

Remark 2 The functional J+
α defined in Tarzia, Bollo and Gariboldi (2020),

see (8), and the functional J1α, previously defined, satisfy the following estimate

J+
α (gα, qα) ≤ J1α(qα), ∀g ∈ H.

Estimation between the solution of the Neumann boundary optimal control
problem (33) with the second component of the solution to the simultaneous
optimal control problem studied in Tarzia, Bollo and Gariboldi (2020), is given
in the following theorem whose prove is omitted.

Theorem 3 If (gα, qα) ∈ H × Q is the unique solution of the simultaneous
optimal control problem from Tarzia, Bollo and Gariboldi (2020), see (6), and
qα is the unique solutions to the optimal control problem (33), then we have:

||qα − qα||Q ≤ ||γ0||
λαM

||uαgαqα
− uαg qα

||H ∀g ∈ H

with λα = λ1 min{1, α} and λ1 the coerciveness constant of the bilinear form
a1.

If we consider the following distributed optimal control problem, for each α > 0

find gα ∈ H such that J2α(gα) = min
g∈H

J2α(g), (34)

where J2α : H → R
+
0 is given by

J2α(g) =
1

2
||uαg − zd||2H +

M1

2
||g||2H +

M

2
||q||2Q (fixed q ∈ Q),

that is, J2α is the functional studied in Menaldi and Tarzia (2007) plus the
constant M

2 ||q||2Q, and uαg is the unique solution of the problem (4) for fixed q,
we give the following corollary, whose proof is omitted.

Corollary 2 If (gα, qα) ∈ H × Q is the unique solution of the simultaneous
optimal control problem studied in Tarzia, Bollo and Gariboldi (2020), see (6),
gα is the unique solution of the problem (34) for fixed q (q = qα), and qα is
the unique solution of the problem (33) for fixed g (g = gα), then gα = gα and
qα = qα.
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5. Real Neumann boundary optimal control problems

In this section, we consider the non-stationary real-boundary optimal control
problems (8) and (9) and the stationary real-boundary optimal control problems
(15) and (16). We prove existence and uniqueness of the solutions to these
optimal control problems and monotonicity results are also obtained.

5.1. Real Neumann boundary optimal control problem in relation

to the parabolic system S

If we consider the real-boundary optimal control problem (8) and we denote by
ubqg the unique solution of the variational equality (3) for the data b, q and g,
and we take q = λq0 for fixed q0 ∈ Q (q0 6= 0) and λ ∈ R, we can prove that

ubqg(t) = ubλg(t) = ub(t) + uq(t) + ug(t), ∀x ∈ Ω,

where ub is the unique solution to the parabolic variational equality

{

u− vb ∈ L2(V0), u(0) = vb and u̇ ∈ L2(V ′
0)

such that 〈u̇(t), v〉+ a(u(t), v) = 0, ∀v ∈ V0,
(35)

uq is the unique solution to the parabolic variational equality

{

u ∈ L2(V0), u(0) = 0 and u̇ ∈ L2(V ′
0)

such that 〈u̇(t), v〉+ a(u(t), v) = −λ(q0(t), v)Q, ∀v ∈ V0,
(36)

and ug is the unique solution to the parabolic variational equality

{

u ∈ L2(V0), u(0) = 0 and u̇ ∈ L2(V ′
0)

such that 〈u̇(t), v〉+ a(u(t), v) = (g(t), v)H , ∀v ∈ V0.
(37)

We note that, by the linearity, we can prove that uq(t) = λuq0(t), where uq0 is
the unique solution of (3) for q = q0 and b = g = 0.
Next, for each T > 0, the functional HT (λ) can be written as

HT (λ) =
1

2

T
∫

0

∫

Ω

(ub(t)+λuq0(t)+ug(t)−zd(t))
2dxdt+

Mλ2

2

T
∫

0

∫

Γ2

q20(t)dγdt

therefore, HT (λ) = λ2A(T ) + λB(T ) + C(T ), where

A(T ) =
M

2

T
∫

0

∫

Γ2

q20(t)dγdt+
1

2

T
∫

0

∫

Ω

u2
q0
(t)dxdt

B(T ) =

T
∫

0

∫

Ω

uq0(t)(ub(t) + ug(t)− zd(t))dxdt
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C(T ) =
1

2

T
∫

0

∫

Ω

(ub(t) + ug(t)− zd(t))
2dxdt.

Here, taking into account that

4A(T )C(T )

=



M

T
∫

0

∫

Γ2

q
2
0(t)dγdt+

T
∫

0

∫

Ω

u
2
q0
(t)dxdt









T
∫

0

∫

Ω

(ub(t) + ug(t)− zd(t))
2
dxdt





>





T
∫

0

∫

Ω

u
2
q0
(t)dxdt









T
∫

0

∫

Ω

(ub(t) + ug(t)− zd(t))
2
dxdt





= ||uq0 ||
2
H||ub + ug − zd||

2
H ≥ (uq0ub + ug − zd)

2
H

=





T
∫

0

∫

Ω

uq0 (t)(ub(t) + ug(t)− zd(t))dxdt





2

= (B(T ))2

we deduce that (B(T ))2−4A(T )C(T ) < 0 and since A(T ) > 0, because q0 6= 0,
then there exists a unique λ(T ) ∈ R for each T > 0, such that it satisfies the
problem (8), whose solution is given by the following expression:

λ(T ) = − B(T )

2A(T )
= −

T
∫

0

∫

Ω

uq0(t)(ub(t) + ug(t)− zd(t))dxdt

M
T
∫

0

∫

Γ2

q20(t)dγdt+
T
∫

0

∫

Ω

u2
q0
(t)dxdt

. (38)

Therefore, we have proven the following property.

Theorem 4 For each T > 0, there exists a unique solution λ(T ) ∈ R to the
optimization problem (8).

Now, we will prove some monotonicity properties.

Proposition 3 Let q1 = λ1q0 and q2 = λ2q0 (q0 > 0), with λ2 ≤ λ1 and
g1 ≤ g2, then ubλ1g1 ≤ ubλ2g2 in Ω× [0, T ].

Proof We define w = ubλ1g1 −ubλ2g2 and we take v = −w+(t) ∈ V for ubλ1g1 in
(3) and v = w+(t) ∈ V for ubλ2g2 in (3) (for the regularity of w+ see Kinderlehrer
and Stampalchia,2000). Adding the variational equalities, we have

〈u̇bλ2g2(t)− u̇bλ1g1(t), w
+(t)〉+ a(ubλ2g2(t)− ubλ1g1(t), w

+(t))

=

∫

Ω

(g2(t)− g1(t))w
+(t)dx+ (λ1 − λ2)

∫

Γ2

q0(t)w
+(t)dγ.
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Next,

−〈ẇ+(t), w+(t)〉 − a(w+(t), w+(t)) =

∫

Ω

(g2(t)− g1(t))w
+(t)dx

+ (λ1 − λ2)

∫

Γ2

q0(t)w
+(t)dγ.

Now, using the fact that

〈ẇ+(t), w+(t)〉 = 1

2

d

dt
||w+(t)||2H

and integrating between 0 and T , we prove that

1

2

(

||w+(T )||2H − ||w+(0)||2H
)

+

T
∫

0

||w+(t)||2V0
dt ≤

T
∫

0

∫

Ω

(g1(t)− g2(t))w
+(t)dxdt

+(λ2 − λ1)

T
∫

0

∫

Γ2

q0(t)w
+(t)dγdt.

Since w+(0) = (ubλ1g1 − ubλ2g2)
+ (0) = max{0, (ubλ1g1 − ubλ2g2) (0)} = 0,

1

2
||w+(T )||2H +

T
∫

0

||w+(t)||2V0
dt ≤

T
∫

0

∫

Ω

(g1(t)− g2(t))w
+(t)dxdt

+(λ2 − λ1)

T
∫

0

∫

Γ2

q0(t)w
+(t)dγdt ≤ 0,

by using the facts that g1 ≤ g2, λ2 ≤ λ1 and q0 > 0, here ||w+||2
L2(0,T ;V0)

= 0,

then w+ ≡ 0 in Ω × [0, T ] and therefore w ≤ 0 in Ω × [0, T ], that is, the thesis
holds. �

Corollary 3 If q1 = λ1q0 and q2 = λ2q0 (q0 > 0), with λ2 ≤ λ1, then
ubλ1g ≤ ubλ2g in Ω× [0, T ].

Proof This results from taking g = g1 = g2 in the proof of the Proposition 3.
�

Remark 3 The previous monotonicity properties are still true if we consider
λ1 ≤ λ2 with q0 < 0.
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5.2. Real Neumann boundary optimal control problems in relation

to the parabolic Sα

If we consider the real Neumann boundary optimal control problem (9) and for
each α > 0 we denote by uαbqg the unique solution of the variational equality
(4) for data b, q and g, and we take q = λq0 for fixed q0 ∈ Q (q0 6= 0) and λ ∈ R,
we can see that

uαbqg(t) = uαbλg(t) = uαb(t) + uαq(t) + uαg(t), ∀x ∈ Ω,

where uαb, uαq, uαg are the unique solutions of (4) for q = g = 0, b = g = 0 and
b = q = 0, respectively.

We note that, by the linearity, we can see that uαq(t) = λuαq0(t), where uαq0

is the unique solution of (4) for q = q0 and b = g = 0. Next, for each T > 0, the
functional HαT (λ) can be written down as

HαT (λ) =
1

2

T
∫

0

∫

Ω

(uαb(t) + λuαq0(t) + uαg(t)− zd(t))
2dxdt

+
Mλ2

2

T
∫

0

∫

Γ2

q20(t)dγdt = λ2Aα(T ) + λBα(T ) + Cα(T ),

where

Aα(T ) =
M

2

T
∫

0

∫

Γ2

q20(t)dγdt+
1

2

T
∫

0

∫

Ω

u2
αq0

(t)dxdt

Bα(T ) =

T
∫

0

∫

Ω

uαq0(t)(uαb(t) + uαg(t)− zd(t))dxdt

Cα(T ) =
1

2

T
∫

0

∫

Ω

(uαb(t) + uαg(t)− zd(t))
2dxdt.

Now, taking into account that Aα(T ) > 0, in a similar way as in the previous
subsection, we can prove that (Bα(T ))

2−4Aα(T )Cα(T ) < 0 and therefore there
exists a unique solution λα(T ) ∈ R, for each α > 0 and for each T > 0, for the
optimal control problem (9), which is given by the following expression:

λα(T ) = −

T
∫

0

∫

Ω

uαq0(t)(uαb(t) + uαg(t)− zd(t))dxdt

M
T
∫

0

∫

Γ2

q20(t)dγdt+
T
∫

0

∫

Ω

u2
αq0

(t)dxdt

. (39)

Therefore, we have proven the following property.
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Theorem 5 For each α > 0 and T > 0, there exists a unique solution λα(T ) ∈
R to the optimization problem (9).

Now, in similar way to the previous subsection, we can prove the following
monotonicity properties, whose proof is omitted.

Proposition 4 For each α > 0, if q1 = λ1q0 and q2 = λ2q0 (q0 > 0), with
λ2 ≤ λ1, g1 ≤ g2, b1 ≤ b2 on Γ1 and initial conditions vb1 ≤ vb2 , then uαb1λ1g1 ≤
uαb2λ2g2 in Ω× [0, T ].

5.3. Real Neumann boundary optimal control problem in relation

to the elliptic system P

Here, we consider the stationary real Neumann boundary optimal control prob-
lem (15). If we denote by u∞bqg the unique solution of the variational equality
(13) for data b, q and g. and if we consider q = λq∗0 for fixed q∗0 ∈ Q (q∗0 6= 0)
and λ ∈ R, we can see that

u∞bqg = u∞bλg = u∞b + u∞q + u∞g, ∀x ∈ Ω,

where u∞b, u∞q, u∞g are the unique solutions of the variational equality (13)
for q = g = 0, b = g = 0 and b = q = 0, respectively.
Now, taking into account that u∞q = λu∞q∗0

, where u∞q∗0
is the solution of (13)

for q = q∗0 and b = g = 0. Next, the functional H(λ) can be written down as

H(λ) =
1

2

∫

Ω

(u∞b + λu∞q∗0
+ u∞g − zd)

2dx+
Mλ2

2

∫

Γ2

(q∗0)
2dγ.

Therefore H(λ) = λ2A+ λB + C, where

A =
M

2

∫

Γ2

(q∗0)
2dγ +

1

2

∫

Ω

u2
∞q∗0

dx, B =

∫

Ω

u∞q∗0
(u∞b + u∞g − zd)dx

C =
1

2

∫

Ω

(u∞b + u∞g − zd)
2dx.

Here, since B2 − 4AC < 0, there exists a unique λ∞ ∈ R such that solves the
problem (15), that is

λ∞ = − B

2A
= −

∫

Ω

u∞q∗0
(u∞b + u∞g − zd)dx

M
∫

Γ2

(q∗0)
2dγ +

∫

Ω

u2
∞q∗0

dx
(40)

Therefore, we have proven the following theorem.

Theorem 6 There exists a unique solution λ∞ ∈ R to the optimization problem
(15).
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Now, we will give some monotonicity property, whose proof is omitted.

Proposition 5 Let q1 = λ1q
∗
0 and q2 = λ2q

∗
0 (q∗0 > 0), with λ2 ≤ λ1 and

g1 ≤ g2, then u∞bλ1g1 ≤ u∞bλ2g2 .

5.4. Real Neumann boundary optimal control problems in relation

to the elliptic system Pα

We consider the stationary real Neumann boundary optimal control problem
(16) and we denote by u∞αbqg the unique solution to the variational equality
(14) for the data b, q and g. If we consider q = λq∗0 for fixed q∗0 ∈ Q (q∗0 6= 0)
and λ ∈ R, we can see that

u∞αbqg = u∞αbλg = u∞αb + u∞αq + u∞αg, ∀x ∈ Ω,

where u∞αb, u∞αq, u∞αg are the unique solutions of the variational equality (14)
for q = g = 0, b = g = 0 and b = q = 0, respectively.
Now, taking into account the fact that u∞αq = λu∞αq∗0

, where u∞αq∗0
is the

solution of (14) for q = q∗0 and b = g = 0, the functional Hα(λ) can be written
down as

Hα(λ) =
1

2

∫

Ω

(u∞αb+λu∞αq∗0
+u∞αg−zd)

2
dx+

Mλ2

2

∫

Γ2

(q∗0)
2
dγ = λ

2
Aα+λBα+Cα,

where

Aα =
M

2

∫

Γ2

(q∗0)
2dγ +

1

2

∫

Ω

u2
∞αq∗0

dx, Bα =

∫

Ω

u∞αq∗0
(u∞αb + u∞αg − zd)dx

Cα =
1

2

∫

Ω

(u∞αb + u∞αg − zd)
2dx.

Here, since B2
α − 4AαCα < 0, there exists a unique λα ∈ R, which satisfies the

optimization problem (16), that is

λα = − Bα

2Aα

= −

∫

Ω

u∞αq∗0
(u∞αb + u∞αg − zd)dx

M
∫

Γ2

(q∗0)
2dγ +

∫

Ω

u2
∞αq∗0

dx
. (41)

Therefore, we have proven the following theorem.

Theorem 7 For each α > 0, there exists a unique solution λα ∈ R to the
optimization problem (16).

Now, we will give some monotonicity property, whose proof is omitted.

Proposition 6 For each α > 0, if q1 = λ1q
∗
0 and q2 = λ2q

∗
0 (q∗0 > 0), with

λ2 ≤ λ1, g1 ≤ g2, b1 ≤ b2 on Γ1, then uαb1λ1g1 ≤ uαb2λ2g2 in Ω.
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6. Asymptotic behaviour of solutions when t → +∞
In this section, we study the convergence of the solutions to the problem (3) for

fixed data b ∈ H
1
2 (Γ1), q ∈ Q and g ∈ H, to the solution to the problem (13)

for the same b ∈ H
1
2 (Γ1) and fixed q ∈ Q and g ∈ H , when t → +∞. Here, for

the sake of simplicity, we denote by u∞ the unique solution to the variational
equality (13) for data q∞ ∈ Q and g∞ ∈ H .

If we define

F1(t) = eλ0t||g(t)− g∞||2H , F2(t) = eλ0t||γ0||2||q(t)− q∞||2Q

with g ∈ H, q ∈ Q, λ0 the coerciveness constant of the bilinear form a and γ0
the trace operator, we can prove the following theorem.

Theorem 8 If b ∈ H
1
2 (Γ1), q ∈ Q, g ∈ H, F1 ∈ L1(0,∞) and F2 ∈ L1(0,∞),

then

||ubqg(t)−u∞||2H ≤ ||ubqg(0)−u∞||2He
−λ0t+

2e−λ0t

λ0

(

||F1||L1(0,∞) + ||F2||L1(0,∞)

)

and therefore

lim
t→+∞

ubqg(t) = u∞ in H strong (exponentially).

Proof If we consider w(t) = ubqg(t) − u∞, we have that w(t) ∈ V0, w(0) =
vb−u∞ and ẇ = u̇bqg. Therefore, by taking v = w(t) in the variational equalities
(3) and (13) respectively, and subtracting then [????] we obtain

〈ẇ(t), w(t)〉 + a(w(t), w(t)) = 〈L(t)− L∞, w(t)〉,

that is

1

2

d

dt
||w(t)||2H + λ0||w(t)||2V ≤ (g(t)− g∞, w(t))H − (q(t) − q∞, w(t))Q.

Next,

1

2

d

dt
||w(t)||2H + λ0||w(t)||2V ≤ ||g(t)− g∞||H ||w(t)||V + ||q(t)− q∞||Q||w(t)||Q

≤ (||g(t)− g∞||H + ||γ0||||q(t) − q∞||Q) ||w(t)||V

≤
λ0

2
||w(t)||2V

+
1

2λ0
(||g(t)− g∞||H + ||γ0||||q(t)− q∞||Q)2 ,

where γ0 is the trace operator. Then

1

2

d

dt
||w(t)||2H +

λ0

2
||w(t)||2H ≤ 1

λ0

(

||g(t)− g∞||2H + ||γ0||2||q(t)− q∞||2Q
)

.
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Next, if we call F (t) = ||g(t)− g∞||2H + ||γ0||2||q(t)− q∞||2Q, we have

d

dt

(

||w(t)||2H
)

eλ0t + λ0||w(t)||2Heλ0t ≤ 2

λ0
F (t)eλ0t

or, equivalently,

d

dt

(

||w(t)||2Heλ0t
)

≤ 2

λ0
F (t)eλ0t.

Now, by integrating between 0 and t, we obtain

||w(t)||2Heλ0t − ||w(0)||2H ≤ 2

λ0

∫ t

0

F (τ)eλ0τdτ

therefore

||w(t)||2H ≤ ||w(0)||2He−λ0t +
2e−λ0t

λ0

∫ t

0

F (τ)eλ0τdτ

and the thesis holds. �

Corollary 4 If b ∈ H
1
2 (Γ1), F1 ∈ L1(0,∞) and F2 ∈ L1(0,∞), with g(t) =

g∞ ∈ H and q(t) = q∞ ∈ Q, then we have

||ubqg(t)− u∞||H ≤ ||ubqg(0)− u∞||He−
λ0
2 t. (42)

Proof This results directly from Theorem 8. �

Remark 4 We note that if we consider the hypothesis: there exist m ∈ (0, λ0)
and C1 = const. > 0 such that

lim
t→+∞

||F1||L1(0,t) + ||F2||L1(0,t)

emt
≤ C1

then we can prove the asymptotic behaviour obtained in Theorem 8.

Corollary 5 a) If b ∈ H
1
2 (Γ1), with q(t) = q∞ ∈ Q and there exist m ∈

(0, λ0) and C2 = const. > 0 such that lim
t→+∞

||F1||L1(0,t)

emt ≤ C2, then

lim
t→+∞

||ubqg(t)− u∞||H = 0.

b) If b ∈ H
1
2 (Γ1), with g(t) = g∞ ∈ H and there exist m ∈ (0, λ0) and

C3 = const. > 0 such that lim
t→+∞

||F2||L1(0,t)

emt ≤ C3, then

lim
t→+∞

||ubqg(t)− u∞||Q = 0.
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Remark 5 An open problem is to study whether (38) is convergent to (40) and
(39) is convergent to (41) (for each α > 0), when T → +∞. We hope that these
convergences do not happen. This assumption [????] is based on the fact that
a function g(t) (∀t > 0) can be strongly convergent in H to a function g∞, but
g is not necessarily strongly convergent to the same function g∞ in H, which is
shown in the following counterexample.

Example 1 Let Ω = (0, 1) be and g(t) = g∞ + e−t, then we have that

∫ 1

0

(g(t)− g∞)2dx =

∫ 1

0

(e−t)2dx = e−2t → 0, if t → +∞,

and
∫ t

0

∫ 1

0

(g(τ)− g∞)2dxdτ =

∫ t

0

(e−τ )2dτ =
1

2
(1− e−2t) → 1

2
, if t → +∞.
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