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Abstract
In this chapter we consider different approximations for the one-

dimensional one-phase Stefan problem corresponding to the fusion pro-
cess of a semi-infinite material with a temperature boundary condition at
the fixed face and non-linear temperature-dependent thermal conductivity.
The knowledge of the exact solution of this problem, allows to compare
it directly with the approximate solutions obtained by applying the heat
balance integral method, an alternative form to it and the refined balance
integral method, assuming a quadratic temperature profile in space. In
all cases, the analysis is carried out in a dimensionless way by the Stefan
number (Ste) parameter.
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1 Introduction

Stefan problems model heat transfer processes that involve a change of phase.
They constitute a broad field of study since they arise in a great number of math-
ematical and industrial significance problems. Phase-change problems appear
frequently in industrial processes and other problems of technological interest
[1]-[4]. Reviews on the subject were given in [5, 6].

The heat balance integral method introduced in [7] is a well-known method
of approximation of solutions of Stefan problems. It transforms the heat equa-
tion into an ordinary differential equation over time assuming a quadratic tem-
perature profile in space. For these temperature profiles, different variants of this
method were established by [8]. Moreover in [9]-[14] the heat balance integral
method is used for different temperature profiles.

In this chapter, we obtain approximate solutions to a phase-change Stefan
problem (2)-(6) for a non-linear heat conduction equation corresponding to a
semi-infinite region x > 0 with a thermal conductivity k(θ) given by

k(θ) =
ρc

(a+ bθ)2 (1)

and phase change temperature θf = 0. This kind of thermal conductivity or
diffusion coefficient was considered in [15]-[25].

The exact solution of this problem was given in [26], where the temperature
is the unique solution of an integral equation and the coefficient that character-
izes the free boundary is the unique solution of a transcendental equation. From
this fact, the most remarkable aspect of this chapter lies in the comparison of
the exact solution, which is difficult and cumbersome to operate, with different
approaches obtained through: the heat balance integral method, an alternative
form to it [8] and the refined integral method [27].

The methods mentioned above have been developed for the non-linear diffu-
sion equation to the case of a linearly temperature-dependent thermal diffusivity
[28] and a power-law dependent diffusivity with integer positive exponent [29],
[30]; obtaining closed forms of approximate solutions.
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The goal of this chapter is to provide approximate solutions in order to fa-
cilitate the search of the solution and show that it is worth using approximate
methods due to the small error with respect to the exact solution. In all the ap-
plied methods the dimensionless parameter called Stefan number is defined. We
take Stefan number up to 1 due to the fact that it covers most of phase change
materials [31].

2 Mathematical formulation and exact solution

We consider a one-dimensional one-phase Stefan problem for the fusion of a
semi-infinite material x > 0 with non-linear temperature-dependent thermal
conductivity. This problem can be formulated mathematically in the following
way:

Problem (P). Find the temperature θ = θ(x, t) at the liquid region 0 <
x < s(t) and the evolution of the moving separation phase given by x = s(t)
satisfying the following conditions

ρc
∂θ

∂t
=

∂

∂x

(
k(θ)

∂θ

∂x

)
, 0 < x < s(t), t > 0 (2)

θ = θ0 > 0 , on x = 0, t > 0 (3)

k (θ)
∂θ

∂x
= −ρλṡ(t) , on x = s(t), t > 0 (4)

θ = 0 , on x = s(t), t > 0 (5)

s(0) = 0 (6)

where the parameters c, ρ and λ are the specific heat, the density and the latent
heat of fusion of the medium respectively, all of them assumed to be positive
constants. The thermal conductivity k is given by (1), with positive parameters
a and b.

In [26] was proved the existence and uniqueness of an exact solution of the
similarity type of the free boundary problem (2) − (6) for t ≥ t0 > 0 with t0
an arbitrary positive time when data satisfy condition ac = bλ.

If we define the non-dimensional Stefan number by

Ste =
cθ0

λ
, (7)
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then we have Ste = bθ0
a .

Now, we can write the exact solution as [26]:

θ(x, t) =
1

b

[
1

Θ(x, t)
− a
]
, 0 < x < s(t) , t > 0, (8)

s(t) =
2

a
ξ
√
t , t > 0, (9)

where Θ is the unique solution in variable x of the following integral equation

Θ(x, t) =
1

a

(
1 + Ste

(1+Ste)erf(Λ)erf

(∫ x
0

dη
Θ(η,t)

2
√
t
− Λ

))
, 0 ≤ x ≤ s(t), (10)

for t ≥ t0 > 0 with t0 an arbitrary positive time and ξ is given by

ξ =
2Λ exp

(
Λ2
)

1 + Ste
, (11)

where Λ is the unique positive solution to the following equation

z exp(z2)erf(z) =
Ste√
π

, z > 0. (12)

Remark 2.1 In [26] was proved that the integral equation (10) is equivalent to
solve the following Cauchy differential problem in variable x:

∂Y

∂x
(x, t) =

a

2
√
t
[
1 + Ste

(1+Ste)erf(Λ)erf (Y (x, t))
] , 0 < x < s(t), t > 0,

Y (0, t) = −Λ,
(13)

where

Y (x, t) =

∫ x
0

dη
Θ(η,t)

2
√
t
− Λ (14)

with a positive parameter t ≥ t0 > 0 and Λ the unique solution of (12).
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3 Heat balance integral methods

As one of the mechanisms for the heat conduction is the diffusion, the excitation
at the fixed face x = 0 (for example, a temperature, a flux or a convective
condition) does not spread instantaneously to the material x > 0. However, the
effect of the fixed boundary condition can be perceived in a bounded interval
[0, δ(t)] (for every time t > 0) outside of which the temperature remains equal
to the initial temperature. The heat balance integral method presented in [7]
established the existence of a function δ = δ(t) that measures the depth of the
thermal layer. In problems with a phase of change, this layer is assumed as the
free boundary, i.e δ(t) = s(t).

From equation (2) and conditions (4) and (5) we obtain the new condition:

k (θ)

(
∂θ

∂x

)2

=
λ

c

∂

∂x

(
k(θ)

∂θ

∂x

)
on x = s(t), t > 0. (15)

From equation (2) and conditions (3), (4) and (5) we obtain the integral
condition:

d

dt

s(t)∫
0

θ(x, t)dx =

s(t)∫
0

∂θ

∂t
(x, t)dx+ θ(s(t), t)ṡ(t)

=
1

ρc

s(t)∫
0

∂

∂x

(
k (θ(x, t))

∂θ

∂x
(x, t)

)
dx

=
−1

ρc

[
ρλṡ(t) + k (θ0)

∂θ

∂x
(0, t)

]
. (16)

The classical heat balance integral method introduced in [7] proposes to ap-
proximate problem (P) through the resolution of a problem that arises on replac-
ing the equation (2) by the equation (16), and the condition (4) by the condition
(15); that is, the resolution of the approximate problem defined as follows: con-
ditions (3), (5), (6), (15) and (16).

In [8], a variant of the classical heat balance integral method was proposed
by replacing equation (2) by condition (16), keeping all others conditions of the
problem (P) equals; that is, the resolution of an approximate problem defined as
follows: conditions (3),(4),(5),(6) and (16).
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From equation (2) and conditions (3) and (5) we also obtain:

s(t)∫
0

x∫
0

∂θ

∂t
(η, t)dηdx =

s(t)∫
0

x∫
0

1

ρc

∂

∂η

(
k (θ(η, t))

∂θ

∂η
(η, t)

)
dηdx

=

s(t)∫
0

1

ρc

[
k (θ(x, t))

∂θ

∂x
(x, t)− k (θ0)

∂θ

∂x
(0, t)

]
dx

=
1

ρc

s(t)∫
0

ρc

∂θ

∂x
(x, t)

(a+ bθ(x, t))2
dx− k (θ0)

ρc

∂θ

∂x
(0, t)s(t)

= −
θ0 (1 + Ste) +

∂θ

∂x
(0, t)s(t)

a2 (1 + Ste)2 . (17)

The refined integral method introduced in [27] proposes to approximate
problem (P) through the resolution of the approximate problem that arises by
replacing equation (2) by (17), keeping all others conditions of the problem (P)
equals. It is defined as follows: conditions (3), (4), (5), (6) and (17).

For solving the approximate problems previously defined we propose a
quadratic temperature profile in space as follows:

θ̃(x, t) = Ãθ0

(
1− x

s̃(t)

)
+ B̃θ0

(
1− x

s̃(t)

)2

, (18)

where θ̃ and s̃ are approximations of θ and s respectively.
Taking advantage of the fact of having the exact temperature of the problem

(P), it is physically reasonable to impose that the approximate temperature given
by (18) behaves in a similar manner than the exact one given by (8); that is: its
sign, monotony and convexity in space. As θ verifies the following properties:

θ(x, t) > 0, (19)
∂θ

∂x
(x, t) = − θ0

aSte
1

Θ2(x, t)

∂Θ

∂x
(x, t) < 0, (20)

∂2θ

∂x2
(x, t) = − θ0

aSte

(
− 2

Θ3(x,t)
∂Θ
∂x (x, t) + 1

Θ2(x,t)
∂2Θ
∂x2

(x, t)
)
> 0, (21)
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on 0 < x < s(t), t > 0, we enforce the following conditions on θ̃:

θ̃(x, t) > 0, (22)

∂θ̃

∂x
(x, t) = − θ0

s̃(t)

(
Ã+ 2B̃

(
1− x

s̃(t)

))
< 0, (23)

∂2θ̃

∂x2
(x, t) =

2B̃θ0

s̃2(t)
> 0, (24)

for all 0 < x < s̃(t), t > 0. Therefore, we obtain that both constants Ã and B̃
must be positive.

3.1 Approximate solution using the classical heat balance integral
method

The classical heat balance integral method proposes to approximate problem (P)
through the resolution of the approximate problem defined in Sect. 3, that is:

Problem (P1). Find the temperature θ1 = θ1(x, t) at the liquid region 0 <
x < s1(t) and the location of the free boundary x = s1(t) such that:

d
dt

s1(t)∫
0

θ1(x, t)dx = −1
ρc

[
ρλṡ1(t) + k (θ0) ∂θ1∂x (0, t)

]
, 0 < x < s1(t), (25)

θ1 = θ0, on x = 0, (26)

k (θ1)

(
∂θ1

∂x

)2

=
λ

c

∂

∂x

(
k(θ1)

∂θ1

∂x

)
, on x = s1(t), (27)

θ1 = 0, on x = s1(t), (28)

s1(0) = 0. (29)

By proposing the following quadratic temperature profile in space:

θ1(x, t) = θ0A1

(
1− x

s1(t)

)
+θ0B1

(
1− x

s1(t)

)2

, 0 < x < s1(t), t > 0,

(30)
the free boundary is obtained of the form:

s1(t) =
2

a
ξ1

√
t, t > 0, (31)
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where the constants A1, B1 y ξ1 will be determined from the conditions (25),
(26) and (27) of the problem (P1). Because of (30) and (31), the conditions (28)
and (29) are immediately satisfied. From conditions (25) and (26) we obtain:

A1 =
2
[
3Ste− (1 + Ste)2ξ2

1(Ste + 3)
]

Ste
[
(1 + Ste)2ξ2

1 + 3
] , (32)

B1 =
3
[
−Ste + (1 + Ste)2ξ2

1(Ste + 2)
]

Ste
[
(1 + Ste)2ξ2

1 + 3
] . (33)

From the fact that A1 > 0 and B1 > 0 we obtain that 0 < ξ1 < ξmax and
ξ1 > ξmin > 0, respectively where:

ξmin =

√
Ste

(1 + Ste)2(2 + Ste)
, ξmax =

√
3Ste

(1 + Ste)2(3 + Ste)
. (34)

Since A1 and B1 are defined from the parameters ξ1 and Ste, condition (27)
will be used to find the value of ξ1. In this way, it turns out that ξ1 must be a
positive solution of the fourth degree polynomial equation:

Q1(z) := (1 + Ste)4 (2Ste2 + 11Ste + 16
)
z4

−2 (1 + Ste)2 (6Ste2 + 19Ste + 3
)
z2

+3Ste (1 + 6Ste) = 0, ξmin < z < ξmax . (35)

It is easy to see that Q1 has only two positive roots. In addition:

Q1(ξmin) = 2Ste2(2Ste+3)2

(2+Ste)2
> 0, (36)

Q1(ξmax) = −3Ste(2Ste+3)2

(3+Ste)2
< 0, (37)

Q1(+∞) = +∞. (38)

Therefore Q1 has a unique root in
(
ξmin, ξmax

)
and it is given explicitly by

ξ1 =

(
(Ste+1)2 (6 Ste2+19 Ste+3)−

√
6 Ste+1 (2 Ste2+5 Ste+3)

(Ste+1)4 (2 Ste2+11 Ste+16)

)1/2

. (39)

All the above analysis can be summarized in the following result:
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Theorem 3.1 The solution to the problem (P1), for a quadratic profile in space,
is given by (30) and (31) where the positive constants A1 and B1 are defined by
(32) and (33) respectively and ξ1 is given explicitly by (39).

As this approximate method is designed as a technique for tracking the lo-
cation of the free boundary, the comparisons between the approximate solutions
and the exact one are made on the free boundary thought the coefficients that
characterizes them (Fig.1). Generally for most phase-change materials candi-
dates over a realistic temperature, the Stefan number will not exceed 1 [31].
From this, in order to analyse the accuracy of the approximate solution we
compare the dimensionless coefficients ξ1 with the exact coefficient ξ given
by (11) for Ste < 1. Moreover, in Fig.2, we show the temperature profile
of the approximate solution and the exact one at t = 10s, for the parameters
Ste = 0.4, a = 1

√
s/m and θ0 = 3◦C.
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Figure 1. Plot of ξ and ξ1 against Ste.
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Figure 2. Plot of θ and θ1 against x at t = 10 s for Ste = 0.4, a = 1
√
s/m,

θ0 = 3◦C.

3.2 Approximate solution using an alternative of the heat balance
integral method

An alternative method of the classical heat balance integral method proposes
to approximate problem (P) through the resolution of the approximate problem
defined in Sect. 3, that is:

Problem (P2). Find the temperature θ2 = θ2(x, t) at the liquid region 0 <
x < s2(t) and the location of the free boundary x = s2(t) such that:

d
dt

s2(t)∫
0

θ2(x, t)dx =
−1

ρc

[
ρλṡ2(t) + k (θ0) ∂θ2∂x (0, t)

]
, 0 < x < s2(t), (40)

θ2 = θ0 > 0, on x = 0, (41)

k (θ2)
∂θ2

∂x
= −ρλṡ2(t), on x = s2(t), (42)

θ2 = 0, on x = s2(t), (43)

s2(0) = 0. (44)

The solution of the problem (P2), for a quadratic temperature profile in



Electric Circuits and Mathematical Models of Electric Power ... 11

space, is obtained by

θ2(x, t) = θ0A2

(
1− x

s2(t)

)
+ θ0B2

(
1− x

s2(t)

)2

, 0 < x < s2(t), t > 0,

(45)

s2(t) =
2

a
ξ2

√
t, t > 0, (46)

where the constants A2, B2 y ξ2 will be determined from the conditions (40),
(41) and (42) of the problem (P2). The conditions (43) and (44) are immediately
satisfied. From conditions (41) and (42), we obtain:

A2 =
2ξ2

2

Ste
, (47)

B2 = 1− 2ξ2
2

Ste
. (48)

As we know, the constants A2 and B2 must be positive then we have 0 <

ξ2 <
√

Ste
2 .

Moreover, as in the previous problem (P1), the constants A2 and B2 are
expressed as a function of the parameters ξ2 and Ste, and using condition (40)
the coefficient ξ2 must be a positive solution of the fourth degree polynomial
equation given by:

(1 + Ste)2 z4 +
(
6 + 7Ste + 5Ste2 + Ste3

)
z2 − 3Ste = 0, (49)

for 0 < z <
√

Ste
2 .

Then, it is easy to see that the above equation has a unique solution given ex-
plicitly by

ξ2 =

(
−(6+7Ste+5Ste2+Ste3)+

√
(6+7Ste+5Ste2+Ste3)

2
+12Ste(1+Ste)2

2(1+Ste)2

)1/2

. (50)

All the above analysis can be summarized in the following result:

Theorem 3.2 The solution to the problem (P2), for a quadratic profile in space,
is given by (45) and (46) where the positive constants A2 and B2 are defined by
(47) and (48) respectively and ξ2 is given explicitly by (50).
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Figure 3. Plot of ξ and ξ2 against Ste.

0 1 2 2.5
0

1

2

3

Position x (m)

T
e

m
p

e
ra

tu
re

 (
°

C
)

 

 

θ(x,10)

θ
2
(x,10)

Figure 4. Plot of θ and θ2 against x at t = 10 s for Ste = 0.4, a = 1
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θ0 = 3◦C.
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Fig. 3 shows, for Stefan values up to 1, how the dimensionless coefficient
ξ2, which characterizes the location of the free boundary s2, approaches the
coefficient ξ, corresponding to the exact free boundary s. Moreover, in Fig.4,
we show the temperature profile of the approximate solution and the exact one
at t = 10s for the parameters Ste = 0.4, a = 1

√
s/m and θ0 = 3◦C.

3.3 Approximate solution using a refined balance heat integral
method

The refined integral method proposes to approximate problem (P) through the
resolution of an approximate problem formulated in Section 3, that is:

Problem (P3). Find the temperature θ3 = θ3(x, t) at the liquid region 0 <
x < s3(t) and the location of the free boundary x = s3(t) such that:

s3(t)∫
0

x∫
0

∂θ3
∂t (η, t)dηdx =

−θ0(1+Ste)−∂θ3∂x (0,t)s3(t)

a2(1+Ste)2
, 0 < x < s3(t), (51)

θ3 = θ0 > 0, on x = 0 (52)

k (θ3)
∂θ

∂x
= −ρλṡ3(t), on x = s3(t), (53)

θ3 = 0, on x = s3(t), (54)

s3(0) = 0. (55)

The solution of the problem (P3) for a quadratic temperature profile in space
is given by:

θ3(x, t) = θ0A3

(
1− x

s3(t)

)
+ θ0B3

(
1− x

s3(t)

)2

, 0 < x < s3(t), t > 0

(56)
and the free boundary is obtained of the form:

s3(t) =
2

a
ξ3

√
t, t > 0, (57)

where the constants A3 , B3 y ξ3 will be determined from the conditions (51),
(52) and (53) of the problem (P3).
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From conditions (52) and (53) we obtain:

A3 =
2ξ2

3

Ste
, (58)

B3 = 1− 2

Ste
ξ2

3 . (59)

As is already knowA3 > 0 andB3 > 0, thus we obtain that 0 < ξ3 <
√

Ste
2 .

Moreover, since A3 and B3 are defined from the parameter ξ3, condition (51)
will be used to find the value of ξ3. In this way it turns out that ξ3 must be a
positive solution of the second degree polynomial equation:

(
Ste3 + 2Ste2 + Ste + 6

)
z2 + 3Ste(Ste− 1) = 0, 0 < z <

√
Ste
2
. (60)

Then, it is easy to see that the above equation has a unique solution if and
only if Ste < 1 which is given explicitly by:

ξ3 =

(
3Ste(1− Ste)

Ste3 + 2Ste2 + Ste + 6

)1/2

. (61)

All the above analysis can be summarized in the following result:

Theorem 3.3 The solution to the problem (P3), for a quadratic profile in space,
is given by (56) and (57) where the positive constants A3 and B3 are defined by
(58) and (59) respectively and ξ3 is given explicitly by (61).

Therefore for every Ste < 1, we plot the numerical value of the dimension-
less coefficient ξ3 against the exact coefficient ξ (Fig.5). It can be seen that the
refined integral method results in good agreement with the exact solution of the
problem (P), only for lower values of Stefan number. Moreover, in Fig.6, we
show the temperature profile of the approximate solution and the exact one at
t = 10s for the parameters Ste = 0.4, a = 1

√
s/m and θ0 = 3◦C.
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Figure 5. Plot of ξ and ξ3 against Ste.
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Figure 6. Plot of θ and θ3 against x at t = 10 s for Ste = 0.4, a = 1
√
s/m, θ0 = 3◦C.
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4 Comparisons between solutions

In the previous sections we have applied 3 different approximate methods
(heat balance integral method (HBIM), an alternative of the HBIM and the re-
fined integral method (RIM)) for solving a Stefan problem with a non-linear
temperature-dependent thermal conductivity.

For each of this methods, i.e. for each Problem (Pi), i = 1, 2, 3 it has
been plotted the dimensionless coefficient that characterizes the approximate
free front ξi versus the coefficient ξ corresponding to the exact moving boundary
of problem (P). (Fig.1,3,5)

The aim of this section is to present, for different Stefan numbers, the nu-
merical value of the exact coefficient ξ given by (11) and the approximate co-
efficients ξ1, ξ2 and ξ3 given by the analytical expressions (39), (50) and (61)
respectively. Those calculations will allow us not only to compare the approxi-
mate solutions with the exact one but also to compare the different approaches
between them in order to show which technique gives the best agreement. With
that purpose we display in Table 1, for different values of Ste, the exact di-
mensionless free front ξ, the approximate dimensionless free front ξi and the
porcentual relative error Erel(ξi) = 100

∣∣∣ ξ−ξiξ ∣∣∣, i = 1, 2, 3.
It may be noticed in Table 1 that the relative error committed in each ap-

proximate technique increases when the Stefan number becomes greater reach-
ing the percentages 21%, 14% and 100% for the problems (P1), (P2) and (P3)
respectively. From this fact, we study the behaviour of the different approaches
for Ste << 1 (Table 2). In this case the relative errors for problem (P1), (P2)
and (P3) does not exceed 0.5%.

In Fig. 7 we present a comparison of the absolute errors of the approximate
temperatures given by Eabs(θi(x, t)) = |θ(x, t)− θi(x, t)| , i = 1, 2, 3 against
the position x, at t = 10s,Ste = 0.4, a = 1

√
s/m and θ0 = 3◦C.
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Table 1. Dimensionless free front coefficients and its relative errors.

Ste ξ ξ1 Erel(ξ1) ξ2 Erel(ξ2) ξ3 Erel(ξ3)

0.1 0.2099 0.2099 0.037 % 0.2100 0.018 % 0.2100 0.042 %
0.2 0.2805 0.2754 1.803 % 0.2788 0.608 % 0.2763 1.498 %
0.3 0.3262 0.3126 4.194 % 0.3207 1.697 % 0.3112 4.622 %
0.4 0.3593 0.3348 6.809 % 0.3481 3.110 % 0.3258 9.330 %
0.5 0.3846 0.3482 9.470 % 0.3663 4.741 % 0.3244 15.63 %
0.6 0.4046 0.3557 12.09 % 0.3782 6.515 % 0.3091 23.60 %
0.7 0.4209 0.3593 14.63 % 0.3856 8.375 % 0.2802 33.41 %
0.8 0.4343 0.3602 17.07 % 0.3897 10.28 % 0.2364 45.58 %
0.9 0.4457 0.3592 19.41 % 0.3913 12.20 % 0.1709 61.66 %
1.0 0.4554 0.3568 21.63 % 0.3911 14.11 % 0 100.0 %

Table 2. Dimensionless free front coefficients and its relative errors.

Ste ξ ξ1 Erel(ξ1) ξ2 Erel(ξ2) ξ3 Erel(ξ3)

0.01 0.0702 0.0703 0.142 % 0.0703 0.037 % 0.0703 0.075 %
0.02 0.0987 0.0989 0.241 % 0.0988 0.066 % 0.0988 0.135 %
0.03 0.1201 0.1205 0.302 % 0.1202 0.086 % 0.1203 0.178 %
0.04 0.1378 0.1382 0.329 % 0.1379 0.099 % 0.1381 0.206 %
0.05 0.1531 0.1536 0.326 % 0.1532 0.103 % 0.1534 0.219 %
0.06 0.1666 0.1671 0.296 % 0.1668 0.101 % 0.1670 0.215 %
0.07 0.1789 0.1793 0.242 % 0.1790 0.090 % 0.1792 0.196 %
0.08 0.1901 0.1904 0.167 % 0.1902 0.073 % 0.1904 0.160 %
0.09 0.2004 0.2005 0.073 % 0.2005 0.049 % 0.2006 0.109 %

Remark 4.1 In order to compare the absolute errors of the different ap-
proaches in a common domain, in Fig. 7, we plot up to x = s3(10) =
min {s1(10), s2(10), s3(10)}.
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Figure 7. Temperatures absolute errors against x at t = 10s for Ste = 0.4, a = 1
√
s/m

and θ0 = 3◦C.

5 Conclusion

In this chapter it was provided an overview of the popular approaches such
as HBIM, RIM, for the case of a one-dimensional one-phase Stefan problem
(P) with a non-linear temperature-dependent thermal conductivity as the novel
feature.

It must be emphasized that the fact of having the exact solution of prob-
lem (P) has allowed us to measure the accuracy of the approximate techniques
applied throughout this chapter. Comparisons with known solution have been
made in all cases and all solutions have been presented in graphical form.

It has been observed that as the Stefan number increases, the coefficients
that characterizes the free approximate boundaries move away from the exact
one. However, for Ste << 1, the three approaches commit a relative error that
does not exceed 0.5%.

In all the analysed cases, it could be concluded that the alternative technique
of HBIM given by problem (P2) is significantly more accurate than the others.
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