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 A B S T R A C T

This study presents a novel approach to the melting process in a three-phase Stefan problem, applied to 
a semi-infinite material with a convective boundary condition at the fixed face. By using a similarity-type 
transformation, the problem is simplified and solved explicitly, yielding a unique solution. Additionally, a 
computational example is provided to illustrate the temperature distribution and the evolution of the free 
boundaries in a melting semi-infinite material with an intermediate zone. The principal key contribution lies in 
revealing new equivalences among solutions to three distinct three-phase Stefan problems, each with different 
boundary conditions (Robin, Dirichlet and Neumann). These equivalences are established under specific data 
relationships, providing fresh insights into phase change behavior across varying boundary conditions. This 
research significantly advances the understanding of multi-phase heat transfer problems.
1. Introduction

Stefan problems are a significant area of study because they occur 
in various important engineering and industrial contexts. They are 
crucial for understanding phase transition phenomena, especially in 
scenarios involving heat transfer and processes of solidification or 
melting. The goal of Stefan problems is to describe the liquid and 
solid phases of a material undergoing a phase change and to identify 
the location of the sharp interface that separates these phases, known 
as the free boundaries. Transient heat conduction issues that include 
one or more phase changes are found in a number of practical areas. 
Applications of Stefan-type problems include the solidification of binary 
alloys [1–4], continuous casting of steel [5] and cryopreservation of 
cells [6]. So many applications of phase-change processes can be seen 
in the books [7–14].

In the classical formulation of Stefan’s problem, several assump-
tions are made regarding the physical factors influencing the phase 
change process to simplify the model. One such assumption is that 
the thermal properties of the material are treated as constant positive 
values. However, thermodynamic considerations suggest the necessity 
of addressing Stefan’s problems with variable thermal coefficients. For 
instance, in [15], the authors solve a Stefan problem involving a mov-
ing phase change material, size-dependent thermal conductivity and a 
periodic time-dependent boundary condition, utilizing the finite differ-
ence scheme. The results are compared with the exact solution, showing 
excellent agreement and the dependence of the moving boundary and 
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temperature distribution on various parameters is thoroughly analyzed. 
In [16], a phase change problem in a one-dimensional domain with 
time-dependent speed is studied. A Dirichlet boundary condition is 
applied, with thermal properties assumed to be linear functions of 
temperature. An exact solution is derived for specific parameters, while 
an approximate solution is provided for other cases. The results demon-
strate good accuracy and examine how different parameters influence 
both the temperature profile and the movement of the phase front. 
In [17], a numerical study employing the finite difference method is 
presented to analyze a moving boundary in phase change. The model 
incorporates temperature-dependent thermal coefficients and a mixed 
convective boundary condition. The numerical solution is compared 
with the exact solution to ensure its accuracy. Additionally, the study 
explores the stability and consistency of the solution, as well as the 
impact of various parameters on the temperature distribution and the 
evolution of the interface.

During the solidification or melting process, the material can be 
divided into three distinct regions: a solid region, an intermediate 
zone (called mushy zone in [18,19]) and a liquid region. In the case 
of polymorphous materials such as metallic iron and silica, multiple 
crystalline forms exist in the solid phase, resulting in several free 
boundaries between different phases. For example, metallic iron has 
three main crystalline forms, while silica exists in several distinct forms 
like quartz, tridymite and cristobalite under high pressure. When these 
https://doi.org/10.1016/j.icheatmasstransfer.2025.108966
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polymorphous materials freeze or melt, various phases are separated by 
multiple moving interfaces [18,20].

Under certain boundary conditions, it is possible to find similarity 
type solutions to multiphase Stefan problems. In particular, in [21,22], 
it was considered a 𝑛-phase Stefan problem for a semi-infinite material 
imposing a constant temperature at the fixed face. A similar study was 
carried out in [23] with a Neumann type condition at the fixed face. 
A multiphase implicit Stefan problem was studied in [24] for a one-
dimensional non-Darcy flow in a semi-infinite porous media. However, 
the existence of analytical solutions to phase-change problems is chal-
lenging to ascertain due to the inherent non-linearity of these issues. 
For the analysis of more complex scenarios, numerical methods seem to 
be highly efficient. In [18], a hybrid numerical method is employed that 
combines the Laplace transform technique, control-volume formulation 
and Taylor series approximations. In [19], an approximate analytical 
solution is derived for a non-linear multiphase Stefan problem and the 
accuracy of this approximate method is assessed by comparison with 
the available exact solution.

Heat transfer in three-phase systems presents significant challenges 
that are critical for a variety of applications. For instance, in [25], 
researchers developed an analytical solution for the time-dependent 
heat transfer equation that accounts for phase change. This solution 
enables a new numerical algorithm to analyze temperature and heat 
flux variations in a three-layer building wall under transient ambi-
ent conditions. Additionally, [26] examines a numerical simulation of 
a triplex-tube thermal energy system that combines multiple phase 
change materials with porous metal foam. Another relevant application 
is presented in [27], where an analytical solution for coupled heat and 
mass transfer during the freezing of high-water-content materials is 
developed.

Moreover, a new numerical method for modeling phase change 
problems involving three phases: solid, liquid and gas is presented 
in [28]. It focuses on simulating melting and solidification of phase 
change materials with variable density and thermophysical properties. 
The method accounts for free surface dynamics and density changes 
during the phase transition. It revisits the two-phase Stefan problem, 
which involves a density jump between phases and proposes a way to 
incorporate kinetic energy changes into the Stefan condition.

A specific case of a three-phase system is the three-phase Stefan 
problem that consists of the solidification of an alloy. An alloy un-
dergoes at least two phase changes when it solidifies: one when the 
temperature falls below the liquid temperature and another when it 
falls below the solid temperature. In contrast to the case of a pure metal, 
there are now two free boundaries corresponding to the liquid and solid 
temperatures.

This paper introduces a groundbreaking approach to analyzing the 
melting process in a three-phase Stefan problem, applied to a semi-
infinite material subject to a convective boundary condition at the 
fixed face. Through the application of a similarity-type transformation, 
the complex problem is reduced to a more manageable form, enabling 
the derivation of an explicit solution. The primary contribution of this 
work lies in uncovering novel equivalences between the solutions of 
three distinct three-phase Stefan problems, each governed by different 
boundary conditions: Robin, Dirichlet and Neumann. These equiva-
lences are established under a specific set of relationships between the 
problem data, offering a deeper and more comprehensive understand-
ing of the behavior of phase change processes under varying boundary 
conditions. By providing new insights into how different boundary 
conditions influence multi-phase systems, this research contributes sig-
nificantly to advancing the field of heat transfer and the study of 
phase change phenomena, laying the groundwork for future studies and 
practical applications in materials science and engineering.

The equivalence between Stefan problems with convective, Dirichlet 
and Neumann boundary conditions facilitates the analysis of heat con-
duction by allowing the transformation of one condition into another 
depending on the context. In a problem with convective boundary 
2 
conditions, which describes heat transfer through a moving fluid, it is 
possible to equate it to a Dirichlet problem if the fluid temperature and 
the convection coefficient are known. Similarly, a Dirichlet problem, 
where the temperature is specified at the boundary, can be transformed 
into a Neumann problem, which defines the heat flux, by using the 
relationship between temperature and the rate of heat flux. These 
equivalences allow for more efficient modeling of systems with complex 
boundary conditions. A practical example [29] is the monitoring of soil 
surface temperature, which, although it can be obtained through long-
term observations, is affected by factors such as surface cover, animal 
activities and extreme weather, making it difficult to obtain accurate 
data for calculating the soil temperature field. The surface temperature 
is primarily influenced by radiation and heat convection. To overcome 
these challenges, analytical solutions are applied to solve heat con-
duction problems with combined boundary conditions, transforming, 
for instance, periodic heat flux and convective boundary conditions 
into a simpler form, such as Dirichlet boundary conditions. These 
equivalences simplify the analysis and enhance the understanding of 
the thermal behavior of the soil, improving the accuracy of thermal 
calculations in various practical applications.

The aim of this work is twofold. First, the existence and uniqueness 
of a similarity-type solution to a three-phase melting Stefan problem is 
established, specifically under a Robin type boundary condition at the 
fixed face 𝑥 = 0. Second, the connections between this problem and 
those arising from the imposition of Dirichlet or Neumann boundary 
conditions at the fixed face, are explored.

The organization of this paper is as follows. Section 2 presents 
one-dimensional Stefan problems with different boundary conditions 
related to the melting of a semi-infinite material in the region 𝑥 ≥
0, undergoing three-phase changes. Additionally, the existence and 
uniqueness of a similarity-type solution are proven by imposing a 
Robin-type condition at the fixed face 𝑥 = 0. Furthermore, similarity-
type solutions from the existing literature are retrieved for cases where 
Dirichlet and Neumann boundary conditions are applied at the fixed 
boundary 𝑥 = 0. Computational examples of the posed problems are 
also provided in Section 2. Finally, these solutions are then used in 
Section 3 to establish a relationship among them.

2. Three-phase Stefan problems with different boundary condi-
tions

In this section, the analysis of three Stefan problems involving three 
phases for the melting of a semi-infinite material 𝑥 ≥ 0 with an 
intermediate zone is focused on, with each problem characterized by 
different conditions at the fixed face 𝑥 = 0. The aim is to determine the 
temperature 

𝛷(𝑥, 𝑡) =

⎧

⎪

⎨

⎪

⎩

𝛷3(𝑥, 𝑡) if 0 < 𝑥 < 𝑦2(𝑡), 𝑡 > 0,
𝛷2(𝑥, 𝑡) if 𝑦2(𝑡) < 𝑥 < 𝑦1(𝑡), 𝑡 > 0,
𝛷1(𝑥, 𝑡) if 𝑦1(𝑡) < 𝑥, 𝑡 > 0,

(2.1)

and the free boundaries 𝑥 = 𝑦𝑖(𝑡), 𝑖 = 1, 2, 𝑡 > 0 that separates the three 
regions, that satisfy:
𝜕𝛷3
𝜕𝑡

= 𝛼3
𝜕2𝛷3

𝜕𝑥2
, 0 < 𝑥 < 𝑦2(𝑡), 𝑡 > 0,

(2.2)
𝜕𝛷2
𝜕𝑡

= 𝛼2
𝜕2𝛷2

𝜕𝑥2
, 𝑦2(𝑡) < 𝑥 < 𝑦1(𝑡), 𝑡 > 0,

(2.3)
𝜕𝛷1
𝜕𝑡

= 𝛼1
𝜕2𝛷1

𝜕𝑥2
, 𝑥 > 𝑦1(𝑡), 𝑡 > 0,

(2.4)
𝛷3(𝑦2(𝑡), 𝑡) = 𝛷2(𝑦2(𝑡), 𝑡) = 𝐵, 𝑡 > 0,
(2.5)
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𝛷2(𝑦1(𝑡), 𝑡) = 𝛷1(𝑦1(𝑡), 𝑡) = 𝐶, 𝑡 > 0,
(2.6)

𝛷1(𝑥, 0) = 𝐷, 𝑥 > 0,
(2.7)

𝛷1(+∞, 𝑡) = 𝐷, 𝑡 > 0,
(2.8)

𝑘2
𝜕𝛷2
𝜕𝑥

(𝑦2(𝑡), 𝑡) − 𝑘3
𝜕𝛷3
𝜕𝑥

(𝑦2(𝑡), 𝑡) = 𝛿2𝑦2(𝑡), 𝑡 > 0,

(2.9)

𝑘1
𝜕𝛷1
𝜕𝑥

(𝑦1(𝑡), 𝑡) − 𝑘2
𝜕𝛷2
𝜕𝑥

(𝑦1(𝑡), 𝑡) = 𝛿1𝑦1(𝑡), 𝑡 > 0,

(2.10)

𝑦1(0) = 𝑦2(0) = 0, (2.11)

where the positive constants 𝛼𝑖 = 𝑘𝑖
𝜌𝑐𝑖
, 𝑘𝑖 and 𝑐𝑖 represent the thermal 

diffusivity, thermal conductivity and specific heat, respectively, for 
phase 𝑖 = 1, 2, 3, with 𝜌 being the common mass density. It is assumed 
throughout the paper that 
𝛼2 ≥ 𝛼3. (2.12)

The latent heat per unit volume used for passing from phase 𝑖 to 
𝑖 + 1 for 𝑖 = 1, 2 is 𝛿𝑖 = 𝜌𝓁𝑖 where 𝓁𝑖 > 0 represents the latent heat 
per unit mass. The phase change temperatures 𝐵 and 𝐶, and the initial 
temperature 𝐷 verify the condition 
𝐵 > 𝐶 > 𝐷. (2.13)

In the following subsections, different boundary conditions will be 
applied at the fixed face 𝑥 = 0. The analysis begins by considering a 
convective boundary condition given by 

𝑘3
𝜕𝛷3
𝜕𝑥

(0, 𝑡) =
ℎ0
√

𝑡

(

𝛷3(0, 𝑡) − 𝐴∞
)

, 𝑡 > 0, (2.14)

where ℎ0 > 0 is the coefficient that characterizes the heat transfer 
at the fixed face, and 𝐴∞ > 𝐵 is the bulk temperature. In this 
case, the existence and uniqueness of a similarity-type solution are 
demonstrated.

Next, the similarity-type solution obtained by imposing a Dirichlet 
boundary condition at the fixed face 𝑥 = 0, as described in [22], is 
presented, considering only three phases. This condition is given by 
𝛷3(0, 𝑡) = 𝐴, 𝑡 > 0, (2.15)

with 𝐴 > 𝐵.
Finally, the similarity-type solution for a Neumann boundary con-

dition from [23] is recovered for the three-phase Stefan problem with 
a heat flux imposed at the fixed face 𝑥 = 0 of the form: 

𝑘3
𝜕𝛷3
𝜕𝑥

(0, 𝑡) = −
𝑞0
√

𝑡
, 𝑡 > 0, (2.16)

where 𝑞0 > 0.
In Fig.  1, the schematic representation of the three-phase Stefan 

problems are provided. This figure illustrates the conditions to be 
solved, clearly depicting the initial setup and the distribution of the 
phases at time zero.

2.1. Existence and uniqueness of similarity-type solution by imposing a 
convective condition at the fixed face

A similarity-type solution is proposed to the problem (2.2)–(2.11) 
and (2.14), represented in the following manner:

𝑣3(𝑥, 𝑡) = 𝐴3 + 𝐵3 erf
(

𝑥
2
√

𝛼3𝑡

)

, 0 < 𝑥 < 𝑤2(𝑡), 𝑡 > 0, (2.17)

𝑣2(𝑥, 𝑡) = 𝐴2 + 𝐵2 erf
(

𝑥
√

)

, 𝑤2(𝑡) < 𝑥 < 𝑤1(𝑡), 𝑡 > 0, (2.18)

2 𝛼2𝑡

3 
Fig. 1. Three-phase Stefan problems.

𝑣1(𝑥, 𝑡) = 𝐴1 + 𝐵1 erf
(

𝑥
2
√

𝛼1𝑡

)

, 𝑥 > 𝑤1(𝑡), 𝑡 > 0, (2.19)

𝑤2(𝑡) = 2𝜉2
√

𝛼1𝑡, 𝑡 > 0, (2.20)

𝑤1(𝑡) = 2𝜉1
√

𝛼1𝑡, 𝑡 > 0, (2.21)

where 𝐴𝑖 and 𝐵𝑖 are unknown constants to be determined for 𝑖 = 1, 2, 3, 
and 𝜉1 and 𝜉2 are positive dimensionless parameters that characterizes 
the free boundaries and must also be determined.

Condition (2.5) yields: 

𝐴3 = 𝐵 − 𝐵3 erf
(

𝜉2

√

𝛼1
𝛼3

)

, (2.22)

and, taking into account (2.14) and (2.22), the expression for 𝐵3 is 
obtained as: 

𝐵3 =
𝐴∞−𝐵

𝑘3
ℎ0

√

𝜋𝛼3
+erf

(

𝜉2
√

𝛼1
𝛼3

) . (2.23)

Substituting (2.23) into (2.22) results in the expression for 𝐴3: 

𝐴3 =
𝐵𝑘3

ℎ0
√

𝜋𝛼3
+𝐴∞ erf

(

𝜉2
√

𝛼1
𝛼3

)

𝑘3
ℎ0

√

𝜋𝛼3
+erf

(

𝜉2
√

𝛼1
𝛼3

) . (2.24)

Likewise, using (2.5) and (2.6), an expression for 𝐵2 is derived: 

𝐵2 = − 𝐵−𝐶

erf
(

𝜉1
√

𝛼1
𝛼2

)

−erf
(

𝜉2
√

𝛼1
𝛼2

) , (2.25)

and substituting this into (2.6) gives the value of 𝐴2: 

𝐴2 =
−𝐶 erf

(

𝜉2
√

𝛼1
𝛼2

)

+𝐵 erf
(

𝜉1
√

𝛼1
𝛼2

)

erf
(

𝜉1
√

𝛼1
𝛼2

)

−erf
(

𝜉2
√

𝛼1
𝛼2

) . (2.26)

Condition (2.6) provides the relation for 𝐴1: 

𝐴1 = 𝐶 − 𝐵1 erf
(

𝜉1
)

. (2.27)

With (2.7) and using (2.27), the expression for 𝐵1 is obtained as: 

𝐵1 = − 𝐶−𝐷
erfc (𝜉1)

, (2.28)

and 𝐴1 is consequently expressed as: 

𝐴1 =
𝐶−𝐷 erf(𝜉1)
erfc (𝜉1)

. (2.29)
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Therefore, based on the previous calculations, the expressions for 
the temperatures in the three phases become:

𝑣3(𝑥, 𝑡) =
𝐵𝑘3

ℎ0
√

𝜋𝛼3
+𝐴∞ erf

(

𝜉2
√ 𝛼1

𝛼3

)

−(𝐴∞−𝐵) erf
(

𝑥
2
√

𝛼3 𝑡

)

𝑘3
ℎ0

√

𝜋𝛼3
+erf

(

𝜉2
√ 𝛼1

𝛼3

) , 0 < 𝑥 < 𝑤2(𝑡), 𝑡 > 0,

(2.30)

𝑣2(𝑥, 𝑡) =
−𝐶 erf

(

𝜉2
√ 𝛼1

𝛼2

)

+𝐵 erf
(

𝜉1
√ 𝛼1

𝛼2

)

−(𝐵−𝐶) erf
(

𝑥
2
√

𝛼2 𝑡

)

erf
(

𝜉1
√ 𝛼1

𝛼2

)

−erf
(

𝜉2
√ 𝛼1

𝛼2

) , 𝑤2(𝑡) < 𝑥 < 𝑤1(𝑡), 𝑡 > 0,

(2.31)

𝑣1(𝑥, 𝑡) =
𝐶
(

1−erf
(

𝑥
2
√

𝛼1 𝑡

))

+𝐷
(

erf
(

𝑥
2
√

𝛼1 𝑡

)

−erf(𝜉1)
)

erfc(𝜉1)
, 𝑥 > 𝑤1(𝑡), 𝑡 > 0,

(2.32)

where erf and erfc denote the error function and the complementary 
error function, respectively, defined by

erf(𝑧) = 2
√

𝜋 ∫

𝑧

0
exp(−𝜂2) d𝜂, erfc(𝑧) = 1 − erf(𝑧), 𝑧 ≥ 0.

The conditions (2.9) and (2.10) are satisfied if 𝜉1 and 𝜉2 fulfill the 
following equalities:

𝜉2 =
𝑘3

𝛿2
√

𝜋𝛼1𝛼3

(𝐴∞−𝐵) exp
(

−𝜉22
𝛼1
𝛼3

)

𝑘3
ℎ0

√

𝜋𝛼3
+erf

(

𝜉2
√

𝛼1
𝛼3

) − 𝑘2
𝛿2
√

𝜋𝛼1𝛼2

(𝐵−𝐶) exp
(

−𝜉22
𝛼1
𝛼2

)

erf
(

𝜉1
√

𝛼1
𝛼2

)

−erf
(

𝜉2
√

𝛼1
𝛼2

) ,

(2.33)

𝜉1 = − 𝑘1
𝛿1𝛼1

√

𝜋

(𝐶−𝐷) exp
(

−𝜉21
)

erfc
(

𝜉1
) − 𝑘2

𝛿1
√

𝜋𝛼1𝛼2

(𝐵−𝐶) exp
(

−𝜉21
𝛼1
𝛼2

)

erf
(

𝜉1
√

𝛼1
𝛼2

)

−erf
(

𝜉2
√

𝛼1
𝛼2

) . (2.34)

Expression (2.34) can be rewritten as follows 

erf
(

𝜉2
√

𝛼1
𝛼2

)

= 𝐻(𝜉1), (2.35)

where the real function 𝐻 is defined by 

𝐻(𝑧) = erf
(

𝑧
√

𝛼1
𝛼2

)

− Ste2
√

𝜋
𝓁2
𝓁1

√

𝑘2𝑐1
𝑘1𝑐2

exp
(

−𝑧2 𝛼1
𝛼2

)

𝜑(𝑧) , 𝑧 ≥ 0, (2.36)

𝜑(𝑧) = 𝑧 + Ste1
√

𝜋
exp

(

−𝑧2
)

erfc(𝑧) , 𝑧 ≥ 0, (2.37)

and the Stefan numbers are defined by: 
Ste1 =

𝑐1(𝐶−𝐷)
𝓁1

, Ste2 =
𝑐2(𝐵−𝐶)

𝓁2
. (2.38)

Taking into account that 𝐻 is an increasing function that satisfies

𝐻(0) = − Ste2
Ste1

𝓁2
𝓁1

√

𝑘2𝑐1
𝑘1𝑐2

< 0, 𝐻(+∞) = 1,

then, there exists a unique 𝑧0 > 0 such that 
𝑧0 = 𝐻−1(0). (2.39)

Therefore 
𝜉2 =

√

𝛼1
𝛼2

erf−1
(

𝐻(𝜉1)
)

, 𝜉1 > 𝑧0. (2.40)

Notice that

erf
(

𝜉2
√

𝛼1
𝛼2

)

= 𝐻(𝜉1) = erf
(

𝜉1
√

𝛼1
𝛼2

)

− Ste2
√

𝜋
𝓁2
𝓁1

√

𝑘2𝑐1
𝑘1𝑐2

exp
(

−𝜉21
𝛼1
𝛼2

)

𝜑(𝜉1)

< erf
(

𝜉1
√

𝛼1
𝛼2

)

,

then 𝜉2 < 𝜉1.
Isolating 

(

erf
(

𝜉1
√

𝛼1
𝛼2

)

− erf
(

𝜉2
√

𝛼1
𝛼2

))−1
 from (2.33) and (2.34) 

leads to the conclusion that 𝜉1 must satisfy the following equation: 
𝑄(𝑧) = 𝑈 (𝑧), 𝑧 > 𝑧0, (2.41)

where 

𝑄(𝑧) =
𝓁1
𝓁2

𝜑(𝑧) exp
(

𝑧2 𝛼1
𝛼2

)

, 𝑧 ≥ 0, (2.42)

𝑈 (𝑧) = 𝑇
(√

𝛼2 erf−1(𝐻(𝑧))
)

, 𝑧 > 𝑧 . (2.43)
𝛼1 0

4 
and 

𝑇 (𝑧) = Ste2
√

𝜋𝑐2

𝐴∞−𝐵
𝐵−𝐶

√

𝑘3𝑐1𝑐3
𝑘1

exp
(

−𝑧2𝛼1
(

1
𝛼3

− 1
𝛼2

))

𝑘3
ℎ0

√

𝜋𝛼3
+erf

(

𝑧
√

𝛼1
𝛼3

) − 𝑧 exp
(

𝑧2 𝛼1
𝛼2

)

, 𝑧 > 𝑧0.

(2.44)

Considering (2.12), it follows that 𝑈 is a strictly decreasing function. 
Given that 𝑈 (𝑧0) is a positive constant, 𝑈 (+∞) = −∞ and 𝑄 is a strictly 
increasing function such that 𝑄(0) = 𝓁1

𝓁2

Ste1
√

𝜋
 and 𝑄(+∞) = +∞, it can be 

inferred that the solution 𝜉1 to Eq.  (2.41) is unique in (𝑧0,+∞) if and 
only if 𝑈 (𝑧0) > 𝑄(𝑧0). Since 𝐻(𝑧0) = 0, this inequality is equivalent to 
the following condition on the parameters of the problem: 

(𝐴∞ − 𝐵)ℎ0
√

𝑐1𝑐3𝛼3
𝑘1𝑘3

> 𝓁1𝜑(𝑧0) exp
(

𝑧20
𝛼1
𝛼2

)

. (2.45)

Moreover, from (2.37), the previous inequality can be expressed in 
an equivalent way 

(𝐴∞ − 𝐵)ℎ0
√

𝑐3𝛼3
𝑘3

>
√

𝑘2𝑐2
𝜋

𝐵−𝐶

erf
(

𝑧0
√

𝛼1
𝛼2

) , (2.46)

or else 

ℎ0 >
𝐵−𝐶
𝐴∞−𝐵

√

𝑘2𝑘3𝑐2
𝜋𝑐3𝛼3

1

erf
(

𝑧0

√

𝛼1
𝛼2

) . (2.47)

The previous analysis leads to the following theorem 

Theorem 2.1.  Assuming ℎ0 > ℎ2 with 

ℎ2 =
𝐵−𝐶
𝐴∞−𝐵

√

𝑘2𝑘3𝑐2
𝜋𝑐3𝛼3

1

erf
(

𝑧0

√

𝛼1
𝛼2

) , (2.48)

there exists a unique similarity-type solution to the problem (2.2)–(2.11) 
and (2.14). The temperature 𝑣𝑖 in each phase, for 𝑖 = 1, 2, 3, is described 
by (2.30), (2.31) and (2.32), respectively. The free boundaries 𝑤2 and 
𝑤1, given by (2.20) and (2.21), are characterized by the dimensionless 
parameters 𝜉1 and 𝜉2. The parameter 𝜉2 is defined by (2.40), while 𝜉1 is 
the unique solution to Eq.  (2.41).

Remark 2.2.  In [30], a two-phase Stefan problem with a convective 
condition at the fixed face was studied. It was shown that for a unique 
similarity-type solution to exist, the coefficient ℎ0 must satisfy the 
following inequality:

ℎ0 > ℎ1 ∶=
𝑘1

√

𝜋𝛼1
⋅
𝐶 −𝐷
𝐴∞ − 𝐶

.

In the case of three phases, it has been proven that ℎ0 > ℎ2, and it 
is easy to see that the following relation holds:
ℎ0 > ℎ2 > ℎ1.

Moreover, it can be stated that:
(i) If 0 < ℎ0 ≤ ℎ1 then the problem defined by (2.2)–(2.11) and 

(2.14) becomes a classical heat transfer problem for the initial 
solid phase.

(ii) If ℎ1 < ℎ0 ≤ ℎ2 then the problem defined by (2.2)–(2.11) and 
(2.14) becomes a two-phase Stefan problem.

(iii) If ℎ0 > ℎ2 then the problem defined by (2.2)–(2.11) and (2.14) 
is a three-phase Stefan problem, whose unique similarity-type 
solution is given by Theorem  2.1.

Remark 2.3.  This Stefan problem could represent the evaporation of 
a solid, where the phase change occurs at the interface between the 
solid and its surrounding environment. The model would capture the 
dynamics of the solid–liquid or solid-vapor interfaces, depending on the 
specific conditions and describe the evolution of the phase boundary 
over time. The Stefan problem framework is particularly well-suited to 
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Fig. 2. Temperature distribution of the three-phase Stefan problem with a Robin type condition.
Table 1
Thermo-physical coefficients.
 Thermal conductivity 𝑘𝑖 𝑖 = 1, 2, 3 2W m−1K−1  
 Specific heat 𝑐𝑖 𝑖 = 1, 2, 3 2.5 × 106J kg−1K−1 
 Latent heat 𝓁𝑖 𝑖 = 1, 2 100 × 106 J kg−1  
 Density 𝜌 1 kg m−3  
 Phase change temperature (phase 3 - 
phase 2)

𝐵 273.5 K  

 Phase change temperature (phase 2 - 
phase 1)

𝐶 272.3 K  

 Initial temperature 𝐷 263 K  

Table 2
Deduced parameters from Table  1.
 Thermal diffusivity 𝛼𝑖 𝑖 = 1, 2, 3 8 × 10−7 m2 s−1  
 Latent heat per unit volume 𝛿𝑖 𝑖 = 1, 2 1 × 108 kg m−1 s−2 
 Stefan number 1 Ste1 0.2325  
 Stefan number 2 Ste2 0.03  
 – 𝑧0 0.0704469  

this type of process, as it accounts for the heat transfer, mass transfer 
and the latent heat involved in the phase transition from solid to 
vapor, providing a mathematical basis for understanding the rate and 
progression of the evaporation process. In this case, the Stefan number 
Ste2 given by (2.38), would represent the Jacob number Ja, i.e 

Ja = Ste2 =
𝑐2(𝐵 − 𝐶)

𝓁2
. (2.49)

Example 1.  A computational example to show the applicability of 
the three-phase Stefan problem imposing a convective condition at the 
fixed face analyzed in Theorem  2.1 is presented. This example involves 
a half-space melting with an intermediate region and assuming constant 
thermal properties for the material, as taken from [18,19], and shown 
in Table  1.

Considering the data provided in Table  1 and the definitions of 
thermal diffusivity, latent heat per unit volume, Stefan numbers and 
𝑧0 as given by (2.39), the parameters listed in Table  2 are derived.

A solid is initially at a uniform temperature 263 K which is lower 
than the phase-change temperature (272.3 K < 𝑣(𝑥, 𝑡) < 273.5 K). At time 
𝑡 = 0, the boundary surface temperature at 𝑥 = 0 is upper to a 
temperature 273.5 K and maintained at that temperature for all times 
5 
𝑡 > 0. As a result there are three phases, i.e., solid, intermediate (mushy) 
and liquid phases, existing during the melting process. In the present 
example, the liquid, mushy and solid phases are respectively designated 
by phase 1, 2 and 3.

Given the bulk temperature 𝐴∞ = 274 K and the data provided in 
Tables  1 and 2, it follows that ℎ2 = 38152.451 kg K−1s−5∕2. Considering 
the assumptions of Theorem  2.1, ℎ0 = 38153.451 kg K−1s−5∕2 is selected. 
Fig.  2 illustrates the temperature distribution 𝑣 = 𝑣(𝑥, 𝑡) described by 
(2.30)–(2.32) while Fig.  3 presents a color map of the temperature.

The free boundaries, 𝑥 = 𝑤2(𝑡) and 𝑥 = 𝑤1(𝑡), as defined by 
Eqs. (2.20) and (2.21), are characterized by the parameters 𝜉2 = 6×10−7

and 𝜉1 = 0.0704473, respectively. Due to the very small coefficient 𝜉2
associated with the free boundary 𝑥 = 𝑤2(𝑡), the initial phase change 
occurs almost instantaneously. To better illustrate this behavior, Table 
3 shows the position and the velocity of the free boundaries, 𝑥 = 𝑤1(𝑡)
and 𝑥 = 𝑤2(𝑡), at several time instants 𝑡 between 0 and 1.5 s.

2.2. Similarity-type solutions with a temperature and a flux condition at the 
fixed face

The aim of this section is to connect the previously studied three-
phase Stefan problem with the problems that involve Dirichlet and 
Neumann boundary conditions. These problems have been previously 
studied in the literature for the more general case of 𝑛 phases. Below, 
existence and uniqueness results for 𝑛 = 3 are presented.

From [22], the existence and uniqueness of a similarity-type solu-
tion to the three-phase Stefan problem with a Dirichlet-type condition 
at the fixed face 𝑥 = 0 can be ensure, as shown in the following 
theorem.

Theorem 2.4.  Under the assumption 

𝐴 > 𝐵, (2.50)

the problem defined by (2.2)–(2.11) and (2.15) has a unique similarity-type 
solution given by

𝑢3(𝑥, 𝑡) = 𝐴
erf

(

𝜇2
√ 𝛼1

𝛼3

)

−erf
(

𝑥
2
√

𝛼3 𝑡

)

erf
(

𝜇2
√ 𝛼1

𝛼3

) + 𝐵
erf

(

𝑥
2
√

𝛼3 𝑡

)

erf
(

𝜇2
√ 𝛼1

𝛼3

) , 0 < 𝑥 < 𝑟2(𝑡), 𝑡 > 0,
(2.51)
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Fig. 3. Color map of the temperature of the three-phase Stefan problem with a Robin type condition.
Table 3
Position and velocity of the interfaces in the three-phase Stefan problem with a Robin type condition.
 Time 𝑡 Position 𝑥 = 𝑤1(𝑡) Velocity 𝑤̇1(𝑡) Position 𝑥 = 𝑤2(𝑡) Velocity 𝑤̇2(𝑡)  
 0.0 s 0 m – 0 m –  
 0.1 s 3.99 × 10−5 m 1.993 × 10−4 ms−1 3.462 × 10−10 m 1.731 × 10−9 ms−1  
 0.3 s 6.9 × 10−5 m 1.15 × 10−4 ms−1 5.996 × 10−10 m 9.993 × 10−10 ms−1 
 0.5 s 8.91 × 10−5 m 8.91 × 10−5 ms−1 7.74 × 10−10 m 7.74 × 10−10 ms−1  
 0.7 s 1.054 × 10−4 m 7.53 × 10−5 ms−1 9.159 × 10−10 m 6.542 × 10−10 ms−1 
 0.9 s 1.196 × 10−4 m 6.64 × 10−5 ms−1 1.038 × 10−9 m 5.769 × 10−10 ms−1 
 1.1 s 1.322 × 10−4 m 6.01 × 10−5 ms−1 1.148 × 10−9 m 5.219 × 10−10 ms−1 
 1.3 s 1.437 × 10−4 m 5.53 × 10−5 ms−1 1.248 × 10−9 m 4.8 × 10−10 ms−1  
 1.5 s 1.543 × 10−4 m 5.14 × 10−5 ms−1 1.341 × 10−9 m 4.469 × 10−10 ms−1 
Fig. 4. Temperature distribution of the three-phase Stefan problem with a Dirichlet type condition.
𝑢2(𝑥, 𝑡) =
(𝐶−𝐵) erf

(

𝑥
2
√

𝛼2 𝑡

)

−𝐶 erf
(

𝜇2
√ 𝛼1

𝛼2

)

+𝐵 erf
(

𝜇1
√ 𝛼1

𝛼2

)

erf
(

𝜇1
√ 𝛼1

𝛼2

)

−erf
(

𝜇2
√ 𝛼1

𝛼2

) , 𝑟2(𝑡) < 𝑥 < 𝑟1(𝑡), 𝑡 > 0,

(2.52)
6 
𝑢1(𝑥, 𝑡) = 𝐷 + (𝐶 −𝐷)
erfc

(

𝑥
2
√

𝛼1 𝑡

)

erfc(𝜇1)
, 𝑥 > 𝑟1(𝑡), 𝑡 > 0,

(2.53)
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Fig. 5. Free boundaries of the three-phase Stefan problem with a Dirichlet type condition.
Fig. 6. Velocities of the free boundaries of the three-phase Stefan problem with a Dirichlet type condition.
𝑟2(𝑡) = 2𝜇2
√

𝛼1𝑡, 𝑡 > 0,

(2.54)
𝑟1(𝑡) = 2𝜇1

√

𝛼1𝑡, 𝑡 > 0,

(2.55)
where 
𝜇2 =

√

𝛼2
𝛼1

erf−1
(

𝐻(𝜇1)
)

, (2.56)

and 𝜇1 is the unique solution to 
𝑄(𝑧) = 𝑉

(√

𝛼2
𝛼1

erf−1 (𝐻(𝑧))
)

, 𝑧 > 𝑧0, (2.57)

where 𝑧0 = 𝐻−1(0) with 𝐻 defined by (2.36), 𝑄 is given by (2.42) and 

𝑉 (𝑧) = 𝐴−𝐵
𝓁2

√

𝑐1𝑐3𝑘3
𝜋𝑘1

exp
(

−𝑧2
(

𝛼1
𝛼3

−
𝛼1
𝛼2

))

erf
(

𝑧
√

𝛼1
𝛼3

) − 𝑧 exp
(

𝑧2 𝛼1
𝛼2

)

, 𝑧 > 0. (2.58)

Example 2.  This computational example involves a half-space melting 
three-phase Stefan problem, where a temperature condition is applied 
at the fixed face. Based on the assumptions outlined in Theorem  2.4 and 
7 
the data provided in Tables  1 and 2, a Dirichlet boundary condition of 
𝐴 = 275 K is imposed at the fixed face located at 𝑥 = 0.

Fig.  4 illustrates the temperature distribution 𝑢 = 𝑢(𝑥, 𝑡) described 
by (2.51)–(2.53) while Fig.  5 shows the free boundaries 𝑥 = 𝑟2(𝑡)
and 𝑥 = 𝑟1(𝑡), as given by (2.54) and (2.55), that are characterized 
by the parameters 𝜇2 = 0.0578268 and 𝜇1 = 0.1145284, respectively. 
Additionally, Fig.  6 shows the velocity of the interfaces.

Based on [23], a similarity-type solution to the three-phase Stefan 
problem with a Neumann boundary condition at the fixed face 𝑥 = 0
can be represented as:

Theorem 2.5.  If the following inequality holds 

𝑞0 > 𝑞2 ∶=
𝑘2(𝐵−𝐶)

√

𝛼 𝜋 erf
(

𝑧
√

𝛼1
) , (2.59)
2 0 𝛼2
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where 𝑧0 is defined by (2.39), then the problem (2.2)–(2.11) and (2.16) 
has a unique similarity-type solution given by

𝜃3(𝑥, 𝑡) = 𝐵 +
𝑞0
√

𝜋𝛼3
𝑘3

(

erf
(

𝜆2
√

𝛼1
𝛼3

)

− erf
(

𝑥
2
√

𝛼3 𝑡

))

, 0 < 𝑥 < 𝑠2(𝑡), 𝑡 > 0,

(2.60)

𝜃2(𝑥, 𝑡) = 𝐶 + (𝐵 − 𝐶)
erf

(

𝜆1
√ 𝛼1

𝛼2

)

−erf
(

𝑥
2
√

𝛼2 𝑡

)

erf
(

𝜆1
√ 𝛼1

𝛼2

)

−erf
(

𝜆2
√ 𝛼1

𝛼2

) , 𝑠2(𝑡) < 𝑥 < 𝑠1(𝑡), 𝑡 > 0,

(2.61)

𝜃1(𝑥, 𝑡) = 𝐷 + (𝐶 −𝐷)
erfc

(

𝑥
2
√

𝛼1 𝑡

)

erfc(𝜆1)
, 𝑥 > 𝑠1(𝑡), 𝑡 > 0.

(2.62)
𝑠2(𝑡) = 2𝜆2

√

𝛼1𝑡, 𝑡 > 0,

(2.63)
𝑠1(𝑡) = 2𝜆1

√

𝛼1𝑡, 𝑡 > 0,

(2.64)

where 

𝜆2 =
√

𝛼2
𝛼1

erf−1
(

𝐻(𝜆1)
)

, (2.65)

and 𝜆1 is the unique solution to 

𝑄(𝑧) = 𝑃
(√

𝛼2
𝛼1

erf−1 (𝐻(𝑧))
)

, 𝑧 > 𝑧0, (2.66)

with 𝑄 given by (2.42) and 

𝑃 (𝑧) = exp
(

𝑧2 𝛼1
𝛼2

) [

−𝑧 + 𝑞0
𝓁2

√

𝑐1
𝜌𝑘1

exp
(

−𝑧2 𝛼1
𝛼3

)]

, 𝑧 ≥ 0. (2.67)

Remark 2.6.  In [31], a two-phase Stefan problem with a Neumann 
condition at the fixed face was studied. It was proved that for a unique 
similarity-type solution to exist, 𝑞0 must satisfy the following inequality 
𝑞0 > 𝑞1 ∶=

𝑘1(𝐶−𝐷)
√

𝜋𝛼1
. In the case of three phases, it has been proven that 

𝑞0 > 𝑞2 and it is easy to see that the following relation is satisfied:

𝑞0 > 𝑞2 > 𝑞1.

Furthermore, it can be asserted that:
1. If 0 < 𝑞0 ≤ 𝑞1 then the problem defined by (2.2)–(2.11) and 
(2.16) reduces to a classical heat transfer problem for the initial 
solid phase.

2. If 𝑞1 < 𝑞0 ≤ 𝑞2 then the problem defined by (2.2)–(2.11) and 
(2.16) becomes a two-phase Stefan problem.

3. If 𝑞0 > 𝑞2 then the problem defined by (2.2)–(2.11) and (2.16) 
is a three-phase Stefan problem whose unique similarity-type 
solution is given in Theorem  2.5.

Example 3.  The problem involves a half-space melting three-phase 
Stefan problem, where a flux condition is applied at the fixed face 
𝑥 = 0. This computational example uses the data from Tables  1
and 2 and, based on Theorem  2.5, the value of 𝑞2 is computed as 
19076.225 kgm2 K s−7∕2. Following the hypothesis in Theorem  2.5, it 
is assumed that 𝑞0 = 19078 kgm2 K s−7∕2. Fig.  7 shows the temperature 
distribution 𝜃 = 𝜃(𝑥, 𝑡) as described by (2.60)–(2.62).

The free boundaries, 𝑥 = 𝑠2(𝑡) and 𝑥 = 𝑠1(𝑡), defined by Eqs. (2.63) 
and (2.64), are characterized by the parameters 𝜆2 = 1.07 × 10−5

and 𝜆1 = 0.0704546, respectively. As in Example  1, due to the very 
small coefficient 𝜆2 associated with the free boundary 𝑥 = 𝑠2(𝑡), the 
initial phase change occurs nearly instantaneously. To better illustrate 
this behavior, Table  4 presents the positions and velocities of the free 
boundaries, 𝑥 = 𝑠1(𝑡) and 𝑥 = 𝑠2(𝑡), at various time instants 𝑡 between 
0 and 1 s.
8 
3. Relationship among problems

From this point forward, the problem governed by (2.2)–(2.11) and 
(2.14) is denoted as (P1). If the Robin boundary condition (2.14) is 
replaced by a temperature boundary condition, the problem defined 
by (2.2)–(2.11) and (2.15) arises, denoted as (P2). Similarly, problem
(P3) is defined by (2.2)–(2.11) and (2.16), which results from replacing 
condition (2.14) with a Neumann boundary condition.

Having established the three problems, the equivalence among them 
will now be demonstrated. Equivalence refers to the condition in which, 
if the data of both problems satisfy a specific relationship, they will 
yield the same solution. This will be shown through a detailed analysis 
of the boundary conditions and their implications for the solutions of 
the respective problems. The results presented in this section are theo-
retical and applicable to all phase-change materials, with the possibility 
of experimental verification.

3.1. Equivalence between problems (P1)  and (P2)

Linking a Stefan problem characterized by a temperature boundary 
condition to the one with a convective boundary condition is essential 
for a deeper comprehension of heat transfer processes. Exploring how 
these conditions interact offers a broader perspective on the thermal 
dynamics of the system.

In the subsequent theorem, the necessary relationships between the 
parameters of both problems are defined to guarantee their equiva-
lence.

Theorem 3.1. 
(a) Let ℎ0 and 𝐴∞ with ℎ0 > ℎ2 be the given constants of the convective 

condition in the problem (P1) where ℎ2 is defined by (2.48). If the 
following inequality holds: 

𝐵𝑘3
ℎ0

√

𝜋𝛼3
+𝐴∞ erf

(

𝜉2
√

𝛼1
𝛼3

)

𝑘3
ℎ0

√

𝜋𝛼3
+erf

(

𝜉2
√

𝛼1
𝛼3

) > 𝐵, (3.1)

where 𝜉2 is given by (2.40), then the solution to problem (P2) with 

𝐴 =
𝐵𝑘3

ℎ0
√

𝜋𝛼3
+𝐴∞ erf

(

𝜉2
√

𝛼1
𝛼3

)

𝑘3
ℎ0

√

𝜋𝛼3
+erf

(

𝜉2
√

𝛼1
𝛼3

) , (3.2)

coincides with the solution to problem (P1).
(b) Let 𝐴 > 𝐵 be the data of the temperature boundary condition of the 

problem (P2). If the following inequality holds: 

𝐴−𝐵

(𝐴∞−𝐴) erf
(

𝜇2
√

𝛼1
𝛼3

) > 𝐵−𝐶
𝐴∞−𝐵

√

𝑘2𝑐2
𝑘3𝑐3

1

erf
(

𝑧0
√

𝛼1
𝛼2

) , (3.3)

where 𝜇2 is given by (2.56) and 𝐴∞ > 𝐴, then the solution to 
problem (P1) with 

ℎ0 =
𝑘3

√

𝛼3𝜋
𝐴−𝐵
𝐴∞−𝐴

1

erf
(

𝜇2
√

𝛼1
𝛼3

) , (3.4)

coincides with the solution to problem (P2).

Proof. 
(a) Based on the solution to the problem (P1), which involves the 

temperatures 𝑣3, 𝑣2 and 𝑣1 and the free boundaries 𝑤2 and 
𝑤1 established by Theorem  2.1, it is possible to determine the 
temperature at 𝑥 = 0: 

𝑣3(0, 𝑡) =
𝐵𝑘3

ℎ0
√

𝜋𝛼3
+𝐴∞ erf

(

𝜉2
√

𝛼1
𝛼3

)

𝑘3
√ +erf

(

𝜉
√

𝛼1
) , (3.5)
ℎ0 𝜋𝛼3
2 𝛼3
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Fig. 7. Temperature distribution of the three-phase Stefan problem with a Neumann type condition.
Table 4
Position and velocity of the interfaces in the three-phase Stefan problem with a Neumann type condition.
 Time 𝑡 Position 𝑥 = 𝑠1(𝑡) Velocity 𝑠̇1(𝑡) Position 𝑥 = 𝑠2(𝑡) Velocity 𝑠̇2(𝑡)  
 0.0 s 0 m – 0 m –  
 0.2 s 5.64 × 10−5 m 1.409 × 10−4 ms−1 8.547 × 10−9 m 2.137 × 10−8 ms−1 
 0.4 s 7.97 × 10−5 m 9.96 × 10−5 ms−1 1.209 × 10−8 m 1.511 × 10−8 ms−1 
 0.6 s 9.76 × 10−5 m 8.14 × 10−5 ms−1 1.48 × 10−8 m 1.234 × 10−8 ms−1 
 0.8 s 1.127 × 10−4 m 7.05 × 10−5 ms−1 1.709 × 10−8 m 1.068 × 10−8 ms−1 
 1.0 s 1.260 × 10−4 m 6.3 × 10−5 ms−1 1.911 × 10−8 m 9.556 × 10−9 ms−1 
then 

𝑣3(0, 𝑡) − 𝐵 =

(

𝐴∞−𝐵
)

erf
(

𝜉2
√

𝛼1
𝛼3

)

𝑘3
ℎ0

√

𝜋𝛼3
+erf

(

𝜉2
√

𝛼1
𝛼3

) > 0, (3.6)

Taking into account that 𝑣3(0, 𝑡) > 𝐵, the three-phase Stefan 
problem (P2) can be formulated with a temperature condition 
at 𝑥 = 0 given by 𝐴 = 𝑣3(0, 𝑡), as defined by (3.2). Then, for this 
data, the solution to problem (P2) can be rewritten as

𝑢3(𝑥, 𝑡) =
𝐵𝑘3

ℎ0
√

𝜋𝛼3
+𝐴∞ erf

(

𝜉2
√

𝛼1
𝛼3

)

𝑘3
ℎ0

√

𝜋𝛼3
+erf

(

𝜉2
√

𝛼1
𝛼3

)

erf
(

𝜇2
√

𝛼1
𝛼3

)

−erf
(

𝑥
2
√

𝛼3𝑡

)

erf
(

𝜇2
√

𝛼1
𝛼3

) + 𝐵
erf

(

𝑥
2
√

𝛼3𝑡

)

erf
(

𝜇2
√

𝛼1
𝛼3

) ,

0 < 𝑥 < 𝑟2(𝑡), 𝑡 > 0,

and (2.52)–(2.57).
Taking into account (2.38), (3.2) and the Eqs. (2.56), (2.57), 
it follows that the coefficients 𝜇1 and 𝜇2 constitute the unique 
solution to the following system of equations 

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝓁1
𝓁2
𝜑(𝑧1) exp

(

𝑧21
𝛼1
𝛼2

)

= Ste2
𝑐2

𝐴∞−𝐵
𝐵−𝐶

√

𝑐1𝑐3𝑘3
𝑘1𝜋

erf
(

𝜉2
√

𝛼1
𝛼3

)

erf
(

𝑧2
√

𝛼1
𝛼3

)

exp
(

−𝑧22𝛼1

(

1
𝛼3

− 1
𝛼2

))

𝑘3
ℎ0

√

𝜋𝛼3
+erf

(

𝜉2
√

𝛼1
𝛼3

) − 𝑧2 exp
(

𝑧22
𝛼1
𝛼2

)

,

𝑧2 =
√

𝛼2
𝛼1

erf−1(𝐻(𝑧1)).

(3.7)
9 
Considering that 𝜉2 is given by (2.40) and that 𝜉1 is the unique 
solution to (2.34), it follows that 𝜉1 and 𝜉2 constitute a solution 
of the system (3.7). By uniqueness, it follows that 𝜉1 = 𝜇1 and 
𝜉2 = 𝜇2. From this fact, it follows immediately that 𝑣𝑖(𝑥, 𝑡) =
𝑢𝑖(𝑥, 𝑡) for 𝑖 = 1, 2, 3.

(b) From the temperatures 𝑢3, 𝑢2 and 𝑢1, along with the free bound-
aries 𝑟2 and 𝑟1 that represent the unique solution to problem (P2)
as specified by (2.51)–(2.58), the following is obtained:

𝑘3
𝜕𝑢3
𝜕𝑥

(0, 𝑡) = −(𝐴−𝐵)𝑘3
√

𝜋𝛼3 erf
(

𝜇2
√

𝛼1
𝛼3

)

1
√

𝑡
,

and therefore, the convective condition at the fixed face 𝑥 = 0, 
described by (2.14), with ℎ0 defined in (3.4), can be computed 
for some value 𝐴∞ > 𝐴 such that (3.3) holds. Then the unique 
solution to the problem (P1) with ℎ0 defined by (3.4) is given 
by 

𝑣3(𝑥, 𝑡) =

𝐵(𝐴∞−𝐴)
𝐴−𝐵 erf

(

𝜇2
√

𝛼1
𝛼3

)

+𝐴∞ erf
(

𝜉2
√

𝛼1
𝛼3

)

−(𝐴∞−𝐵) erf
(

𝑥
2
√

𝛼3𝑡

)

𝐴∞−𝐴
𝐴−𝐵 erf

(

𝜇2
√

𝛼1
𝛼3

)

+erf
(

𝜉2
√

𝛼1
𝛼3

) ,

0 < 𝑥 < 𝑤2(𝑡), 𝑡 > 0,

(3.8)
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and (2.20)–(2.21) and (2.31)–(2.32). In addition, taking into 
account (2.38), (2.40) and (2.41), the coefficients 𝜉1 and 𝜉2 con-
stitute the unique solution to the following system of equations 

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝓁1
𝓁2
𝜑(𝑧1) exp

(

𝑧21
𝛼1
𝛼2

)

= Ste2
𝑐2

𝐴∞−𝐵
𝐵−𝐶

√

𝑐1𝑐3𝑘3
𝑘1𝜋

exp
(

−𝑧22𝛼1

(

1
𝛼3

− 1
𝛼2

))

erf
(

𝑧2
√

𝛼1
𝛼3

)

+
𝐴∞−𝐴
𝐴−𝐵 erf

(

𝜇2
√

𝛼1
𝛼3

) − 𝑧2 exp
(

𝑧22
𝛼1
𝛼2

)

,

𝑧2 =
√

𝛼2
𝛼1

erf−1(𝐻(𝑧1)).

(3.9)

Considering that 𝜇2 is given by (2.56) and that 𝜇1 is the unique 
solution to (2.57), it follows that 𝜇1 and 𝜇2 constitute a solution 
to (3.9). By uniqueness, it follows that 𝜇1 = 𝜉1 and 𝜇2 = 𝜉2. From 
this fact, it can be deduced immediately that 𝑢𝑖(𝑥, 𝑡) = 𝑣𝑖(𝑥, 𝑡) for 
𝑖 = 1, 2, 3. □

From the previous theorem, the equivalence of problems (P1) and
(P2) arises under certain conditions regarding the data; therefore, the 
following relationships can be established. This insight highlights that, 
under specific circumstances, two distinct problems share a common 
solution framework, which can be crucial for simplifying analyses or 
applications in various fields.

Corollary 3.2.  Let 𝐴 > 𝐵 be the data of the temperature boundary 
condition of the problem (P2). The coefficient 𝜇2 that characterizes the free 
boundary 𝑟2 given by (2.56) satisfies the following inequality: 

erf
(

𝜇2
√

𝛼1
𝛼3

)

<
√

𝑘3𝑐3
𝑘2𝑐2

𝐴−𝐵
𝐵−𝐶

𝐴∞−𝐵
𝐴∞−𝐴 erf

(

𝑧0
√

𝛼1
𝛼2

)

, ∀𝐴∞ > 𝐴, (3.10)

where 𝑧0 is given by (2.39).

Proof.  From part (b) of the previous Theorem, it follows that ℎ0, as 
given by (3.4), must satisfy ℎ0 > ℎ2, where ℎ2 is defined by (2.48). 
Therefore, the coefficients 𝜇2 that characterize the interface 𝑥 = 𝑟2(𝑡)
of the solution to the problem (P2), must also satisfy the inequality 
(3.10). □

Remark 3.3.  The function defined by the right hand side in (3.10) is 
a strictly decreasing function of the variable 𝐴∞. Then, by taking the 
limit 𝐴∞ → +∞ in inequality (3.10), it is obtained that: 

erf
(

𝜇2
√

𝛼1
𝛼3

)

<
√

𝑘3𝑐3
𝑘2𝑐2

𝐴−𝐵
𝐵−𝐶 erf

(

𝑧0
√

𝛼1
𝛼2

)

. (3.11)

Remark 3.4.  The inequality (3.10) holds a physical significance for 
the solution (2.51)–(2.57) when the parameters of the problem (P2)
satisfy the inequality: 
√

𝑘3𝑐3
𝑘2𝑐2

𝐴−𝐵
𝐵−𝐶

𝐴∞−𝐵
𝐴∞−𝐴 erf

(

𝑧0
√

𝛼1
𝛼2

)

< 1, 𝐴∞ > 𝐴 > 𝐵 > 𝐶 > 𝐷. (3.12)

Remark 3.5.  The coefficient ℎ0 defined by (3.4) can be considered 
a function of 𝐴. By setting the bulk temperature 𝐴∞ = 274 𝐾 and 
using the parameters provided in Tables  1 and 2, ℎ0 can be plotted as 
a function of 𝐴. Fig.  8 clearly illustrates that ℎ0 is a strictly increasing 
function, with a vertical asymptote at 𝐴 = 𝐴∞.

Corollary 3.6.  Let ℎ0 and 𝐴∞ with ℎ0 > ℎ2 be the data of the convective 
boundary condition of the problem (P1). The value 𝐴 that characterizes the 
temperature boundary condition at the fixed face 𝑥 = 0 to the problem (P2), 
satisfies the following inequality: 

𝐵 < 𝐴 < 𝐴∞. (3.13)
10 
Proof.  From part (a) of Theorem  3.1, it follows that 𝐴, as given by 
(3.2), satisfy 𝐴 − 𝐴∞ < 0 and 𝐴 − 𝐵 > 0. Therefore, 𝐴 must also satisfy 
the inequality (3.13). □

Corollary 3.7.  The value 𝐴 = 𝐴(ℎ0, 𝐴∞) given by (3.1) is an increasing 
function of ℎ0.

Proof.  Notice that

𝐴(ℎ0, 𝐴∞) = 𝐵
1 + 𝐴∞

ℎ0
√

𝜋𝛼3
𝐵𝑘3

erf
(

𝜉2
√

𝛼1
𝛼3

)

1 +
ℎ0

√

𝜋𝛼3
𝑘3

erf
(

𝜉2
√

𝛼1
𝛼3

)

= 𝐵𝛹
(

ℎ0 erf
(

𝜉2
√

𝛼1
𝛼3

))

where 𝛹 (𝑧) = 1+𝜈1𝑧
1+𝜈2𝑧

 with 𝜈1 =
√

𝜋𝛼3
𝑘3

𝐴∞
𝐵  and 𝜈2 =

√

𝜋𝛼3
𝑘3

. Taking into 
account that 𝐴∞ > 𝐵, it follows that 𝜈1 − 𝜈2 =

√

𝜋𝛼3
𝑘3

(

𝐴∞
𝐵 − 1

)

> 0
and therefore 𝛹 ′(𝑧) = 𝜈1−𝜈2

(1+𝜈2𝑧)2
> 0 for all 𝑧. This means that 𝛹 is an 

increasing function in 𝑧.
In addition, notice that 𝜉2 given by (2.40) depends on 𝜉1. In turn, 

𝜉1 is the unique solution to Eq.  (2.41). On one hand, the function 𝑇
defined by (2.44) is an increasing function in ℎ0. As a consequence, by 
(2.43), the function 𝑈 increases when ℎ0 becomes greater. On the other 
hand, the function 𝑄 given by (2.42) does not depend on ℎ0. Then it 
follows that the unique solution 𝜉1 > 𝑧0 to Eq.  (2.41) increases in ℎ0. 
Consequently, 𝜉2 also becomes an increasing function in ℎ0.

Putting all of the above together, it is easy to see that 𝐴 is an 
increasing function in ℎ0. □

3.2. Equivalence between problems (P2)  and (P3)

Connecting a Stefan problem with a temperature boundary condi-
tion to the one with a flux boundary condition is crucial for understand-
ing thermal phenomena. Analyzing their interaction provides a more 
comprehensive view of the thermal behavior of the system. Addition-
ally, this relationship can reveal important mathematical properties of 
the underlying equations.

In the following theorem, the relationships to impose between the 
data of both problems are established to ensure their equivalence.

Theorem 3.8. 
(a) Let 𝑞0 > 𝑞2 be the given constant of the flux condition of the problem

(P3) where 𝑞2 is defined by (2.59). If the problem (P2) is considered 
with a temperature boundary condition defined by 

𝐴 = 𝐵 +
𝑞0
√

𝜋𝛼3
𝑘3

erf
(

𝜆2
√

𝛼1
𝛼3

)

, (3.14)

where 𝜆2 is given by (2.65), then the solution to problem (P2)
coincides with the solution to problem (P3).

(b) Let 𝐴 > 𝐵 be the data of the temperature boundary condition of the 
problem (P2). If the following inequality holds: 

𝑘3(𝐴−𝐵)
√

𝛼3 erf
(

𝜇2
√

𝛼1
𝛼3

) > 𝑘2(𝐵−𝐶)
√

𝛼2 erf
(

𝑧0

√

𝛼1
𝛼2

) , (3.15)

where 𝜇2 is given by (2.56), then the solution to problem (P3) with 
𝑞0 =

𝑘3
√

𝜋𝛼3
(𝐴−𝐵)

erf
(

𝜇2
√

𝛼1
𝛼3

) , (3.16)

coincides with the solution to problem (P2).

Proof. 
(a) Using the solution to the problem (P3), which involves the 

temperatures 𝜃3, 𝜃2 and 𝜃1, along with the free boundaries 𝑠2
and 𝑠1 established in Section 2.2, it is possible to determine the 
temperature at 𝑥 = 0: 

𝜃 (0, 𝑡) = 𝐵 +
𝑞0
√

𝜋𝛼3 erf
(

𝜆
√

𝛼1
)

. (3.17)
3 𝑘3 2 𝛼3
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Fig. 8. Coefficient ℎ0 characterizing heat transfer under convective conditions as a function of 𝐴.
Taking into account that 𝜃3(0, 𝑡) > 𝐵, the three-phase problem
(P2) can be defined with a temperature condition at 𝑥 = 0
specified as 𝐴 = 𝜃3(0, 𝑡), i.e. 𝐴 is given by (3.14).
Then, for this data, the solution to problem (P2) can be rewritten 
for 0 < 𝑥 < 𝑟2(𝑡), 𝑡 > 0 as

𝑢3(𝑥, 𝑡) =
⎛

⎜

⎜

⎝

𝐵 +
𝑞0
√

𝜋𝛼3 erf
(

𝜆2
√ 𝛼1

𝛼3

)

𝑘3

⎞

⎟

⎟

⎠

erf
(

𝜇2
√ 𝛼1

𝛼3

)

−erf
(

𝑥
2
√

𝛼3 𝑡

)

erf
(

𝜇2
√ 𝛼1

𝛼3

) +𝐵
erf

(

𝑥
2
√

𝛼3 𝑡

)

erf
(

𝜇2
√ 𝛼1

𝛼3

) ,

and (2.52)–(2.57).
From the values given by (2.38) and (3.14) and the Eqs. (2.56) 
and (2.57), it follows that the coefficients 𝜇1 and 𝜇2 constitute 
the unique solution to the following system of equations 

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝓁1
𝓁2
𝜑(𝑧1) exp

(

𝑧21
𝛼1
𝛼2

)

= 𝑞0
𝓁2

√

𝑐1
𝜌𝑘1

erf
(

𝜆2
√

𝛼1
𝛼3

)

exp
(

−𝑧22𝛼1

(

1
𝛼3

− 1
𝛼2

))

erf
(

𝑧2
√

𝛼1
𝛼3

)

−𝑧2 exp
(

𝑧22
𝛼1
𝛼2

)

,

𝑧2 =
√

𝛼2
𝛼1

erf−1(𝐻(𝑧1)).

(3.18)

Given that 𝜆2 is defined by (2.65) and 𝜆1 is the unique solution 
to (2.66), it follows that 𝜆1 and 𝜆2 form a solution to the system 
(3.18). Due to uniqueness, 𝜆1 = 𝜇1 and 𝜆2 = 𝜇2. Consequently, it 
can be immediately deduced that 𝜃𝑖(𝑥, 𝑡) = 𝑢𝑖(𝑥, 𝑡) for 𝑖 = 1, 2, 3.

(b) Using the temperatures 𝑢3, 𝑢2 and 𝑢1, along with the free bound-
aries 𝑟2 and 𝑟1, which represent the unique solution to problem
(P2) as defined by (2.51)–(2.58), the following expression is 
derived:

𝑘3
𝜕𝑢3
𝜕𝑥

(0, 𝑡) = −(𝐴−𝐵)𝑘3
√

𝜋𝛼3 erf
(

𝜇2
√

𝛼1
𝛼3

)

1
√

𝑡
,

and therefore, the flux condition at the fixed face 𝑥 = 0 given by 
(2.16) can be computed. Since (3.15) holds, the unique solution 
to the problem (P3) with 𝑞0 defined by (3.16) is given by 

𝜃3(𝑥, 𝑡) = 𝐵 + 𝐴−𝐵

erf
(

𝜇2
√

𝛼1
𝛼3

)

(

erf
(

𝜆2
√

𝛼1
𝛼3

)

− erf
(

𝑥
2
√

𝛼3𝑡

))

,

0 < 𝑥 < 𝑠2(𝑡), 𝑡 > 0,

11 
(3.19)

and (2.61)–(2.66). In addition, taking into account (2.38), (2.65) 
and (2.66), the coefficients 𝜆1 and 𝜆2 constitute the unique 
solution to the following system of equations 
⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝓁1
𝓁2
𝜑(𝑧1) exp

(

𝑧21
𝛼1
𝛼2

)

= 𝐴−𝐵
𝓁2

√

𝑐1𝑐3𝑘3
𝑘1𝜋

exp
(

−𝑧22𝛼1

(

1
𝛼3

− 1
𝛼2

))

erf
(

𝜇2
√

𝛼1
𝛼3

)

−𝑧2 exp
(

𝑧22
𝛼1
𝛼2

)

,

𝑧2 =
√

𝛼2
𝛼1

erf−1(𝐻(𝑧1)).

(3.20)

Given that 𝜇2 is defined by (2.56) and 𝜇1 represents the unique 
solution to (2.57), it can be concluded that 𝜇1 and 𝜇2 together 
form a solution to the system (3.20). Due to the uniqueness 
property, 𝜆1 = 𝜇1 and 𝜆2 = 𝜇2. As a result, it follows that 
𝜃𝑖(𝑥, 𝑡) = 𝑢𝑖(𝑥, 𝑡) for 𝑖 = 1, 2, 3. □

Remark 3.9.  A sufficient condition for (3.15) to be satisfied is 𝐴 >
𝑞2
√

𝜋𝛼3
𝑘3

+ 𝐵.

The earlier theorem reveals that problems (P2) and (P3) are equiv-
alent under certain data-related conditions. As a result, the following 
relationships can be established, leading to a generalization of the 
findings presented in [31].

Corollary 3.10.  Let 𝐴 > 𝐵 be the data of the temperature boundary 
condition of the problem (P2). The coefficient 𝜇2 given by (2.56) satisfies 
the following inequality: 

erf
(

𝜇2
√

𝛼1
𝛼3

)

< 𝑘3
𝑘2

√

𝛼2
𝛼3

𝐴−𝐵
𝐵−𝐶 erf

(

𝑧0
√

𝛼1
𝛼2

)

, (3.21)

where 𝑧0 is given by (2.39).

Proof.  Part (b) of the previous theorem indicates that 𝑞0, as defined 
by (3.16), must satisfy 𝑞0 > 𝑞2, where 𝑞2 is given by (2.59). Conse-
quently, the coefficient 𝜇2 that characterizes the interface 𝑥 = 𝑟2(𝑡)
of the solution to problem (P2) must also comply with the inequality 
(3.21). □

Corollary 3.11.  The value 𝐴 = 𝐴(𝑞0) given by (3.14) is an increasing 
function of 𝑞 .
0
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Fig. 9. Coefficient 𝑞0 characterizing the flux condition as a function of 𝐴.
Proof.  It is important to note that 𝜆2, as defined by (2.65), is dependent 
on 𝜆1. Furthermore, 𝜆1 represents the unique solution to Eq.  (2.66), 
which itself is influenced by 𝑞0. On one hand, the function 𝑄 is indepen-
dent of 𝑞0. Conversely, 𝑃  is an increasing function of 𝑞0. Consequently, 
𝜆1 is also an increasing function of 𝑞0, and this behavior extends to 𝜆2
as well. According to the definition of 𝐴, it follows directly that the 
thesis is validated. □

Remark 3.12.  The coefficient 𝑞0 defined by (3.16) can be considered 
a function of 𝐴. By using the parameters provided in Tables  1 and 2, 
𝑞0 can be plotted as a function of 𝐴. Fig.  9 clearly illustrates that 𝑞0 is 
a strictly increasing function.

3.3. Equivalence between problems (P1)  and (P3)

As illustrated in the previous subsections, the following theorem 
establishes the relationship between the problems involving convective 
and flux boundary conditions at the fixed face.

Theorem 3.13. 
(a) Let ℎ0 and 𝐴∞ be the given constants of the convective condition of 

the problem (P1) with 𝐴∞ > 𝐵 and ℎ0 > ℎ2 where ℎ2 is given by 
(2.48). If the following inequality holds: 

(𝐴∞−𝐵)ℎ0

1+
ℎ0

√

𝜋𝛼3
𝑘3

erf
(

𝜉2
√

𝛼1
𝛼3

)
> 𝑘2(𝐵−𝐶)

√

𝛼2𝜋 erf
(

𝑧0

√

𝛼1
𝛼2

) , (3.22)

where 𝜉2 is given by (2.40), then the solution to problem (P3) with 

𝑞0 =
(𝐴∞−𝐵)ℎ0

1+
ℎ0

√

𝜋𝛼3
𝑘3

erf
(

𝜉2
√

𝛼1
𝛼3

)
, (3.23)

coincides with the solution to problem (P1).
(b) Let 𝑞0 > 𝑞2 be the given constant of the flux condition of the problem

(P3) where 𝑞2 is defined by (2.59). If the following inequality holds: 

𝑞0

(𝐴 −𝐵)−𝑞
√

𝜋𝛼3
erf

(

𝜆
√

𝛼1
)
> 𝐵−𝐶

𝐴∞−𝐵

√

𝑘2𝑘3𝑐2
𝜋𝛼3𝑐3

1

erf
(

𝑧0

√

𝛼1
) , (3.24)
∞ 0 𝑘3 2 𝛼3 𝛼2

12 
where 𝜆2 is given by (2.65) and 𝐴∞ > 𝐵, then the solution to problem
(P1) with 
ℎ0 =

𝑞0

(𝐴∞−𝐵)−𝑞0

√

𝜋𝛼3
𝑘3

erf
(

𝜆2
√

𝛼1
𝛼3

)
, (3.25)

coincides with the solution to problem (P3).

Proof.  The proof is straightforward. □

Remark 3.14.  Assuming that

𝐴∞ > 𝐵 +
√

𝛼3
𝛼2

𝑘2
𝑘3

𝐵−𝐶

erf
(

𝑧0
√

𝛼1
𝛼2

) ,

and

ℎ0 > max
{

ℎ2, ℎ
∗
2
}

,

where ℎ2 is given by (2.48) and ℎ∗2 > 0 is such that 𝐹 (ℎ∗2) = 0, with

𝐹 (𝑧) =
𝑘3(𝐴∞−𝐵)

√

𝜋𝛼2 erf
(

𝑧0
√

𝛼1
𝛼2

)

𝑧

𝑘2(𝐵−𝐶)
(

𝑘3+𝑧
√

𝜋𝛼3
) , 𝑧 ≥ 0,

and 𝑧0 is given by (2.39), then condition (3.22) is automatically satis-
fied.

In addition, if

𝑞0 >
𝐵−𝐶
𝐴∞−𝐵

√

𝑘2𝑘3𝑐2
𝜋𝛼3𝑐3

1

erf
(

𝑧0

√

𝛼1
𝛼2

) ,

then the inequality given by (3.24) holds, for all 𝐴∞ > 𝐵.

Conclusions

This study provided a unique explicit similarity-type solution for 
the three-phase Stefan problem in a semi-infinite material with a con-
vective boundary condition at the fixed face. The equivalence among 
the solutions of three Stefan problems with different boundary con-
ditions (Robin, Dirichlet and Neumann) was demonstrated, provided 
that a specific relationship between the problem data was satisfied. 
Additionally, computational examples were performed to illustrate the 
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validity of the obtained results and to explore the system’s behavior 
under various boundary condition configurations. These findings offer 
a deeper understanding of heat transfer processes in phase-change sys-
tems, with significant implications for material science and engineering 
applications.
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