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1. Introduction

Free boundary problems refer to boundary value problems for partial differential equations where, in 
addition to the unknown functions of the problem, an unknown surface called “free boundary”, which sepa-
rates two or more regions, has to be determined [1,14,21]. Such problems occur in a wide variety of industrial 
and natural applications, as the melting of the polar ice caps, sediment mass transport, solidification of lava 
from a volcano and tumor growth, etc. [4,6,7,9,22,29,31].

The Stefan problem (or phase change problem), studies the temperature in the space occupied by two 
phases of a material, usually a liquid phase and a solid phase. The functions representing the temperatures 
of the two phases satisfy the corresponding heat equations. An additional condition is imposed on the 
separation surface, which can vary over time and is at a constant temperature, arising from the principle of 
conservation of energy across the boundary. The interest and difficulty of the problem is due to the presence 
of the free boundary, whose determination is of fundamental importance in practice [25].
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In the classic formulation of the Stefan problem, certain assumptions are supposed about the thermal 
coefficients involved in the phase change process in order to simplify the description of the model.

One of these hypotheses consists of considering constant thermal coefficients [12]. However, in the last
decade, free boundary problems involving variable thermal coefficients, such as the thermal conductivity, 
specific heat or latent heat [8,11,19,20,27], have gained special importance due to its many applications. 
For example, a temperature-dependent thermal conductivity has been considered in [2] for the study of the 
flow of an incompressible fluid along a vertical porous plate. Some other models that involve a variable 
thermal conductivity can be found in [3,15]. Recently in [16,17], different approximations through the Tau 
method were studied, for a phase change problem of a semi-infinite material with a Dirichlet type condition 
at the fixed face and with variable thermal conductivity and specific heat given as potential functions of 
the temperature.

It should be noted that the classical Stefan problem is nonlinear even in its simplest form due to free 
boundary conditions. For this reason, in case the thermal coefficients depend on the temperature we will 
have a double non linearity.

Encouraged by [18,28,30], we consider a two-phase free boundary problem in an angular domain with non 
constants thermal coefficients in which shrinkage occurs. Pure substance which is initially in liquid state 
and when it is above the freezing temperature and cooling is applied at x = 0. The temperature of the liquid 
at the time t = 0 in x = 0 comes down to the freezing point and solidification begins, where x = s(t) is 
the position of the interface. As the liquid solidifies it shrinks and appears an angular domain, i.e., a region 
between x = 0 and x = rs(t) with

r = 1 − ρ2

ρ1
∈ (0, 1), (1)

where ρi is the density of the region i where i = 1 is the solid region and i = 2 is the liquid region.
This leads us to the following free boundary problem with a Dirichlet type condition at x = rs(t):

∂
∂x

(
k1(u1)∂u1

∂x

)
= ρ1c1(u1)

(
∂u1
∂t + rṡ(t)∂u1

∂x

)
, rs(t) < x < s(t), t > 0, (2)

∂
∂x

(
k2(u2)∂u2

∂x

)
= ρ2c2(u2)∂u2

∂t , x > s(t), t > 0, (3)

u2(+∞, t) = u2(x, 0) = B > u∗, x > s(t), (4)

u1(s(t), t) = u2(s(t), t) = u∗, t > 0, (5)

k1(u1(s(t), t))∂u1
∂x (s(t), t) − k2(u2(s(t), t))∂u2

∂x (s(t), t) = ρ1�ṡ(t), t > 0, (6)

s(0) = 0, (7)

u1(rs(t), t) = A < u∗, (8)

where the temperature of the solid and the liquid, respectively are ui = ui(x, t) for i = 1, 2, u∗ is the freezing 
temperature, � > 0 is the latent heat of fusion by unit of mass, the thermal coefficients are variable and 
given by:

ki(ui) = k∗i

[
1 + βi

(
ui−B
u∗−B

)pi
]
, (9)

ci(ui) = c∗i

[
1 + βi

(
ui−B
u∗−B

)pi
]
, (10)

for i = 1, 2, with βi > 0 and pi ≥ 0, where k∗i = ki (u∗) and c∗i = ci (u∗) are the reference thermal conduc-
tivity and the specific heat, respectively and the thermal diffusivity of the solid and liquid, respectively, are 

given by αi = k∗i
∗ for i = 1, 2.
ρici
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Fig. 1. Angular domain representation in the x, t plane.

In Fig. 1 we represent the angular domain in the x, t plane that corresponds to the problem (2)-(8) where 
shrinkage occurs.

The two-phase free boundary problem in the angular domain defined by (2)-(8) is also considered with 
a Neumann type condition. More precisely, we consider a two-phase free boundary problem in an angular 
domain which is defined by equations (2) and (3), conditions (4)-(6) of the problem (2)-(8) and the condition

k1(u1(rs(t), t))∂u1
∂x (rs(t), t) = q0√

t
, q0 > 0, t > 0, (11)

instead condition (8) of the problem (2)-(8).
Moreover, in this paper, and inspired by the recent works [5,10,26] we impose to the problem (2)-(8) with 

a Dirichlet type condition, the over specified boundary condition which consists of the specification of a flux 
at the x = rs(t) given by (11). The aim of the simultaneous determination of the temperature ui = ui(x, t), 
i = 1, 2, the free boundary x = s(t) and one unknown thermal coefficient among {ρ1, ρ2, c∗1, c

∗
2, k

∗
1 , k

∗
2 , �}.

The organization of this paper is as follows. In section 2, we examine the existence and uniqueness of 
solution to the problem with the Dirichlet type condition, (2)-(8). In section 3, we prove the existence and 
uniqueness of solution to the problem with the Neumann type condition, (2)-(7) and (11). Based on those 
results, in section 4, we present seven different cases for the phase-change process and we obtain formulae for 
the unknown coefficients as well as necessary and sufficient conditions for the existence of solution. Finally, 
in section 5, we give some conclusions.

2. Existence and uniqueness of solution to the two-phase free boundary problem with a Dirichlet type 
condition

In this section we will prove existence and uniqueness of solution of similarity type to the two-phase 
free boundary problem in an angular domain with a Dirichlet type condition defined by (2)-(8), where the 
temperatures u1 = u1(x, t) and u2 = u2(x, t) depends on the similarity variable given by

η = x

2λ
√
α2t

, (12)

where λ > 0 is a dimensionless unknown coefficient to be determined. Through the following change of 
variables:

y1(η) = B − u1(x, t)
B − u∗ ≥ 0 and y2(η) = B − u2(x, t)

B − u∗ ≥ 0, (13)

the phase front moves as
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s(t) = 2λ
√
α2t, (14)

and thus we have the following result:

Theorem 2.1. The Stefan problem (2)-(8) has a similarity solution (u1, u2, s) given by:

u1(x, t) = (u∗ −B) y1 (η) + B, rs(t) < x < s(t), t > 0, (15)

u2(x, t) = (u∗ −B) y2 (η) + B, x > s(t), t > 0, (16)

s(t) = 2λ
√
α2t, t > 0, (17)

if and only if the functions y1, y2 and the parameter λ > 0 satisfy the following ordinary differential 
problems:

α1
2λ2α2

[
(1 + β1y

p1
1 (η))y′1(η)

]′
+ (η − r) (1 + β1y

p1
1 (η)) y′1(η) = 0, r < η < 1, (18)

y1(r) = A−B

u∗ −B
, (19)

y1(1) = 1, (20)

and

1
2λ2

[
(1 + β2y

p2
2 (η))y′2(η)

]′
+ η (1 + β2y

p2
2 (η)) y′2(η) = 0, η > 1, (21)

y2(1) = 1, (22)

y2(∞) = 0, (23)

coupled through the following condition(
1 + β1

1 + β2

)
k∗1
k∗2

y′1(1) − y′2(1) = −2λ2

(1 + β2)
ρ1

ρ2Ste , (24)

where Ste = c∗2(B−u∗)
� > 0 is the Stefan number.

Proof. It follows by simple computations, recalling that the similarity variable η is given by (12). �
Lemma 2.2. The triplet (y1, y2, λ) is a solution to the problem (18)-(24) if and only if it satisfies the following 
functional problem:

F1(y1(η)) = G1(η), r ≤ η ≤ 1, (25)

F2(y2(η)) = G2(η), η ≥ 1, (26)

M(λ) = N (λ), (27)

where

Fi(x) = x + βi

1+pi
x1+pi , i = 1, 2, x ≥ 0, (28)

G1(η) =
(
F1(1) −F1

(
A−B
u∗−B

)) erf
(
λ
√

α2
α1

(η−r)
)

erf
(
λ
√

α2
α1

(1−r)
) + F1

(
A−B
u∗−B

)
, r ≤ η ≤ 1, (29)

G2(η) = F2(1) erfc(λη) , η ≥ 1, (30)
erfc(λ)
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M(x) =
√

α2
α1

k∗
1

k∗
2

(
F1(1) −F1

(
A−B
u∗−B

)) exp
(
−x2 α2

α1
(1−r)2

)
erf

(
x
√

α2
α1

(1−r)
)

+ F2(1) exp(−x2)
erfc(x) , x ≥ 0, (31)

N (x) = −x
√
π

Ste
ρ1
ρ2
, x ≥ 0. (32)

Proof. Suppose that (y1, y2, λ) is a solution to the problem (18)-(24).
Let us define v1(η) = (1 + β1y

p1
1 (η))y′1(η). Taking into account equation (18) we obtain that

v1(η) = C1 exp
(
−λ2 α2

α1
(η − r)2

)
, r < η < 1, (33)

where C1 ∈ R. Then, integrating with respect to η we get that the general solution to the ordinary differential 
equation (18) must satisfy the following equation

y1(η) + β1
1+p1

y1+p1
1 (η) = C1

λ

√
α1
α2

√
π

2 erf
(
λ
√

α2
α1

(η − r)
)

+ D1, r < η < 1, (34)

where D1 is a real number. If we impose the boundary conditions (19) and (20) we get that

C1 =
(
F1(1) −F1

(
A−B
u∗−B

))
2√
π

√
α2
α1

λ

erf
(
λ
√

α2
α1

(1−r)
) , D1 = F1

(
A−B
u∗−B

)
, (35)

where F1 is given by (28). Therefore, y1 satisfies equation (25).
In a similar way, we can define v2(η) = (1 + β2y

p2
2 (η))y′2(η). From equation (21) we get

v2(η) = C2 exp
(
−λ2η2) , η > 1, (36)

with C2 ∈ R. If we integrate the prior equation with respect to η, we obtain that the general solution to 
the ordinary differential equation (21) must satisfy the following equation

y2(η) + β2

1 + p2
y1+p2
2 (η) = C2

λ

√
π

2 erf(λη) + D2, η > 1, (37)

where D2 is a real number. Then, imposing conditions (22) and (23) yields to

C2 = F2(1) 2√
π

λ

(erf(λ) − 1) , D2 = −C2

λ

√
π

2 . (38)

Therefore, y2 satisfies equation (26).
Finally, from (33) and (36), taking into account (24) we easily get (27).
Reciprocally, assume that the triplet (y1, y2, λ) is a solution the system (25)-(27) then by elemental 

computations we can prove that it satisfies (18)-(24). �
Lemma 2.3. The functional problem given by (25)-(27) has a unique solution (y1, y2, λ).

Proof. Notice that for each i = 1, 2, Fi : R+
0 → R+

0 is a strictly increasing function. If we recall that 
A < u∗ < B, then we get A−B

u∗−B > 1 and so F1

(
A−B
u∗−B

)
> F1(1). Therefore, for each λ > 0, we obtain that 

the function G1 = G1(η) given by (29) satisfies:

G1(η) = F1(1)
erf

(
λ
√

α2
α1

(η−r)
)

erf
(
λ
√

α2 (1−r)
) + F1

(
A−B
u∗−B

)(
1 −

erf
(
λ
√

α2
α1

(η−r)
)

erf
(
λ
√

α2 (1−r)
)
)

> F1(1) > 0. (39)

α1 α1
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Then, for each λ > 0 there exists a unique function y1 ∈ C2 (r, 1) solution to the equation (25) given by

y1(η) = F−1
1 (G1(η)), r ≤ η ≤ 1. (40)

Similarly, taking into account that G2(η) > 0, for every η > 1, we get that there exists a unique function 
y2 ∈ C2(1, +∞) solution to the equation (26) given by

y2(η) = F−1
2 (G2(η)), η ≥ 1. (41)

Now we will analyse equation (27). Let us rewrite the function M given by (31) as:

M(x) =
√

α2
α1

k∗
1

k∗
2

(
F1(1) −F1

(
A−B
u∗−B

))
M1

(
x
√

α2
α1

(1 − r)
)

+ F2(1)M2(x), (42)

with

M1(x) = exp(−x2)
erf(x) , M2(x) = exp(−x2)

erfc(x) . (43)

It is easy to see that:

M1(0) = ∞, M1(∞) = 0, M′
1(x) < 0, ∀ x > 0,

M2(0) = 1, M2(∞) = ∞, M′
2(x) > 0, ∀ x > 0.

(44)

Then, it follows straightforwardly that

M(0) = −∞, M(∞) = ∞, M′(x) > 0, ∀ x > 0. (45)

As

N (0) = 0, N (∞) = −∞, N ′(x) < 0, ∀ x > 0, (46)

we obtain that there exists a unique λ > 0 solution to equation M(x) = N (x), x > 0.
In conclusion, there exists a unique triplet (y1, y2, λ) solution to the functional problem (25)-(27). �

Theorem 2.4. The two-phase Stefan problem (2)-(8) has a unique similarity solution (u1, u2, s) given by 
(15)-(17) where (y1, y2, λ) is the unique solution to functional problem (25)-(27).

Proof. It follows straightforwardly from Theorem 2.1 and Lemmas 2.2 and 2.3. �
Remark 2.5. Taking into account that

G′
1(η) =

(
F1(1) −F1

(
A−B
u∗−B

)) 2λ√α2 exp
(
−λ2 α2

α1
(η − r)2

)
√
πα1 erf

(
λ
√

α2
α1

(1 − r)
) < 0, (47)

for each r < η < 1, we obtain that

F1(1) = G1(1) ≤ G1(η) ≤ G1(r) = F1

(
A−B
u∗−B

)
. (48)

In addition, as F−1
1 = F−1

1 (η) is a increasing function we deduce that y1(η) = F−1
1 (G1(η)) is a decreasing 

function that satisfies the following inequality:
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1 = y1(1) < y1(η) < y1(r) = A−B
u∗−B , r < η < 1. (49)

In virtue of this and Theorem 2.1, we have that

A < u1(x, t) < u∗, rs(t) < x < s(t), t > 0. (50)

In a similar way, we have that G′
2(η) =

−2λF2(1) exp(λ2η2)√
π erfc(λ)

< 0, for η > 1. Then,

G2(∞) = 0 ≤ G2(η) ≤ G2(1) = F2(1). (51)

Taking into account that F−1
2 = F−1

2 (η) is an increasing function we obtain that y2(η) = F−1
2 (G2(η)) is 

a decreasing function that satisfies the following inequality:

0 = y2(∞) < y2(η) < y2(1) = 1, η > 1, (52)

and from this and Theorem 2.1, we have that

u∗ < u2(x, t) < B, x > s(t), t > 0. (53)

Remark 2.6. (Particular case p1 = p2 = 0) If we consider p1 = p2 = 0, the thermal coefficients given in (9)
and (10) are constants, i.e., the thermal conductivity and the specific heat are given by:

ki = k∗i (1 + βi) , (54)

ci = c∗i (1 + βi) , (55)

respectively with βi > 0 for i = 1, 2.
In this case, the unique solution y1 = y1(η) to the equation (25) is given by:

y1(η) =
(

u∗−A
u∗−B

) erf
(
λ
√

α2
α1

(η−r)
)

erf
(
λ
√

α2
α1

(1−r)
) + A−B

u∗−B , r ≤ η ≤ 1, (56)

the unique solution y2 = y2(η) to the equation (26) is given by:

y2(η) = erfc(λη)
erfc(λ) , η ≥ 1, (57)

and from (27), λ > 0 is the unique solution to the equation:

√
α2
α1

k1
k2

(
u∗−A
u∗−B

) exp
(
−x2 α2

α1
(1−r)2

)
erf

(
x
√

α2
α1

(1−r)
) + exp(−x2)

erfc(x) = −x
√
π

Ste
ρ1

ρ2(1+β2) . (58)

Therefore we have recovered the results obtained in [18].

Remark 2.7. (Particular case p1 = p2 = 1) If we consider p1 = p2 = 1, the thermal coefficients given in (9)
and (10) are linear, i.e., the thermal conductivity and the specific heat are given by:

ki(ui) = k∗i

(
1 + βi

(
ui−B
u∗−B

))
, (59)

ci(ui) = c∗i

(
1 + βi

(
ui−B
u∗−B

))
, (60)
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Fig. 2. Plot of the coefficient λ and the function y = y(η) for k∗
1

k∗
2

= 1, α1
α2

= 1, β1 = β2 = 1 and A−B
u∗−B = 8.

respectively with βi > 0 for i = 1, 2.
In this case, the unique solution y1 = y1(η) to the equation (25) is given by:

y1(η) = 1
β1

(
−1 +

√
1 + 2β1Ĝ1(η)

)
, r ≤ η ≤ 1, (61)

where

Ĝ1(η) =
(

1 + β1
2 − A−B

u∗−B − β1
2

(
A−B
u∗−B

)2
)

erf
(
λ
√

α2
α1

(η−r)
)

erf
(
λ
√

α2
α1

(1−r)
) + A−B

u∗−B + β1
2

(
A−B
u∗−B

)2
, (62)

and the unique solution y2 = y2(η) to the equation (26) is given by:

y2(η) = 1
β2

(
−1 +

√
1 + β2 (2 + β2) erfc(λη)

erfc(λ)

)
, η ≥ 1, (63)

and from (27), λ > 0 is the unique solution to the equation:

√
α2
α1

k∗
1

k∗
2

(
1 + β1

2 − A−B
u∗−B − β1

2

(
A−B
u∗−B

)2
)

exp
(
−x2 α2

α1
(1−r)2

)
erf

(
x
√

α2
α1

(1−r)
) +

+
(
1 + β2

2

) exp(−x2)
erfc(x) = −x

√
π

Ste
ρ1
ρ2
. (64)

In Fig. 2a, we plot the solution λ to the equation (64) against Ste, for r = 0.2, r = 0.4, r = 0.6 and 
r = 0.8. Moreover in Fig. 2b, we plot the function

y(η) =
{

y1(η) if r ≤ η ≤ 1
y2(η) if η > 1

where y1 is given by (61) and y2 is defined by (63), for r = 0.5.
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3. Existence and uniqueness of solution to the two-phase free boundary problem with a Neumann type 
condition

In this section we will prove existence and uniqueness of solution of similarity type to the two-phase free 
boundary problem in an angular domain with a Neumann type condition defined by (2)-(7) and (11), where 
the temperatures u1 and u2 depends on the similarity variable given by

η = x

2μ
√
α2t

, (65)

where μ > 0 is a dimensionless unknown coefficient to be determined. Through the following change of 
variables,

z1(η) = B − u1(x, t)
B − u∗ ≥ 0 and z2(η) = B − u2(x, t)

B − u∗ ≥ 0,

the phase front moves as

s(t) = 2μ
√
α2t, (66)

and thus we have the following result:

Theorem 3.1. The Stefan problem (2)-(7) and (11) has a similarity solution (u1, u2, s) given by:

u1(x, t) = (u∗ −B) z1 (η) + B, rs(t) < x < s(t), t > 0, (67)

u2(x, t) = (u∗ −B) z2 (η) + B, x > s(t), t > 0, (68)

s(t) = 2μ
√
α2t, t > 0, (69)

if and only if the functions z1, z2 and the parameter μ > 0 satisfy the following ordinary differential problems:

α1

2μ2α2

[
(1 + β1z

p1
1 (η))z′1(η)

]′
+ (η − r) (1 + β1z

p1
1 (η)) z′1(η) = 0, r < η < 1, (70)

(1 + β1z
p1
1 (r))z′1(r) =

2μ√α2q0
(u∗ −B)k∗1

, (71)

z1(1) = 1, (72)

and

1
2μ2

[
(1 + β2z

p2
2 (η))z′2(η)

]′
+ η (1 + β2z

p2
2 (η)) z′2(η) = 0, η > 1, (73)

z2(1) = 1, (74)

z2(∞) = 0, (75)

coupled through the following condition(
1 + β1

1 + β2

)
k∗1
k∗2

z′1(1) − z′2(1) = −2μ2

(1 + β2)
ρ1

ρ2Ste , (76)

where Ste = c∗2(B−u∗)
> 0 is the Stefan number.
�
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Proof. It follows by simple computations, recalling that the similarity variable η is given by (65). �
Lemma 3.2. The triplet (z1, z2, μ) is a solution to the problem (70)-(76) if and only if it satisfies the functional 
problem:

F1(z1(η)) = G∗
1 (η), r ≤ η ≤ 1, (77)

F2(z2(η)) = G∗
2 (η), η ≥ 1, (78)

M∗(μ) = N ∗(μ), (79)

where

G∗
1 (η) = F1(1) +

√
α1πq0

k∗
1 (B−u∗)

[
erf

(
μ
√

α2
α1

(1 − r)
)

− erf
(
μ
√

α2
α1

(η − r)
) ]

, r ≤ η ≤ 1, (80)

G∗
2 (η) = F2(1)erfc(μη)

erfc(μ) , η ≥ 1, (81)

M∗(x) = x ρ1
ρ2Ste + 1√

π
F2(1)exp(−x2)

erfc(x) , x ≥ 0, (82)

N ∗(x) =
√
α2q0

(B−u∗)k∗
2

exp
(
−x2 α2

α1
(1 − r)2

)
, x ≥ 0. (83)

Proof. It is similar to the proof of Lemma 2.2. �
Lemma 3.3. The functional problem given by (77)-(79) has a unique solution (z1, z2, μ) if and only if

q0 >
(B − u∗)k∗2√

α2π

(
1 + β2

p2 + 1

)
. (84)

Proof. Notice first that G∗
1 (η) > 0, r < η < 1. Then, for each μ > 0 there exists a unique function 

z1 ∈ C2[r, 1] solution to the equation (77) given by

z1(η) = F−1
1 (G∗

1 (η)), r ≤ η ≤ 1. (85)

Similarly to the proof of Lemma 2.3, for every η > 1, we get that there exists a unique function z2 ∈
C2[1, ∞) solution to the equation (78) given by

z2(η) = F−1
2 (G∗

2 (η)), η ≥ 1. (86)

It remains to prove that the equation (79) has a unique solution μ > 0. If we rewrite the function M∗

given by (82) as:

M∗(x) = x
ρ1

ρ2Ste + 1√
π
F2(1)M2(x), (87)

and taking into account the properties of the function M2, it follows immediately that

M∗(0) = 1√
π

(
1 + β2

p2+1

)
, M∗(∞) = ∞, M∗′

(x) > 0, ∀ x > 0. (88)

As

N ∗(0) =
√
α2q0

∗ ∗ , N ∗(∞) = 0, N ∗′
(x) < 0, ∀ x > 0, (89)
(B−u )k2
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we obtain that there exists a unique μ > 0 solution to equation M∗(x) = N ∗(x), x > 0 if and only if

√
α2q0

(B − u∗)k∗2
>

1√
π

(
1 + β2

p2 + 1

)
. (90)

In conclusion, there exists a unique triplet (z1, z2, μ) solution to the functional problem (77)-(79) if and 
only if q0 satisfies (84). �
Theorem 3.4. The two-phase Stefan problem (2)-(7) and (11) has a unique similarity solution (u1, u2, s)
given by (67)-(69) where (z1, z2, μ) is the unique solution to the functional problem (77)-(79) if and only if 
(84) holds.

Proof. It follows straightforwardly from Theorem 3.1 and Lemmas 3.2 and 3.3. �
Remark 3.5. (Particular case p1 = p2 = 0) If we consider p1 = p2 = 0, the thermal conductivity and the 
specific heat are given by (54) and (55), respectively.

In this case, the unique solution z1 = z1(η) to the equation (77) is given by:

z1(η) = 1 +
√
α1πq0

k1(1+β1)(B−u∗)

(
erf

(
μ
√

α2
α1

(1 − r)
)
− erf

(
μ
√

α2
α1

(η − r)
))

, r ≤ η ≤ 1, (91)

and the unique solution z2 = z2(η) to the equation (78) is given by:

z2(η) = erfc (μη)
erfc (μ) , η ≥ 1, (92)

and from (79), μ > 0 is the unique solution to the equation:

x
ρ1

ρ2Ste + 1+β2√
π

exp(−x2)
erfc(x) =

√
α2q0

(B−u∗)k∗
2

exp
(
−x2 α2

α1
(1 − r)2

)
, x ≥ 0, (93)

if and only if q0 >
(B−u∗)k∗

2(1+β2)√
α2π

. Therefore we can recover the results obtained in [18]. Moreover, if r = 0
(i.e. ρ1 = ρ2) we get the result obtain in [23].

Remark 3.6. (Particular case p1 = p2 = 1) If we consider de particular case p1 = p2 = 1, the thermal 
conductivity and the specific heat are given by (59) and (60), respectively.

In this case, the unique solution z1 = z1(η) to the equation (77) is given by:

z1(η) = 1
β1

(
−1 +

√
1 + 2β1Ĝ∗

1 (η)
)
, r ≤ η ≤ 1, (94)

where

Ĝ∗
1 (η) = 1 + β1

2 +
√
α1πq0

k∗
1 (B−u∗)

(
erf

(
μ
√

α2
α1

(1 − r)
)
− erf

(
μ
√

α2
α1

(η − r)
))

, (95)

the unique solution z2 = z2(η) to the equation (78) is given by:

z2(η) = 1
β2

(
−1 +

√
1 + β2 (2 + β2) erfc(μη)

erfc(μ)

)
, η ≥ 1, (96)

and from (79), μ > 0 is the unique solution to the equation:
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Fig. 3. Plot of the coefficient μ and the function z = z(η) for k∗
1 = k∗

2 = 1, α1 = 10, α2 = 5, β1 = β2 = 1, B − u∗ = 5 and q0 = 30.

x ρ1
ρ2Ste + 2+β2

2
√
π

exp(−x2)
erfc(x) =

√
α2q0

(B−u∗)k∗
2

exp
(
−x2 α2

α1
(1 − r)2

)
, x ≥ 0, (97)

if and only if q0 >
(B−u∗)(2+β2)k∗

2
2√α2π

.
In Fig. 3a, we plot the solution λ to the equation (97) against Ste, for r = 0.2, r = 0.4, r = 0.6 and 

r = 0.8. Moreover in Fig. 3b we plot the function

z(η) =
{

z1(η) if r ≤ η ≤ 1
z2(η) if η > 1

where z1 is given by (94) and z2 is defined by (96).

Remark 3.7. If the coefficient q0 satisfies

0 < q0 ≤ (B−u∗)k∗
2√

α2π

(
1 + β2

p2+1

)
,

then the free boundary problem (2)-(7) and (11) is a classical heat transfer problem, without a phase change 
process, for the initial liquid phase given by:

∂
∂x

(
k2(u2)∂u2

∂x

)
= ρ2c2(u2)∂u2

∂t , x > 0, t > 0,

u2(+∞, t) = u2(x, 0) = B > u∗, x > 0, t > 0,

k2(u2(0, t))∂u2
∂x (0), t) = q0√

t
, t > 0,

whose unique similarity solution is

u2(x, t) = (u∗ −B) z2

(
x

2
√
α2t

)
+ B, x > 0, t > 0,

where

z2(η) = F−1
2

(
G̃2(η)

)
, η > 0,

with F2 given by (28) and G̃2(η) =
√
π
√
α2q0 erfc(η)
∗ ∗ .
k2 (B−u )
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4. Determination of unknown thermal coefficients

In this section we are going to study a free boundary Stefan problem given by (2)-(8) together with the over 
specified Neumann condition (11) following the first idea given in [24]. This problem consists on finding the 
temperatures u1, u2, the free boundary x = s(t) and one thermal coefficient among {ρ1, ρ2, c∗1, c

∗
2, k

∗
1 , k

∗
2 , �}.

According to Theorem 2.4, the similarity solution (u1, u2, s) to the problem (2)-(8) is given by (15)-(17)
where the functions y1, y2 are obtained by (25)-(26) and the coefficient λ is defined by (27), i.e.

√
k∗
1ρ1c∗1√

k∗
2ρ2c∗2

m∗ M1

(
λ

√
k∗
2ρ2c∗1√

k∗
1ρ1c∗2

)
−F2(1)M2(λ) = λ

√
π�ρ1

c∗2(B − u∗)ρ2
, (98)

where m∗ = F1

(
A−B
u∗−B

)
−F1(1).

Moreover, if we request that the solution (u1, u2, s) to the problem (2)-(8) also satisfies the over specified 
condition (11) we obtain that:

y′1(r) =
2λq0

√
α2

k∗1

(
1 + β1

(
A−B
u∗−B

)p1)
(u∗ −B)

.

Taking into account that y1 was given by (25), the condition on y′1 leads to the following equality:

q0
√
π√

k∗1ρ1c∗1
erf

(
λ

√
k∗
2ρ2c∗1√

k∗
1ρ1c∗2

)
= (B − u∗)m∗. (99)

In view of this analysis, the Stefan problem with an over specified condition involves the deter-
mination of the coefficient λ that characterizes the free boundary and one thermal coefficient among 
{ρ1, ρ2, c∗1, c

∗
2, k

∗
1 , k

∗
2 , �} that satisfy conditions (98)-(99).

We will divide the study into seven different cases:

† Case 1: Determination of λ, ρ1.
† Case 2: Determination of λ, ρ2.
† Case 3: Determination of λ, c∗1.
† Case 4: Determination of λ, c∗2.
† Case 5: Determination of λ, k∗1 .
† Case 6: Determination of λ, k∗2 .
† Case 7: Determination of λ, �.

At the end of this section, in Table 1, we show a summary of all the cases studied. In each case, we 
specify the restriction on q0 so that the corresponding unknown coefficients can be determined.

Theorem 4.1. (Case 1: λ, ρ1) Let us define

R1 =
√

k∗
1c

∗
1√

k∗
2ρ2c∗2

m∗, Q1 =
√

k∗
2ρ2c∗1√
k∗
1c

∗
2
, D1 = �

√
π

c∗2ρ2(B−u∗) , P1 =
√

k∗
1c

∗
1

q0
√
π

(B − u∗)m∗.

If we assume

q0 >
(
1 + β2

1+p2

) √
k∗
2ρ2c∗2√
π

(B − u∗), (100)

then there is a unique solution (λ, ρ1) to the system (98)-(99) given by
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λ = z1 erf−1(z1)
Q1P1

, ρ1 = z2
1

P 2
1
, (101)

where z1 is the unique solution to the following equation

L1(z) = R1(z), 0 < z < 1, (102)

with

L1(z) = R1
P1

exp
(
−

(
erf−1(z)

)2
)
−F2(1)M2

(
z erf−1(z)

Q1P1

)
,

R1(z) = D1
Q1P 3

1
z3 erf−1(z).

Proof. If we call z1 = P1
√
ρ1, taking into account equation (99), we obtain that λ and ρ1 are given by 

formula (101) as functions of z1 where we assume that z1 ∈ (0, 1) (so as erf−1(z1) makes sense). If we 
replace the value of λ in equation (98) we get that z1 must be a solution to the equation (102). On one 
hand, L1 is a decreasing function in z that satisfies: L1(0) = R1

P1
−F2(1) and L1(1) = −∞. On the other hand, 

R1 is an increasing function that verifies: R1(0) = 0 and R1(1) = +∞. Therefore, if we assume L1(0) > 0, 
which is equivalent to the hypothesis (100), we can guarantee that there exists a unique z1 ∈ (0, 1) solution 
to equation (102). �
Theorem 4.2. (Case 2: λ, ρ2) Let us define

R2 =
√

k∗
1ρ1c∗1√
k∗
2c

∗
2
m∗, Q2 =

√
k∗
2c

∗
1√

k∗
1ρ1c∗2

, D2 = �ρ1
√
π

c∗2(B−u∗) , P2 =
√

k∗
1ρ1c∗1

q0
√
π

(B − u∗)m∗.

We assume that

q0 >

√
k∗1ρ1c∗1√

π erf(z2)
(B − u∗)m∗, (103)

where z2 is the unique solution to the equation

G(z) = 3
2
√
πF2(1), z > 0, (104)

with

G(z) = R2Q2
M1(z)

z H
(√

g(z)
)
,

H(z) =
√
πz erfc(z) exp(z2), (105)

g(z) = R2
3Q2D2

zM1(z).

Then, there exists two solutions (λ, ρ2) to the system (98)-(99). The coefficient ρ2 is given by

ρ2 =
(

erf−1(P2)
λQ2

)2

, (106)

and λ is one positive solution to the following equation

L2(z) = R2(z), z > 0, (107)

with
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L2(z) = z Q2R2
erf−1(P2)M1(erf−1(P2)) − z3 Q2

2D2
(erf−1(P2))2 , R2(z) = F2(1)M2(z).

Proof. Assuming P2 < 1, from equation (99) we get that the coefficient ρ2 is given in function of λ by 
expression (106). By equation (98), it follows that λ must satisfy (107). On one hand, R2 is an increasing 
function in λ that verifies R2(0) = F2(1) and R2(+∞) = +∞. On the other hand, L2(0) = 0 and L2(+∞) =
−∞. Moreover, defining λ as

λ =
(
R2 erf−1(P2)M1(erf−1(P2))

3Q2D2

)1/2

,

we obtain that L2 is increasing function in (0, λ) and a decreasing function in (λ, +∞). Therefore, if we 
assume

L2(λ) > R2(λ), (108)

then there exists two solutions to the equation (107).
Working algebraically, it is easy to see that λ =

√
g(erf−1(P2)) and therefore condition (108) is equivalent 

to

G(erf−1(P2)) = R2Q2
M1(erf−1(P2))

erf−1(P2) H
(√

g(erf−1(P2))
)
> 3

2
√
πF2(1), (109)

where G, H and g are given by (105).
From [13] we know that H is an increasing function that satisfies H(0) = 0 and H(+∞) = 1 and g is 

a decreasing function such that g(0) =
√
π

2 and g(+∞) = 0. Then G is a decreasing function that satisfies 
G(0) = +∞ and G(+∞) = 0. As a consequence inequality (109) holds if and only if erf−1(P2) < z2 where 
z2 is the unique solution to the equation (104). Therefore, provided that P2 < min{1, erf(z2)} = erf(z2)
(equivalent to inequality (103)), we obtain that there exists at least one solution λ to the equation (107). �
Theorem 4.3. (Case 3: λ, c∗1) Let us define

R3 =
√

k∗
1ρ1√

k∗
2ρ2c∗2

m∗, Q3 =
√

k∗
2ρ2√

k∗
1ρ1c∗2

, D3 = �ρ1
√
π

c∗2ρ2(B−u∗) , P3 =
√

k∗
1ρ1

q0
√
π

(B − u∗)m∗.

If we assume

q0 > q∗0 , (110)

where q∗0 > 0 is the unique solution to the equation

z = �ρ2
1k

∗
1

2ρ2
1
z +

√
k∗2c

∗
2ρ2

π
F2(1)M2

(
ρ1k

∗
1 (B−u∗)m∗

2z

√
c∗2

k∗
2ρ2

)
, z > 0, (111)

then there is a unique solution (λ, c∗1) to the system (98)-(99) given by

λ = P3

Q3

erf−1(z3)
z3

, c∗1 = z2
3

P 2
3
, (112)

where z3 is the unique solution to the following equation

L3(z) = R3(z), 0 < z < 1, (113)
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with

L3(z) = R3
P3

exp
(
−
(
erf−1(z)

)2)
,

R3(z) = P3D3
Q3

erf−1(z)
z + F2(1)M2

(
P3
Q3

erf−1(z)
z

)
.

Proof. If we define z3 = P3
√
c∗1 and taking into account equation (99), we can easily obtain that λ and c∗1

are given by (112) where z3 ∈ (0, 1) in order that erf−1(z3) makes sense. Replacing the value of λ in (98)
it follows that z3 must be a solution to equation (113). Notice that L3 is a decreasing function that verifies 
L3(0) = R3

P3
and L3 (1) = 0, while R3 is an increasing function such that R3(0) = P3D3

√
π

2Q3
+F2(1)M2

(√
πP3

2Q3

)
and R3 (1) = +∞. Therefore, under the assumption L3(0) > R3(0), which is equivalent to q0 > q∗0 where 
q∗0 > 0 is the unique solution to the equation (111), we can guarantee that there exists a unique z3 ∈ (0, 1)
solution to equation (113). �
Theorem 4.4. (Case 4: λ, c∗2) Let us define

R4 =
√

k∗
1ρ1c∗1√
k∗
2ρ2

m∗, Q4 =
√

k∗
2ρ2c∗1√
k∗
1ρ1

, D4 = �ρ1
√
π

ρ2(B−u∗) , P4 =
√

k∗
1ρ1c∗1

q0
√
π

(B − u∗)m∗.

Assume that

q0 >

√
k∗1ρ1c∗1(B − u∗)m∗

erf(z4)
√
π

, (114)

where z4 is the unique solution to the equation

h(z) = R4Q4

D4
, z > 0, (115)

with

h(z) = z

M1(z)
. (116)

Then there is a unique solution (λ, c∗2) to the system (98)-(99). The coefficient c∗2 is given by

c∗2 =
(

λQ4

erf−1(P4)

)2

, (117)

and λ is the unique positive solution to the following equation

R4(z) = L4, z > 0, (118)

where

L4 =
[
R4M1(erf−1(P4)) − D4

Q4
erf−1(P4)

] erf−1(P4)
Q4

, R4(z) = F2(1)zM2(z).

Proof. Taking into account equation (99), if P4 < 1 is assumed, then expression (117) for c∗2 is derived. 
Replacing this value in equation (98), the non-linear equation (118) for λ is obtained. As R4 is an increasing 
function that satisfies R4(0) = 0 and R4(+∞) = +∞, if we assume L4 > 0, then existence and uniqueness 
of solution to equation (118) is guaranteed. Notice that L4 > 0 is equivalent to
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h(erf−1(P4)) <
R4Q4

D4
, (119)

where h is given by (116). According to [13], h′(z) > 0 for all z > 0, h(0) = 0 and h(+∞) = +∞. Therefore, 
inequality (119) holds if and only if erf−1(P4) < z4 where z4 is the unique solution to equation (115). As 
a consequence, if we assume P4 < min{1, erf(z4)} = erf(z4) (equivalent to inequality (114)) there exists a 
unique solution to equation (118). �
Theorem 4.5. (Case 5: λ, k∗1) Let us define

R5 =
√

ρ1c∗1√
k∗
2ρ2c∗2

m∗, Q5 =
√

k∗
2ρ2c∗1√
ρ1c∗2

, D5 = �ρ1
√
π

c∗2ρ2(B−u∗) , P5 =
√
ρ1c∗1

q0
√
π

(B − u∗)m∗.

If we assume

q0 >

(
1 + β2

1 + p2

)
(B − u∗)

√
k∗2c

∗
2ρ2√
π

, (120)

then there is a unique solution (λ, k∗1) to the system (98)-(99) given by

λ = z5 erf−1(z5)
Q5P5

, k∗1 = z2
5

P 2
5
, (121)

where z5 is the unique solution to the following equation

L5(z) = R5(z), 0 < z < 1, (122)

with

L5(z) = R5
P5

exp
(
−
(
erf−1 (z)

)2)−F2(1)M2

(
z erf−1(z)
Q5P5

)
,

R5(z) = D5
Q5P5

z erf−1(z).

Proof. If we define z5 = P5
√
k∗1 and take into account equation (99), it follows that λ and k∗1 are given by 

(121) where z5 ∈ (0, 1). Then, from equation (98) it follows that z5 must satisfy equation (122). Notice that, 
R5 is an increasing function such that R5(0) = 0 and R5(1) = +∞. Moreover, L5 is a decreasing function 
such that L5(0) = R5

P5
−F2(1) and L5(1) = −∞. As a consequence, under assumption L5(0) > 0 (equivalent 

to inequality (120)), there exists a unique solution to the equation (122) in the interval (0, 1). �
Theorem 4.6. (Case 6: λ, k∗2) Let us define

R6 =
√
k∗
1ρ1c∗1√
ρ2c∗2

m∗, Q6 =
√

ρ2c∗1√
k∗
1ρ1c∗2

, D6 = �ρ1
√
π

c∗2ρ2(B−u∗) , P6 =
√

k∗
1ρ1c∗1

q0
√
π

(B − u∗)m∗.

Assume that

q0 >

√
k∗1ρ1c∗1(B − u∗)m∗

erf(w6)
√
π

, (123)

where w6 is the unique solution to the equation

h(z) = R6Q6√ , z > 0, (124)

D6 + πF2(1)
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with h given by (116).
Then there is a unique solution (λ, k∗2) to the system (98)-(99). The coefficient k∗2 is given by

k∗2 =
(

erf−1(P6)
λQ6

)2
, (125)

and λ is the unique positive solution to the following equation

L6(z) = R6, z > 0, (126)

with

L6(z) = z

M2(z)
, R6 = F2(1)

Q6R6
M1

(
erf−1(P6)

)
erf−1(P6) −D6

.

Proof. First, we assume P6 < 1 in order that equation (99) is well defined. Then, from this equation, the 
coefficient k∗2 given by (125) is immediately obtained. If we replace the value of k∗2 in (98), we get the 
equation (126) for the coefficient λ.

From [13], we know that L6 is an increasing function such that L6(0) = 0 and L6(+∞) = 1√
π
. Therefore, 

we can guarantee that there exists a unique solution λ to the equation (126) if the constant R6 verifies the 
following inequality 0 < R6 < 1√

π
. This inequality is equivalent to

h(erf−1(P6)) <
R6Q6

D6 +
√
πF2(1)

<
R6Q6

D6
, (127)

where h is the function defined by (116). As h is an increasing function that satisfies h(0) = 0 and h(+∞) =
+∞, it follows that there exists a unique value w6 > 0 such that:

h(w6) = R6Q6
D6+F2(1)

√
π
, h(z) < R6Q6

D6+F2(1)
√
π
, ∀z < w6

We conclude that inequality (127) is equivalent to erf−1(P6) < w6 (equivalent to inequality (123) for q0). 
Then, under this assumption, we get that there exists a unique pair (λ, k∗2) to the system (98)-(99). �
Theorem 4.7. (Case 7: λ, �) Let us define

R7 =
√

k∗
1ρ1c∗1√

k∗
2ρ2c∗2

m∗, Q7 =
√

k∗
2ρ2c∗1√

k∗
1ρ1c∗2

, D7 = ρ1
√
π

c∗2ρ2(B−u∗) , P7 =
√
k∗
1ρ1c∗1

q0
√
π

(B − u∗)m∗.

Assume that

q0 >
(B − u∗)m∗√k∗1ρ1c∗1

erf(z7)
√
π

, (128)

where z7 is the unique solution to the equation

j(z) = 0, z > 0, (129)

with

j(z) = R7M1(z) −F2(1)M2

(
z
Q7

)
. (130)

Then there is a unique solution (λ, �) to the system (98)-(99) given by
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Table 1
Summary of cases.

Cases Restriction Solution

Case 1: λ, ρ1 q0 >
(
1 + β2

1+p2

) √
k∗

2ρ2c∗
2√

π
(B − u∗) λ =

z1 erf−1(z1)
Q1P1

, ρ1 =
z2
1

P 2
1

where z1 is the unique solution to eq. (102)

Case 2: λ, ρ2 q0 >
√
k∗

1ρ1c∗
1√

π erf(z2)
(B − u∗)m∗ ρ2 =

(
erf−1(P2)

λQ2

)2

where z2 is the unique solution to eq. (104) λ is one positive solution to eq. (107)

Case 3: λ, c∗1 q0 > q∗0 λ = P3
Q3

erf−1(z3)
z3

, c∗1 = z2
3

P 2
3

where q∗0 > 0 is the unique solution to eq. (111) where z3 is the unique solution to eq. (113)

Case 4: λ, c∗2 q0 >
√

k∗
1ρ1c∗

1(B−u∗)m∗

erf(z4)
√

π
c∗2 =

(
λQ4

erf−1(P4)

)2

where z4 is the unique solution to eq. (115) λ is the unique positive solution to eq. (118)

Case 5: λ, k∗
1 q0 >

(
1 + β2

1+p2

)
(B − u∗)

√
k∗

2c
∗
2ρ2√
π

λ = z5 erf−1(z5)
Q5P5

, k∗
1 = z2

5
P 2

5
where z5 is the unique solution to eq. (122)

Case 6: λ, k∗
2 q0 >

√
k∗

1ρ1c∗
1(B−u∗)m∗

erf(w6)
√

π
k∗
2 =

(
erf−1(P6)

λQ6

)2

where w6 is the unique solution to eq. (124) λ is the unique positive solution to eq. (126)

Case 7: λ, � q0 >
(B−u∗)m∗√k∗

1ρ1c∗
1

erf(z7)
√

π
λ = erf−1(P7)

Q7
,

where z7 is the unique solution to eq. (129) � =

[
R7M1(erf−1(P7))−F2(1)M2

(
erf−1(P7)

Q7

)]
Q7

D7 erf−1(P7)

λ = erf−1(P7)
Q7

,

� =
[
R7M1(erf−1(P7)) −F2(1)M2

(
erf−1(P7)

Q7

) ]
Q7

D7 erf−1(P7) .
(131)

Proof. If we assume P7 < 1, the equation (99) leads λ to be given by (131). From (98) it follows that �
is defined by (131) where in order that � > 0 it is necessary that j(erf−1(P7)) > 0 where j is given by 
formula (130). Taking into account that j is a decreasing function, j(0) = +∞ and j(+∞) = −∞, we 
get there exists a unique z7 such that j(z7) = 0, j(z) > 0 for 0 < z < z7 and j(z) < 0 for z > z7. 
Therefore the inequality j(erf−1(P7)) > 0 is equivalent to erf−1(P7) < z7. As a consequence, if we assume 
P7 < min{1, erf(z7)} = erf(z7) we can guarantee that there exists a unique pair (λ, �) solution to the system 
(98)-(99). �

5. Conclusions

Two different two-phase free boundary Stefan problems in an angular domain with temperature-
dependent thermal coefficients were considered. Analytical similarity solutions were obtained imposing a 
Dirichlet or Neumann type condition at the boundary x = rs(t) where 0 < r = 1 − ρ2

ρ1
< 1 and x = s(t) is 

the position of the free boundary.
In addition, some formulas were obtained in the determination of one unknown thermal coefficient among 

{ρ1, ρ2, c∗1, c
∗
2, k

∗
1 , k

∗
2 , �} in the over specified problem that consists in adding a Neumann condition to the 

problem with a Dirichlet one.
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