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Abstract
A one-phase Stefan problem for a semi-infinite material is studied for special functional
forms of the thermal conductivity and specific heat depending on the temperature of the
phase-change material. Using the similarity transformation technique, an exact solution for
these situations are shown. The mathematical analysis is made for two different kinds of heat
source terms, and the existence and uniqueness of the solutions are proved.

Keywords Stefan problem · Temperature-dependent thermal coefficients · Phase-change
material · Non-classical heat equation · Heat source terms · Explicit solution

Mathematics Subject Classification 35R35 · 35C06 · 80A22 · 35K05

1 Introduction

The phase change problems that contain one ormoremoving boundaries have attracted grow-
ing attention in the last decades due to their wide range of engineering, industrial applications
and natural sciences. Stefan problems can bemodelled as basic phase-change processeswhere
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the location of the interface is a priori an unknown function (Alexiades and Solomon 1993;
Carslaw and Jaeger 1959; Crank 1984; Gupta 2018; Tarzia 2011).

The present study provides the existence and uniqueness of solution of the similarity
type to a one-phase Stefan fusion problem for a semi-infinite material where it is assumed a
Dirichlet condition at the fixed face x = 0 and it is governed by a non-classical and nonlinear
heat equation with temperature-dependent thermal conductivity and specific heat coefficients
and two different kinds of heat source terms.

Non-classical heat conduction problems are considered when the source term is linear
or nonlinear depending on the heat flux or the temperature on the boundary of the domain
according to the corresponding boundary condition imposed. The non-classical problems are
motivated by the modelling of a system of temperature regulation in isotropic media and the
source term describes a cooling or a heating effect depending on different types of sources
which are related to the evolution of the unknown boundary condition on the boundary of
the domain. Problems of this type are related to the thermostat problem (Cannon and Yin
1989; Friedman and Jiang 1988; Furuya et al. 1986; Glashoff and Sprekels 1981, 1982;
Kenmochi 1990; Kenmochi and Primicerio 1988). For example, we will use mathematical
ideas developed for the one-dimensional case in Berrone et al. (2000), Ceretani et al. (2015),
Tarzia andVilla (1998), Villa (1986) and for the n-dimensional case in Boukrouche andTarzia
(2017, 2020). The first paper connecting the non-classical heat equation with a phase-change
process (i.e. the Stefan problem) was Briozzo and Tarzia (2006) and after this some other
works on the subject were published, for example (Bougoffa and Khanfer 2021; Bougoffa
et al. 2021; Briozzo and Natale 2019). Moreover, in Briozzo and Tarzia (2010), explicit
solutions for the non-classical one-phase Stefan problem were given for cases corresponding
to different boundary conditions on thefixed face x = 0: temperature, heat flux and convective
boundary condition.

The mathematical model of the governing phase-change process is described as follows:

ρc(θ)
∂θ

∂t
= ∂

∂x

(
k(θ)

∂θ

∂x

)
− F, 0 < x < s(t), t > 0, (1.1)

θ(0, t) = θ0 > θ f t > 0, (1.2)

θ(s(t), t) = θ f , t > 0, (1.3)

k0
∂θ

∂x
(s(t), t) = −ρl ṡ(t), t > 0, (1.4)

s(0) = 0, (1.5)

where the unknown functions are the temperature θ = θ(x, t) and the free boundary x = s(t)
separating both phases (the liquid phase at temperature θ(x, t) and the solid phase at constant
temperature θ f ). The parameters ρ > 0 (density), l > 0 (latent heat per unit mass), θ0 > 0
(temperature imposed at the fixed face x = 0) and θ f (phase change temperature at the free
boundary x = s(t)) are all known constants.

If the thermal coefficients of the material are temperature-dependent, we have a doubly
non-linear free boundary problem. The functions k and c are defined as:

k(θ) = k0
(
1 + δ

(
θ−θ f
θ0−θ f

)p)
, (1.6)

c(θ) = c0
(
1 + δ

(
θ−θ f
θ0−θ f

)p)
, (1.7)

where δ and p are given non-negative constants, k0 = k
(
θ f

)
and c0 = c

(
θ f

)
are the

reference coefficients of the thermal conductivity and the specific heat, respectively.
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Some other models involving temperature-dependent thermal conductivity can also be
found in Ceretani et al. (2018, 2020), Kumar and Singh (2020), Makinde et al. (2018),
Natale and Tarzia (2003), Oliver and Sunderland (1987), Rogers (1985, 2015, 2019).

Existence and uniqueness to the problem (1.1)–(1.5) with null source term, F = 0, was
developed in Bollati et al. (2020).

The control function F represents a heat source term for the nonlinear heat equation.
Several applied papers give us the significance of the source term in the interior of the
material which can undergo a change of phase (Scott 1994; Briozzo et al. 2007). In this paper
we considered two different control functions F . The first one is defined as in Briozzo et al.
(2007) and the second one depends on the evolution of the heat flux at the fixed face x = 0
like in Briozzo and Natale (2019). In this last case, we have a non-classical heat equation as
in Tarzia and Villa (1998), Villa (1986).

We are interested in obtaining a similarity solution to problem (1.1)–(1.5) in which the
temperature θ = θ(x, t) can be written as a function of a single variable. Through the
following change of variables:

y(η) = θ(x,t)−θ f
θ0−θ f

≥ 0, (1.8)

where the similarity variable η is defined by:

η = x
2a

√
t
, 0 < x < s(t), t > 0, (1.9)

the phase front moves as

s(t) = 2aλ
√
t, (1.10)

where a2 = k0
ρc0

(thermal diffusivity) and λ > 0 is a parameter to be determined.
The plan of this paper is the following. In Sect. 2, we prove the existence and uniqueness

of solution to the problem (1.1)–(1.5) considering the control function given by Scott (1994):

F = F1(x, t) = ρl

t
β

(
x

2a
√
t

)
, (1.11)

where β = β(η) in a function with appropriate regularity properties (Scott 1994; Briozzo
et al. 2007). Moreover, a particular case where β is of exponential type given by

β(η) = 1

2
exp(−η2), (1.12)

is also studied in detail. This type of heat source term is important through the use of
microwave energy following (Scott 1994).

Finally, in Sect. 3,we prove existence and uniqueness of solution to the problem (1.1)–(1.5)
considering the control function given by

F = F2(t) = λ0√
t

∂T

∂x
(0, t), (1.13)

that canbe thought of bymodellingof a systemof temperature regulation in isotropicmediums
(Briozzo and Natale 2019) with nonuniform source term, which provides a cooling or heating
effect depending upon the properties of F2 related to the heat flux (or the temperature in other
cases) at the fixed face boundary x = 0.
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2 Free boundary problemwhen the heat source term is of a similarity
type

We consider now the control function F given by (1.11).

2.1 General case

Throughout this section, we will assume the following hypothesis on the function β:

Hβ : β = β(η) ∈ C1(R+) is such that β(·)exp(·2) ∈ L1(R+).

Following the classical Neumann method, we propose a similarity type solution (θ, s) to
the non-classical Stefan problem (1.1)–(1.5) given by:

θ(x, t) = (
θ0 − θ f

)
y
(

x
2a

√
t

)
+ θ f , 0 < x < s(t), t > 0, (2.1)

s(t) = 2aλ
√
t, t > 0. (2.2)

Then, recalling that the similarity variable η is given by (1.9) we have:

∂θ

∂t
(x, t) = − 1

2t
(θ0 − θ f )ηy

′(η),
∂θ

∂x
(x, t) = 1

2a
√
t
(θ0 − θ f )y

′(η).

Replacing these expressions in equation (1.1), we obtain that the function y should satisfy:

2η(1 + δy p(η))y′(η) + [(1 + δy p(η))y′(η)]′ = 4
Steβ(η), 0 < η < λ, (2.3)

where Ste = c0(θ0−θ f )

l > 0 is the Stefan number.
Moreover, condition (1.2) implies that θ(0, t) = (θ0 − θ f )y(0)+ θ f = θ0 resulting in the

following condition on the function y:

y(0) = 1. (2.4)

In a similar way, taking into account that s is given by (2.2), we can obtain that condition
(1.3) yields to θ(s(t), t) = (θ0 − θ f )y(λ) + θ f = θ f and then

y(λ) = 0. (2.5)

Finally, the Stefan condition (1.4) is equivalent to k0
2a

√
t
(θ0 − θ f )y′(λ) = −ρl aλ√

t
. Taking

into account the definition of the parameters a and Ste, we get

y′(λ) = − 2λ
Ste . (2.6)

Furthermore, it can be easily seen that if (y, λ) is a solution to the problem (2.3)–(2.6),
then (θ, s) given by (2.1)–(2.2) verify the problem (1.1)–(1.5).

In conclusion, the Stefan problem (1.1)–(1.5) has a similarity solution (θ, s) given by
(2.1)–(2.2) if and only if the pair (y, λ) satisfies the problem (2.3)–(2.6).

Lemma 2.1 Assume that p ≥ 0, δ ≥ 0, λ > 0, y ∈ C2[0, λ], y ≥ 0, and β = β(η) verifies
the hypothesis Hβ .

Then, (y, λ) is a solution to the ordinary differential equation (2.3)–(2.6) if and only if
λ > 0 is a solution to the equation:

ϕ1(x) = 1 + δ
p+1 , x > 0, (2.7)

123



Exact solution for non-classical one-phase… Page 5 of 11   375 

and function y = y(η) satisfies the functional equation:


(y(η)) = �1(η), 0 ≤ η ≤ λ, (2.8)

where

ϕ1(x) =
√

π

Ste x erf(x) exp(x
2) + 2

√
π

Ste

∫ x

0
exp(ξ2) erf(ξ)β(ξ) dξ, (2.9)


(x) = x + δ
p+1 x

p+1, 0 ≤ x ≤ 1, (2.10)

�1(x) = 1 + δ
p+1 −

√
π erf(x)
Ste

(
2

∫ λ

0
β(ξ) exp(ξ2) dξ+λ exp(λ2)

)

+ 2
√

π

Ste

(∫ x

0
β(ξ) exp(ξ2) (erf(x) − erf(ξ)) dξ

)
, 0 ≤ x ≤ λ. (2.11)

Proof Let (y, λ) be a solution to (2.3)–(2.6).As inBollati et al. (2020),we define the function:

v(η) = (
1 + δy p(η)

)
y′(η). (2.12)

Taking into account (2.3) and the condition (2.4), the function v can be rewritten as

v(η) = exp (−η2)

(
4
Ste

∫ η

0
β(ξ) exp(ξ2) dξ + (1 + δ)y′(0)

)
. (2.13)

From (2.12) and (2.13), we get

(
1 + δy p(η)

)
y′(η) = exp (−η2)

(
4
Ste

∫ η

0
β(ξ) exp(ξ2) dξ + (1 + δ)y′(0)

)
. (2.14)

Taking η = λ in the above equation, using (2.5) and (2.6), we obtain:

y′(0) = − 2
Ste(1+δ)

(
2

∫ λ

0
β(ξ) exp(ξ2) dξ + λ exp (λ2)

)
. (2.15)

Integrating equation (2.14) in the domain (0, η) and by virtue of (2.4), it follows that:

y(η)
(
1 + δ

p+1 y
p(η)

)
= 1 + δ

p+1 + (1 + δ)y′(0)
√

π

2 erf(η)

+ 4
Ste

∫ η

0

∫ η

ξ

β(ξ) exp(−z2) exp(ξ2) dz dξ. (2.16)

Given that∫ η

0

∫ η

ξ

β(ξ) exp(−z2) exp(ξ2) dz dξ =
√

π

2

∫ η

0
(erf(η) − erf(ξ)) β(ξ) exp(ξ2) dξ,

and from (2.15), we obtain that y = y(η) is a solution to (2.8).
Taking η = λ in equation (2.8) and using (2.5), we conclude that λ > 0 is a solution to

equation (2.7).
Reciprocally, if (y, λ) is a solution to (2.7)–(2.8), then

y(η) = 1 + δ
p+1 − δ

p+1 y
p+1(η) −

√
π erf(η)

Ste

(
2

∫ λ

0
β(ξ) exp(ξ2) dξ+λ exp(λ2)

)

+ 2
√

π

Ste

(∫ η

0
β(ξ) exp(ξ2) (erf(η) − erf(ξ)) dξ

)
,

and it follows immediately that (y, λ) is a solution to (2.3)–(2.6). ��
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Lemma 2.2 If p ≥ 0, δ ≥ 0 and β = β(η) ≥ 0 verifies the hypothesis Hβ , then there
exists a unique solution (y, λ) to the functional problem defined by (2.7)–(2.8) with λ > 0,
y ∈ C2[0, λ] and y ≥ 0.

Proof It is easy to see that ϕ1(0) = 0, ϕ1(+∞) = +∞ and ϕ1 is an increasing function.
Then, there exists a unique λ > 0 solution to equation (2.7).
On the one hand,
(0) = 0,
(1) = 1+ δ

p+1 and
 in an increasing function then, there exists

the inverse function 
−1 : [0, 1 + δ
p+1 ] → [0, 1]. On the other hand, �1(0) = 1 + δ

p+1 ,

�1(λ) = 0 and �1 is a decreasing function. Furthermore, �1(x) ∈
[
0, 1 + δ

p+1

]
for all

x ∈ [0, λ]. Therefore, we conclude that there exists a unique function y ∈ C2[0, λ] solution
to the equation (2.8) given by

y(η) = 
−1 (�1(η)) , 0 ≤ η ≤ λ. (2.17)

��

From the above lemmas, we are able to claim the following result:

Theorem 2.3 The Stefan problem governed by (1.1)–(1.5) has a unique similarity type solu-
tion (θ, s) given by (2.1)–(2.2) where (y, λ) is the unique solution to the functional problem
(2.7)–(2.8).

Remark 2.4 On the one hand, we have that 
 is an increasing function with 
(0) = 0 and

(1) = 1+ δ

p+1 . On the other hand, �1 is a decreasing function with �1(0) = 1+ δ
p+1 and

�1(λ) = 0. Then it follows that 0 ≤ y(η) ≤ 1, for 0 ≤ η ≤ λ.
In virtue of this and Theorem 2.3, we have that θ f < θ(x, t) < θ0, for all 0 < x <

s(t), t > 0.

2.2 Particular case

Now, let us consider the particular case where β is of exponential type given by

β(η) = 1

2
exp(−η2).

Theorem 2.5 If p ≥ 0, δ ≥ 0, the Stefan problem governed by (1.1)–(1.5) has a unique
similarity type solution (θ, s) given by (2.1)–(2.2) where λ > 0 is the unique solution to the
equation:

Z(x) = δ
p+1 , x > 0, (2.18)

with

Z(x) = 1
Ste

(
1 − exp(−x2)

) +
√

π

Ste x erf(x)
(
exp(x2) − 1

) − 1, (2.19)

and the function y ∈ C∞[0, λ], y ≥ 0 satisfies the equation

y(η)
(
1 + δ

p+1 y
p(η)

)
= 1 + δ

p+1 + 1
Ste

(
exp(−η2) − 1

)
+

√
π

Ste λ erf(η)
(
1 − exp(λ2)

)
, 0 ≤ η ≤ λ. (2.20)

123



Exact solution for non-classical one-phase… Page 7 of 11   375 

Fig. 1 Plot of the coefficient λ and the function y = y(η)

Remark 2.6 For the particular case p = 1, the unique function y = y(η) solution to equation
(2.20) is given by

y(η) = 1
δ

[√
1 + 4

(
1 + δ

2

) + 1
Ste

(
exp(−η2 − 1

) +
√

π

Ste λ erf(η)
(
1 − exp(λ2)

) − 1

]
,

where λ > 0 is the unique solution to equation (2.18) for p = 1, i.e,

1
Ste

(
1 − exp(−x2)

) +
√

π

Ste x erf(x)
(
exp(x2) − 1

) = 1 + δ

2
.

In Fig. 1a, we plot the solution λ to the equation (2.18) for different values of Ste and p,
assuming δ = 5.

Moreover in Fig. 1b, we plot the solution y to the equation (2.20) for different values or
p, assuming δ = 5 and Ste = 1.

Lemma 2.7 For a fixed p ≥ 0, let us define λp as the unique solution to equation (2.18).
Then the following estimates hold:

0 < λ1 − λp = O(p − 1) when p → 1+. (2.21)

0 < λp − λ1 = O(1 − p) when p → 1−. (2.22)

Proof Toprove (2.21), let us consider the trianglewith vertices P0(λp,Z(λp)), P1(λ1,Z(λp))

and P2(λ1,Z(λ1)) where Z is the function given by (2.19). Taking into account that p > 1,
if αp = P1 P̂0P2 then

0 < λ1 − λp = δ(p−1)
2(1+p)

1
tan(αp)

.

Notice that Z is an increasing convex function that satisfies Z(0) = −1, Z(+∞) = +∞.
If we denote with r > 0, the unique root of Z, then 0 < Z ′(r) < Z ′(λp) < tan(αp). As a
consequence, we get

0 < λ1 − λp <
δ

4Z ′(r)
(p − 1).

We can prove equation (2.22) in a similar way. ��

123



  375 Page 8 of 11 J. Bollati et al.

3 Free boundary problemwith a heat source that depends on the
evolution of the heat flux at the fixed face x = 0

If we consider that the control function F depends on the evolution of the heat flux at the
fixed face x = 0, that is

F = F2(t) = λ0√
t

∂T

∂x
(0, t),

where λ0 > 0, it is easy to see that the Stefan problem (1.1)–(1.5) has a similarity solution
(θ, s) given by:

θ(x, t) = (
θ0 − θ f

)
y
(

x
2a

√
t

)
+ θ f , 0 < x < s(t), t > 0, (3.1)

s(t) = 2aλ
√
t, t > 0, (3.2)

if and only if the function y and the parameterλ > 0 satisfy the following ordinary differential
problem:

2η(1 + δy p(η))y′(η) + [(1 + δy p(η))y′(η)]′ = Ay′(0), 0 < η < λ, (3.3)

y(0) = 1, (3.4)

y(λ) = 0, (3.5)

y′(λ) = − 2λ
Ste , (3.6)

where δ ≥ 0, p ≥ 0, A = 2λ0
ρc0a

and Ste = c0(θ0−θ f )

l > 0 is the Stefan number.

Lemma 3.1 Assume that p ≥ 0, δ ≥ 0, λ > 0, y ∈ C∞[0, λ] and y ≥ 0. Then, (y, λ) is a
solution to the ordinary differential equation (3.3)–(3.6) if and only if λ is a solution to the
equation:

ϕ2(x) = 1 + δ
p+1 , x > 0, (3.7)

and the function y = y(η) satisfies the equation:


(y(η)) = �2(η), 0 ≤ η ≤ λ, (3.8)

where 
 is given by (2.10) and

ϕ2(x) =
√

πx exp (x2)
Ste(A

∫ x
0 exp(z2) dz+1+δ)

ξ(x),

�2(x) = 1 + δ
p+1 −

√
πλ exp(λ2)

Ste
(
A

∫ λ
0 exp(z2) dz+1+δ

)ξ(x), 0 ≤ η ≤ λ,

with

ξ(x) = A
∫ x

0
exp(z2) (erf(x) − erf(z)) dz + (1 + δ) erf(x).

Proof Let (y, λ) be a solution to (3.3)–(3.6). As in Bollati et al. (2020), we define the function

v(η) = (
1 + δy p(η)

)
y′(η). (3.9)

Taking into account (3.3) and the condition (3.4), the function v can rewrite as

v(η) = exp (−η2)y′(0)
(
A

∫ η

0
exp(z2) dz + 1 + δ

)
. (3.10)
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From (3.9) and (3.10), we obtain

(
1 + δy p(η)

)
y′(η) = exp (−η2)y′(0)

(
A

∫ η

0
exp(z2) dz + 1 + δ

)
. (3.11)

Taking η = λ in the above equation, using (3.5) and (3.6), we obtain:

y′(0) = − 2λ exp(λ2)

Ste
(
A

∫ λ

0 exp(z2) dz + 1 + δ
) . (3.12)

Integrating into (0, η) equation (3.11) and by virtue of (3.4), we obtain:

y(η)
(
1 + δ

p+1 y
p(η)

)
= 1 + δ

p+1 + (1 + δ)y′(0)
√

π

2 erf(η)

+ Ay′(0)
∫ η

0

∫ η

z
exp(−z2) exp(ξ2) dz dξ. (3.13)

Given that
∫ η

0

∫ η

z exp(−z2) exp(ξ2) dz dξ =
√

π

2

∫ η

0 (erf(η) − erf(z)) exp(z2) dz and from
(3.12), we obtain that y = y(η) is a solution to (3.8). Taking η = λ in equation (3.8) and
using (3.5), we conclude that λ > 0 is a solution to equation (3.7).

Reciprocally, if (y, λ) is a solution to (3.7)–(3.8),

y(η) = 1 + δ
p+1 − δ

p+1 y
p+1(η)

−
√

πλ exp(λ2)

Ste
(
A

∫ λ
0 exp(z2) dz+1+δ

)
(
A

∫ η

0
exp(z2) (erf(η) − erf(z)) dz + (1 + δ) erf(η)

)
,

and it follows immediately that (y, λ) is a solution to (3.3)–(3.6). ��
Lemma 3.2 If p ≥ 0, δ ≥ 0, then there exists a unique solution (y, λ) to the functional
problem defined by (3.7)–(3.8) with λ > 0, y ∈ C∞[0, λ] and y ≥ 0.

Proof It is easy to see that ϕ2(0) = 0, ϕ2(+∞) = +∞ and ϕ2 is an increasing function.
Then, there exists a unique λ > 0 solution to equation (3.7).

Let 
 be the function given by (2.10). On the one hand, 
(0) = 0, 
(1) = 1+ δ
p+1 and


 in an increasing function then, there exists the function 
−1 : [0, 1 + δ
p+1 ] → [0, 1]. On

the other hand, �2(0) = 1+ δ
p+1 , �2(λ) = 0 and �2 is a decreasing function. Furthermore,

�2(x) ∈
[
0, 1 + δ

p+1

]
for all x ∈ [0, λ].

We conclude that there exists a unique function y ∈ C∞[0, λ] solution to the equation
(3.8) given by

y(η) = 
−1 (�2(η)) , 0 ≤ η ≤ λ. (3.14)

��
From the above lemmas, we are able to claim the following result:

Theorem 3.3 The Stefan problem governed by (1.1)–(1.5) has a unique similarity type solu-
tion (θ, s) given by (3.1)–(3.2) where (y, λ) is the unique solution to the functional problem
(3.7)–(3.8).

Remark 3.4 On the one hand, we have that 
 is an increasing function with 
(0) = 0 and

(1) = 1+ δ

p+1 . On the other hand, �2 is a decreasing function with �2(0) = 1+ δ
p+1 and

�2(λ) = 0. Then it follows that 0 ≤ y(η) ≤ 1, for 0 ≤ η ≤ λ. From this and Theorem 3.3,
we have that θ f < θ(x, t) < θ0, for all 0 < x < s(t), t > 0.

123
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4 Conclusion

One-dimensional non-classical Stefan problems with temperature-dependent thermal coef-
ficients and a Dirichlet type condition at fixed face x = 0 for a semi-infinite phase-change
material were considered. For two different types of heat sources, existence and uniqueness
of solution were obtained using the similarity method and exact solutions were found.
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