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Abstract

We consider a steady-state heat conduction problem in a multidimensional bounded
domain 2 for the Poisson equation with constant internal energy g and mixed boundary
conditions given by a constant temperature b in the portion I'y of the boundary and a
constant heat flux ¢ in the remaining portion I'; of the boundary. Moreover, we consider
a family of steady-state heat conduction problems with a convective condition on the
boundary I'; with heat transfer coefficient o and external temperature b. We obtain
explicitly, for a rectangular domain in R?, an annulus in R? and a spherical shell in
IR3, the optimal controls, the system states and adjoint states for the following optimal
control problems: a distributed control problem on the internal energy g, a boundary
optimal control problem on the heat flux ¢, a boundary optimal control problem on
the external temperature b and a distributed-boundary simultaneous optimal control
problem on the source g and the flux ¢. These explicit solutions can be used for testing
new numerical methods as a benchmark test. In agreement with theory, it is proved
that the system state, adjoint state, optimal controls and optimal values corresponding
to the problem with a convective condition on I'; converge, when o« — 00, to the
corresponding system state, adjoint state, optimal controls and optimal values that
arise from the problem with a temperature condition on I'y. Also, we analyze the
order of convergence in each case, which turns out to be 1/« being new for these kind
of elliptic optimal control problems.

Keywords Elliptic variational equalities - Distributed and boundary optimal control
problems - Mixed boundary conditions - Explicit solutions - Optimality conditions

Mathematics Subject Classification 35C05 - 35125 - 35J86 - 35R35 - 49J20 - 49K20

B Domingo A. Tarzia
DTarzia@austral.edu.ar

Extended author information available on the last page of the article

Published online: 07 May 2020 @ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s12190-020-01355-2&domain=pdf
http://orcid.org/0000-0002-2813-0419

J.Bollati et al.

1 Introduction

The goal of this paper is to show the explicit solution for eight elliptic optimal control
problems in two and three dimensional cases.

We consider a bounded domain 2 in R* (n = 2,3), whose regular boundary
I" consist of the union of three disjoint portions I'y, I'» and I'; with meas(I"1) >
0, meas(I';) > 0 and meas(I'3) > 0. We present the following steady-state heat
conduction problems S and S, (for each parameter « > 0) respectively, with mixed
boundary conditions

. du ou
Au=g, inQ u}rl =b, —a—n|r2 =gq, a—n}“ = (1)
. Juy Ouy Oy
—Aug =g inQ _Whﬂl =a(u —b), —W|r2=q, W‘RZO, (2)

where g is the internal energy in €2, b is the temperature on I'y for (1) and the temper-
ature of the external neighborhood of I'y for (2), g is the heat flux on I'; and o« > 0
is the heat transfer coefficient on I';. The above problems can be considered as the
steady-state Stefan problems, [11,25-27]. Note that mixed boundary conditions play
an important role in various applications, e.g. heat conduction and electric potential
problems [16]. In general, the solution of a mixed elliptic boundary problems is not
so regular [15] but there exist some examples which solutions are regular [1,20,24].

Let u and u, the unique solutions of the elliptic problems (1) and (2), respectively.
In relation with these state systems, we present the particular eight following optimal
control problems [2,21,23,29].

1.1 Distributed optimal control on the constant internal energy g

Following [12], we consider the distributed optimal control problems:

find gop € R suchthat Ji(gop) = miﬂré J1(g) 3)
F4S]
find g4, € R suchthat Jig(gq,,) =min Jig(g) 4
geR

with J; : R—>R5r and Ji4 : R—>R3’, given by

1 M 1 M
J1(8) = 5 Jug - | + 71 gl and Jia(g) = 5 Juag - |} + 7‘ lgll%

with H = L2(2), and where u ¢ and uy¢ denote the unique solutions of the problems
(1) and (2) respectively, for datag € R, b € R, z; € R and M, a positive constant.

1.2 Boundary optimal control on the constant heat fluxg on I';

Following [13], we formulate the boundary optimal control problems:
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find g,p € R suchthat J>(qop) = mm J2(q) (&)

find Ga,, € R suchthat Jy, (qaop) = ml]g J2s (q) (6)
qe
where J; : R—)]Ra“ and Jy, : R—)RS‘ given by

1 M 1 M
1(q) =5 Jug - | + 72 I, and Jau(q) = 3 uaq - | + 72 g1

with Q = L? (I'y) where Uy Y Ugg are the unique solutions of the problems (1) and
(2) respectively, for data g € R, b € R, z4 € R and M; a positive constant.

1.3 Boundary optimal control on the constant temperature b in an external
neighborhood of I';

Following [3], we consider the boundary optimal control problems:

find by, € R suchthat J3(b,p) = mln J3(b) @)

find by, € R suchthat J3q(ba,,) = min Jis(q) (8)
beR
with J3 : R—)RS‘ and J3q : R—)RS‘, given by

1 2 M3 2 1 2 M3 2
J3(b) = 3 lup — zall7 + N bz and J3g(b) = 3 luap — zally + > 1615

with B = L? (I'y), where u y uyp are the unique solutions of the problems (1) and
(2) respectively, for data g € R, ¢ € R, z4 € R and M3 a positive constant.

1.4 Simultaneous distributed-boundary optimal control on the constant source g
and the constant flux g

Following [14], we formulate the simultaneous distributed-boundary optimal control
problems:

find (g,q)op € R xR suchthat J4((g,q)op) = min_ Ju(g, q) )
g€R,geR

find (g, ¢)q,, € R x R such that J4o((g, ¢)a,,) = min Jas(g, q) (10)
geR,geR
with the cost functional J4 : R x R—)]R{g and Jay : R x R—)RS given by

1 2 My Ms
18 9) = 5 lugay = zallyy + = I8l + = gl
1 2 My 5
Jaa(8,9) = 5 [uate.q) = 2a [y + = Ngl + = lalg
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where u g 4) and uq g, 4) are the unique solutions of the problems (1) and (2) respec-
tively, for data b € R, z4 € R, M4 and M5 positive constants.

1.5 Adjoint states

We define the adjoint state corresponding to problems S and S, as the unique solution
of the following mixed elliptic problems, respectively.

A o =0 ) _yg P o, an
p= 2d> Plp, =Y on'T2 = 7 an'Ts 7
and
. 0 pa 0 Pa 3 Pa
_Apazua—Zd, in Q —a—n|l—~l = UPq, on |F2 =0, on |F3 =0
(12)

with u# and u,, given by the unique solution of (1) and (2), respectively. Other theoretical
optimal control problems in the subject was done in [4,5,7-10,17-19,22,30].

In [3,12-14] were obtained results of existence and uniqueness of the optimal
controls, as well also convergence results, when the heat transfer coefficient & goes
to infinity, of the optimal controls, the system states and the adjoint states, in suitable
Sobolev spaces.

In Sect. 2, we calculate explicitly the optimal controls, the system states and the
adjoint states, for the optimal control problems previously formulated, related to S and
S, respectively, in a rectangular domain in R?. In Sects. 3 and 4, similar results are
obtained in an annulus in R? and a spherical shell in R3, respectively. In all cases, we
obtain, in agreement with theory, the convergence of the optimal controls and values
when ¢ — oo as it was obtained in [3,12—-14] and for numerical analysis in [28].
Also, the corresponding rates of convergence are studied in Theorem 2.5 for the first
domain and in the Appendix A of our arXiv version [6] (page 23-26 for the second
domain and page 27-29 for the third domain), obtaining that the order of convergence
in each case is 1 /o which is new for these elliptic optimal control problems.

We remark that the expressions for the system states u, u, the adjoint states p, pq,
the functional cost J;, Jiy,i = 1, ..., 4, and the optimal controls are defined for each
particular domain, using the same notation.

2 Optimal solutions for a rectangle in R?

In this Section, we consider a rectangular domain in the plane, that is
Q ={x,y)eR:0<x<xp 0<y<yl
whose boundaries I'1, I'; and I'; are given by (see Fig. 1):
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Explicit solutions for distributed, boundary...

Fig.1 Rectangular domain in
the plane (n = 2)

Iy
!/l»/
Fl /%/ ry
X
Iy Lo
1"1={(x,y)eR2:x:0, 0 <y <o}, ng{(x,y)eRz:xzxo, 0<y <y}
1"3={(x,y)eR2:y=0,0<x<xo}U {(x,y)eR21y=y0,0<x<xo}

If we consider constant data g, b, «, ¢ and the desired system state z; € R, we
obtain the following result, which proof is omitted:

Lemma 2.1 (i) The system state and adjoint state for the problem (1) and (11) respec-
tively are given by:

2
u(x, y) = u(x) = —g% +(gx0 — q)x + b
4 3 2
px,y) =pk) = gﬂ — (gxo — q)— —(b- Zd)— + Ax

2
where A = xo[g% —q3 4 (b - zd)].
(ii) The system state and adjoint state for the problem (2) and (12) respectively take
the expressions:

2
X X0 —
Ug(x,y) = ug(x) = 85 + (gxo — q)x + ga_q +b
4 3
Pa(X,y) = pe(x) = gﬂ — (gx0 — q)—

2
X Ay
—(gOT+(b—Zd))_+Aax+—

where Ay = xo [gxé ( + ﬁ) qxo (— — ﬁ) + (b — Zd)]

Remark 2.2 1t is immediate that u, converges to u and p, to p, when ¢ — o0.
Moreover, we can prove that there exists a positive constant K1 = Ki(xo, Y0, &, q)
such that:

LS! 12

llug — u“H‘(Ql) = |lug — M||L2(Q,) = o K1 = (x0y0)'"|g — gxol.
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In the same way, a similar estimate can be obtained for the adjoint states p, and p.
It can be proved that there exists a positive constant L1 = L (xo, Yo, &, 4, b, Z4) such

that:
Jm ol[pe = pll2g) = L
where
3
L= {xfgﬁ) 180(b + z4)* + 129¢%x3 — 208gqx3 + 84g° x5 —

1/2

—~60(b — z4)(Sqx0 — 4:3)|
Next, we present the following lemma that will allow us to find the solution of the

optimal control problems:
Lemma 2.3 (i) For the problem (1), it can be obtained that:

! 2 Y0
EHM - Zd”LZ(QI) = 7

[Clgzxg + C2g?x3 + C3xo(b — z4)* + Cagqxg
+ Csgx)(b — 2) + Coqxd (b — za) |

With.'
3 =1, 4 = s

C—2 C =
1_157 2_31

(ii) For the problem (2), we have:

1 Y0

Sl = 2l 2y = 5| C1o8”38 + C2ag53 + Craxolb = 20)* + Ciagaxt
+ Csag (b — 2) + Coaqy (b — 20)

with:
Ciog = 2 + 2 ! Cry = ! + ! ! Ciyu=1=C
=15 3axg azxé =3 axg azxg o= =
Cor — 5 5 2 Co — 2 n Co — 2
=TT 3axg oﬂxg =3 0 bor = axg
Remark 2.4 1t is clear that C;, converges to Cj, when o« — oo fori =1,2,...,6
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Theorem 2.5 (i) For the distributed optimal control problems (3) and (4), the optimal
controls are given by:

Caqxo + C5(b — z4)  Caagxo + Csa (b — z4)

8op = — s 8aop =
2x3 <C1 - f-g) 2x3 <C1a + %)

13)
0

and the optimal values are given by:

T (op) = ——— 4 (cl - M—ﬂl) (C20Px3 + C3(b = 20 + Cogob — 2a)
8 (C1 + %4')
*o
2
— (Csaxo+Csb - 2) ] (14)
and
X0Y0
Jia (gﬂtop) = —y 4 (Cla + 1)\(4_5) (C2aq2x(% + C3¢ (b — Zd)2
8 (cm + %‘)
%o
2
+ Coag0(b = 20)) = (CaaXo + Csalb — 20)) | (1)

(ii) For the boundary optimal control problems (5) and (6), the optimal controls are
given by:

Cagxi + Co(b — z4) 3 Ciagx3 + Cou(b — 24)

2x0 <C2 + }f—g) 2x0 (CZ(x + %)

0
and the optimal values can be expressed as:

Jop = — s op = (16)

M
I (qop) = ——220 [4(c2 + x—_f)(clg%g + C3(b — 24)* + Csgxl(b — Zd))
8 (Cz + @> 0
0
2
— (Cagg + Csb—z0)) | (17)
and
X0Y0 My
J2a (day) = 0 [4(Cou + 22 ) (Crog®sf + Cralb — z0)?

8 <C2a + %) *o
X0

+ Csag (b —20))

~ (Caas} + Coatd —20)) | (18)
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(iii) For the boundary optimal control problems (7) and (8), the optimal controls are
given by:

ngx(% + Cegxo — 2C3z4
bup = - v s aop =
2(C3+ 28

B Csagx3 + Coaqxo — 2C3q24
M
2(Cao + M)

(19)
and the optimal values are:
X0Y0 M3
J3 (bop) = —yM[4(C3 + —) (Clgzxf)1 + C2g?x3 + G325
8 (C3 + X—03) X0
+ C4gqx8 — C5gxgzd — C6qx0Zd)
2
- ( —2C3zq + Csgxd + C6qx0> ] (20)
and
X0Y0 M3
Jsar (bayy) = [4(C3a + ;) (Clagzxg + Caaq?x2

M
+ C3o¢Z(21 + C4ag61x8 - CSagngd
2
— Couqxoza) = (= 2Csuza + Csa3d + Coagvo) |- 21)

(iv) For the distributed-boundary optimal control problem (9) and (10), the optimal
solutions are given by:

b —za) b —zq)
(& Dop = (87,97 = ( 5— A1, I (22)
XO X0
where
C4Cg — 2Cs (02 + %) C4Cs —2Cs (cl + %)
Al = 0 s I, = 0
4(CI+M:><C2+M;)—CZ 4(cl+&f)(cz+%5>—c§
X0 R X0 X0
and
b —za) b —za)
(& Doy = @ 45") = ( Al , (23)
xo X0
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Explicit solutions for distributed, boundary...

with

Ci4Coa — 2Csq (Cza + %)

4 (Cla + = xO ) <C2a + z) C4a

C4aCsa — 2Coa (cm + %4)
In; = 0

4 <Cla + = ) <C2a + —> Cia
0 X0

obtaining the following optimal values:

Ay

b — 2
I3 (87 q7) = x0y0(b — z4) [—4C3 (Cl N %) (Cz N %5>
M. M
2(03 —4 (C1 + 75?) (Cz + 785) )
+c? (C1 + %) + ¢? (Cz + %) +C3CF — C4C5C6:| (24)
0 0
and

x0y0(b — za)?

Jag (ggp’ qu) =
2 (Cg%a —4 <C1a + A > (CZO( + 7))
0 X0
|:_ 4C301 (Cla + %f) <C20¢ + &;5)
X0 X0

+C2, (cla 4 %“) +C2, (cm 4 %) + C30C2, — c4ac5ac6a]
(25)

(v) When o — oo the following convergences and estimates hold:

~

(@) 8a,, = 8op With |ga,, — gopl = O
(b) oy, = Gop with |anp - CIOp| =0
(©) ba,, = bop With |by,, — bop| = O
) (& Doy = (8:9)op Wwith g5 — g

A~~~
RI—RI—g =
~— —

S
Il
|—

O (y

|—
~—

) and |g3" —q?| = O (3

Moreover, when o — 00, we have:

@) Jia (gotop) - Ji (gop) with  |Jjq (gozo,,) = (gap)| = (é)
(0) J2a (dayy) = F2(Gop) With )2 (4a,,) = J2(q0p)| = O ()
() J3a otgp) — J3(bop) with |J34 (bozop) — J3(bop)| = (é)

(b
() Jao ((8: Day) = Ja((8. Dop) With [ Jag (8. @ayy) — Ja((8. Dop)| =
1

o)
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Proof (i) Taking into account that the functional J; and J4 are given by the following
quadratic forms

Yo
Ji(g) = E[gz(clxg + MlXO) + g(CM]xg + Csxg (b — Zd))

+ Czqzxg + Cyxo(b — z4)* + C6qx§(b — zd)]
and

Yo
J1a(g) = ?[gz(claxg + Mlxo) + g(Cqué + Csuxp (b — Zd))

+ Caagx3 + Caa¥o(b — 20)* + Coaqxd (b — 2a) |

we obtain that the optimal solutions g, and 8o,y for the problems (3) and (4) are
given by (13) since the second derivative is positive in both cases.
In addition, if we evaluate the functional J; at g, it is obtained formula (14). In
a similar way, computing Ji, at 8atp it can be derived the closed form (15).

(i1) The functional J, and J,, are given by the expressions:

T2(q) = 2 [4* (Coxi + M2) + 4 (Cagxt + Coxd b — z0))

+ C1g%xy + C3x0(b — za)* + Csgxg (b — Zd)]
and

0
D (g) = y? [612 (Czaxg + Mz) +gq (C4agxg + Ceaxi (b — Zd))

+ Clag®xy + Caaxo(b — 24)* + Csagxg (b — z,n]

and then the corresponding minimum are given by (16) since the second deriva-
tive is positive in both cases. Evaluating J> and J2 at gop and g, respectively,
and through computations, the formulas (17) and (18) can be obtained.

(iii) For the problems (7) and (8), the functional J3 and J3, can be expressed as

J3(b) = % [bz (C3sxo + M3) +b (—2C3xozd + Csgxp + C6qxg>
+ Clgzx(s) + C2g%x3 + C3x023 + C4gqx8 — Csgxjza — Cﬁqxgzd]
and

Yo
Fa(b) = = [6? (C3axo + M3) + b (—2C30x024 + Cs08%3 + Coaq})

+ Clag’x + C2aq*x3 + C3ax025 + Caqgqxy — Csagx3za — Cmq}%m]
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(iv)

)

and therefore the optimal controls are given by (19) since the second derivative
is positive in both cases. The formulas (20) and (21) are derived from evaluating
J3 and J34 at by, and ba{,p.

For the distributed-boundary optimal control problems (9) and (10), the func-
tional J4 and Jy, can be written as:

Y0
Ja(g.9) == [gz (Clx(s) + M4xo) +4q° (szg + Ms) + Cagqxy

+ Csgxg (b — z4) + Coqx§ (b — za) + C3x0(b — Zd)z]
and

Yo
Jaa (g, q) = > [82 (meS + M4xo) +4¢? <C2ax8 + Ms) + Ca089xy

+ Csa8x3(b = 20) + Coaq 3 (b = 20) + Craxolb = 20)° .

Therefore, the optimal solutions of the problems (9) and (10), take the form (22)
and (23), respectively, due to the second partial derivative test. In addition, the
optimal values given by formulas (24) and (25) are deduced by evaluating J4 at
(8, @)op and Jyy at (g, Q)a01,~

The convergences can be easily proved by taking into account Remark 2.4 and the
closed forms of the optimal controls and optimal values given by the preceding
items (i)—(iv). Moreover, the following limits can be computed for the optimal
controls:

5x0| ~150M1g:0 + 4(45My = 2)(b = z)x§ + 5413

all)noloalgaop - g0p| = 4 (15M1 + 2x8)2

x0|60g Max3 + 5gx3 + 12(6M: — <) (b — 20)|

all)mooozlqao,, —4opl = 8 (3M; + xg)z
. _ Xolg — gxol
alewa|baop o b()p' - m

and for the simultaneous control we have:

 40x0(b — z4) )
=

lim «|g? — g°P| —207360Ms M2 — 8640M4Msx]

oa— 00
— 1440 Myx§ + 18432M2x]
+ 168 Msx] + 357"

8x0(b —
lim «|g? — g% = M)1036800M§M5 — 172800M2x3

o—00 P
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— 227520M4Msxg — 7080 Myx]
— 768 Msx§ + 3x}!
with
Py =3 (2880M4M5 +960Muxg + 384Msxd + 3xg)
(320M4 <3M5 + xg) + 128 Msx + xg) .

In the case of the optimal values, we have:

lim oz‘fm(gaop) - Jl(gop)‘
o—>00
_ X0Yo
192 (15M; + 2x;)

(8(b — 20)(45M) + x) + qxo(xf — 180M1)))

. )(40(19 — za)x3 + 3q(40M; + 3x3))

lim a‘]za(qa(,p) - JZ(Qop)‘
o—> 00
B 3o
128 (3M5 + x3)°
(12(b — 2a) (X + 12My) + x5 (48M; + XS))‘

‘( —4(b — zqg)x0 + g(8M; +x(3))>

[ T30 by = J3(bap)|

1 |M3xoy0(gx0 — q) (2gx3 — 3gx0 — 624) ‘
o 6(M3 + xo)

lim ot‘.ha (8%, q) — Ja(g, qF )‘
o—> 00

64x330(b — z)? (120M4 + 80Msx0 + x{ )

2
3(960My Ms + 320Maxg + 128Msx{ + 7 )

(180M4M5 + 15Myxd + 4Msxd + xg).

3 Optimal solutions for an annulus in R2

We consider the following particular domain
QL ={r0eR:ri<r<r, 0<60<21}
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Fig.2 Annulus in the plane A
(n = 2) and spherical shell in
the space (n = 3)

¥
/ h

with boundary I'1 and I'; given by (see Fig. 2):
I ={r.0ecR:r=r, 0<0 <27}, To={(r,0)eR*:r=ry, 0<0 <27}

In similar way to previous Section, if we take constant data g, b, , g and the desired
system state z; € R, we obtain the following result:

Lemma 3.1 (i) The system state and the adjoint state for the problem (1) are given by

.0y =) = g% <<%>21°g (ﬁ) = (ﬁ)z + %) — grlog (ﬁ) +b

pr.0) = p(r) = g e (% (%)2 -3- (ﬁ—f)z <log ([—1) - 1))

+q7 (log (L) - 1) — (b —za)5 + Dilog (ﬁ) + D,

+ %) —qr (log (:—f) - %) + (b — Zd)]

[8% (% - (%>2) +qr2+ (b — Zd)] :

(ii) The system state and the adjoint state for the problem (2) are given by
w0 =00 = () (o0 (5) + 2) ~ 4 (£) 4 -

—qr (log (%) + <1+1) +b

)
e,
I
|5
—
oo
ol
7N
S
s
~
[\)
S
—
o
(]
/N
=S
N—"
|
FNT
N—"

=)
[\)

1
NS
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2
1 1
24z —z—(i—f) (log(f—l)—l—;gzmn)]
+

where

2 [ 2 2
=5 [F ((2) (e () - Frat) 1 -25)

2 [ 2
=Oled (3 _(r o2 2 2 1
Doy = 7|82 <8 (rl) 1+ozr22 ar +a2r12>+a2r12 20”’1)

Remark 3.2 From the formulas given above, it is clear that u, converges to u and p,
to p, when ¢ — oo. Furthermore, we can prove that there exists a positive constant
K> = K»(r1, 12, g, g) such that:

K>
e = ullgi(e,) = llua = ulli2@y = =

where

VA (3 =) gy — g (3 — )]

K> =
2 2r

In the same way, a similar estimate can be obtained for the adjoint states py and p. In
Appendix A of our arXiv version [6], it is proved that there exists a positive constant
Lr = Ly(r1,1m, 8,9, b, zg) such that:

lim_allpa = pll2@y) = L2

Now, we present the following lemma that will allow us to obtain the explicit
solutions for the optimal control problems on the annulus in R

Lemma 3.3 (i) For the problem (1), it can be obtained that:

1
Sl =2alq,) = 7 | Erg’rf + Exg’r + Esri(b = 200 + Eagar]

+Esgrib — za) + Esgri(b —za) |
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with:

= [ () (2) (o () 8) (3 o (2) - 2 (5) )

(ii) For the problem (2), we have:

1
Sl =2l 2qy) = 7 | Erasrf + Erag®rf + Esar}(b — 20"+

+E408q77 + Esagri(b — za) + Eeaqri (b — Zd)]

with

4
3 5 1 7 3
taz) * (%) (10% (7) —itan (z —2log (%)) - Tf)

6
2 3 17 3 2 1
()" (e () - o () + 5 s+ om (7) + 2 )

2 1
ﬁ—l) 4 s (410g (%) - 2))}
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Remark 3.4 1t is immediate that E;, converges to E;, when « — oo for i
1,2,...,6.

Theorem 3.5 (i) For the distributed optimal control problems (3) and (4), the optimal
solutions are given by:

Esqri + Es(b — zq)

E40qr1 + Esq(b — z4)
L Bay=—— . (26)
2r? <E1 + Eﬁf—;) 2r? <E1a + EM%)

8op =

1
and the optimal values can be expressed as:

) (E2¢*r?+E3(b—24)*+Eoqri (b—24))—(E4qri+Es (b—Zd))2:|
1

M
4<E1+E3—41)
ry

ﬂr]2|:4<E|+E3 /r{‘]
Ji (gop) =

27

and

M
wrf [4(E1a+53a 7‘) (E2eg?ri+Esa(b=24)*+Eoaqr1 (b=2a))—(Eaaqr1+Ese <b—zd>)2]
Jia (ga[,p) = L

M
4(Ela+E3a 71)
1

(28)

(ii) For the boundary optimal control problems (5) and (6), the optimal solutions are
given by:

Esgri + E¢(b — z4)
Jop = —

Esqgr? + Eoo(b — za)
D uy = (29)
2ry <E2 + M#”) 2ry <E2a + M#”)

where the optimal values are given by:

nr? [4(Ez+ %)(Elg%;‘ﬂsa (h—zd>2+Esgr%<b—zd>)—(E4gr%+E6(h—zd>)2]
J2(qop) = L

4<E2+M+(2>
i

(30)
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and
M 2
nr%[4(Eza+ r24r2)(Elugzrf+E3a(b—Z¢l)2+E5agr12(b—Zd))—(Emgrlz+Eﬁu(b—Zd)) }
J2a(‘]ao ) = !
P
(e )
1

€1V

(iii) For the boundary optimal control problems (7) and (8), the optimal controls are
given by

_ Esgr? + Eeqri — 2E3zy _ Esqgr? + Eoqqri — 2E3q24

bop =

oy —
2(Es + 1) ’ 2 (Eso + )
(32)
respectively. In addition, the optimal values are given by:
Jabop) = [4 (s + 22) (E1g?r} + Eag®r + Eaz]
+Eagqri — Esgriza — Eﬁquzd>
(- 2 g L
2E3zq + Esgri + Eeqri e (33)
4(E+57)

and

r

S3a(ba,,) = [4 (E3a + %) <E1ag2ri1 + Exaq’ri + EsnZd
+Es8qri — Esqgriza — E6aquzd)

— (“2Esuza + Esagr + E r)2 _ 3
3ald 5a81 6aqrl 4(E3a+£>.

n

(iv) For the distributed-boundary optimal control problem (9) and (10), the optimal
solutions are given by

(35)

i ri

b— b—
(8 @hop = (&4 = (( ) g, L) nz)

with
M M
E4E6*2E5(E2+L4”2 E4E572E6(51+Es —44)
Ay = d I, = 4
M. Msr ’ M. M.
4(E1+E3r—f)<Ez+rL42)—E§ 4(E1+E3 r—f)(Eﬁ— jﬁ)—Eﬁ
1 1 1 1
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and
b —zq) b—zq)
(& Dayy = (& 4a") = 5 A, My, (36)
ri r
where
Es4 E6n _2E5a (E2u+ 1‘4:4’”2 ) Esy ESa _2E6a (Elot +E3q¢ %A:‘)
A2 = 1 Hzm — 5

o M. M ’
4<E1a+53ar—f>(E ot sr2> E3,
1

4<E|a+E3a 4><E2¢,+M5’2> E2,
l l

Moreover, the optimal values are given by

nrd(b — z4)*

(4 (El + E3%> (E + M*’Z) - Eg)
1
x [4153 (E1 + E3%f> (E + MS’Z)
r r

—E2 (E1 + &%ﬁ) - (E + Mm) — E3EZ + E4E5E6}
37

1, q) =

and

nri(b — z4)*

Jae (8eF 45" =
(4 (Ela + E3D(]:,/I_§‘> <E20! + M:{Z) - Eé%a)
X |:4E3a (Ela + E3a%> (E2a + %)
1 1
_Eéa (Ela + ESQZ;I_?) — Ega <E2o¢ + A’{’s,lrz)

B3 B3, + EaaEsaBoa | (38)

(v) The convergences and estimates obtained in (v) of Theorem 2.5 also hold for the
annulus in R?.

Proof (i) Taking into account that the functional J; and Ji, can be expressed in the
following quadratic forms:

Ji(g)=m [82(E1V16 + MiEyrd) + ¢ (E4qr15 + Es(b — Zd)”?)

+ (B2 + Es(b — 20} + Esqrio —z0)) |
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Explicit solutions for distributed, boundary...

(ii)

and

Jie(@ =7 [82 (Elarf’ + M, E3ar12) +g (E4aqrf + Es54(b — Zd)”?)

+ (Ezozqzri1 + E3q(b — 24)*r} + Egaqri(b — Zd))]

it can be obtained that the optimal solutions g,, and g, for the problems (3)
and (4) are given by (26) since the second derivative is positive in both cases. The
optimal values formulas (27) and (28) are deduced by evaluating J; and Ji4 at gop
and go,,, respectively.

The functional J, and Jp4 are given by the expressions:

h(g)=n [42 (EN;¥ + szz) +q (E4r15g + E6r13(b — zd)>

+ (Elrlﬁgz + E3ri(b — za)* + Esrig(b — Zd))]
and

Daq) = 7 [ (Eaar} + Mora) + g (Eaaris + Esari b — 20))

+ (Erarfe? + Esarf (b = 20)* + Esarfe® = 20)) |

Therefore it is immediate that the optimal controls for problems (5) and (6) are
given by (29) since the second derivative is positive in both cases.

The computation of J1(¢,p) and J2¢(qa,,) leads to the closed formulas (30) and
(31) for the optimal values of the control problems.

(iii) For the problems (7) and (8), the functional J3 and J3, are given by

J3(b) =m [(E3r12 + M3}’1) b? + (—ZZdE3r12 + E5rfg + E6r13q> b

+ (Elr?gz + Exr{q® + Esrizg + Earigq — Esrigza — Eef?m)]
and

J3a(b) = 7 [(Ezar? + Mar1) b* + (=224 E3ar} + Esarg + Eeariq) b

+ (Elarlﬁgz + E2arj‘q2 + E3ar12Z[2] + E4ar15gq - Escxrfgzd - Eearlaqzdﬂ .

Therefore the optimal controls are given by (32) since the second derivative is
positive in both cases.

The optimal values given by expressions (33) and (34) are obtained by computing
J3 and J34 at by, and b%p, respectively.

(iv) For the distributed-boundary optimal control problems (9) and (10), the func-

tional J4 can be expressed as
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Ja(g,q) =7 [(Eli’]ﬁ + MyEsr})g® + (Earf + Msr)q® + Earigq

+ Esrig(b — za) + Eeriq(b — za) + Esri (b — Zd)z]
and the functional Jy, is given by:

Jan(g,q) =7 [(Emﬂ”]6 + MyEsqr)g? + (Eagri + Msra)q® + Eqqrigq

+ Esartgb = ) + Esariq(b = 2) + Ezar}(b — 20)?

from where it can be obtained that the optimal solutions are given by (35) and
(36), respectively, due to the second partial derivative test. Formulas (37) and
(38) are deduced by evaluating Jy4 at (g, q)op and Jy, at (g, q)%p.

(v) The convergences and estimates of the optimal controls and the optimal values
when o — oo are obtained by taking into account the closed formulas given in
()—(iv) and the Remark 3.4. As the computations become cumbersome, they can
be found in the Appendix A (pages 23-26) of our arXiv version [6].

O

4 Optimal solutions for a spherical shell in R3

We consider the particular domain
Q={(r,0,¢):r1<r<r;0<0<2r; 0<¢ <m}
with boundary I' = Uiz:l I';, where

F1={(r1,9,¢)eR3; 0<60<2m,0<¢ <m}
M ={(rn.0,¢)eR: 0<6 <21,0<¢<n).

In similar way to previous Sections, if we take constant data g, b, o, ¢ and the
desired system state z; € R, we obtain the following result:

Lemma 4.1 (i) The system state and the adjoint state for the problem (1) are given by
2 2 2
_ _ bt/ n\ _ 72 (n)? n(n_
u(r,9,¢)—u(r)—g3 {2 2<r1) +<r1) r (rl) +qu (r l>+b
2 2
_ L L 2\ (Y _ L)y o1
pir.0.9)=pr)=grig (20<r1) +<r>(’1) 3<r1) 6
2
F
+qr§5<L—1)—r—(b—zd)+—l+Fz
1 6 r
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where
1 301 21 1 n
2,32 (2 (=) - — (Y- Z2)=-2@p-—
F_gr‘r2< 5 (%) +5<r1> 18)+qr2<3(’1> 2) 30w
P — r? 7 ( ) n r2 rlz(b ) Fy
2789 a0\ ang +gb -z = o
(ii) The system state and the adjoint state for the problem (2) are given by
0o — IS LR S N A AT ()2
war0.9) =ua) =g | 5= == () +(2) (14 o) -7 ()
B2
r ary
2 2
=2 (L (- ) ()
Pa(r;97¢)—pa(r)_grl6 (20 (r) +<r>(r?>
1 /,.\3 1 1 1
__(n B R
3(”) <1+ar1) 6+3ar1>

gt =14 — rz(b y+ Doy g
2 e YT Lo
qzz 3r1 301r12 6 “d r 2

9
1 1 1 r3
4 2
+qr; (§ (%) (1 + 017’1) - E) - g(b —24)
4
rt |7 7 1 3 1 1
Fr, — o | = — (2 1 — —
2 89[40 10ar1+a2r12 (1)( ar1+o¢2r12):|

r3 1 1 r? 2 Fia 1
tgri=(1-—+ =5 |+ Fb-zw)(1-—)-—(1+—).
2 6 ary r ary

3 ary oty

Remark 4.2 The convergences of uy to u, and py to p, when @ — oo can be imme-

diately verified.
In addition, there exists a positive constant K3 = K3(rq, r2, g, ¢) such that:

K3 477(7'2_7'1)(351’"2 +g(r1 7‘23))2
_ =3 K3 =
[lug u||H'(Q3) o 3 ( 27,,1

Analogously, a similar estimate can be proved for the adjoint states p, and p (see
Appendix A in our arXiv version (page 23) [6]).

Now, we present the following lemma that will allow us to obtain the explicit
solutions for the optimal control problems on the spherical shell in R3.
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Lemma4.3 (i) For the problem (1), it can be obtained that:
1
Sl =zl g, = 7 [Girlg? + Garirdq? + Gar) (b — 20 + Garirigg
+Gsrigb —z0) + Geriria(b — z0)|
with:
3 5 7 8 9
2 1 1 1 2 1
Gr=-gs+a(2) -5(2) +3(32) -&5(3) +%(7)
G, = 1 ¥ ¥ 2 1 (nr 3
=73+t =) T3ln
Gy=1(-1+(2)
3=3| -1+ "
2 3
7 1 1
Gi=—ig+§(2) +5(2) -1
3 5 6
) 2 2
Gs=—35+5(3) ~3(2) +3 (%)
2 3
Go=-3+(3) ~3(3)
(ii) For the problem (2), we have:

1
5””“ - Zdlliz(m) =7 [Grar]{ 8 + Gaur1739” + Gaari (b — 24)* + Gaaririgq

+Gsar{g(b = 2) + Geartr3a(b - za) |

3
_ 2 2 n (1L 4 i
Gile = —g35 + 138an, 72 T (r1> (45 Bary T 9‘12,[2)

5 6 7 8
2 1 1(r 2 1
(-2 sk (3 +4(3) -3 (3)" (1 +21)

G = —1 (1 1 1 rn r221 1 Ir2312 1

=3\ mantaz) T~ tar) T3l Tan T2
1 r23

G3a=G3=§ _]+(;)

2
I 7 _ 2 1(n _ 2
Gao = — 155 + 7507, e <r1> <1 an

4 5
3 11 1 2
SORHONEEIRIO
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2

3 5 6
2 2 2 2 2 1
Go=—%+5+3(2) (1-Z)-3(2) +3(2) (1+&)
2 3
1 2 5 2 1
Go=-4(1-2)+ (2 -1 (2) (1+ %)

Remark 4.4 1t is clear that G;, converges to G;, when o — oo fori = 1,2,...,6.

Theorem 4.5 (i) For the distributed optimal control problems (3) and (4), the optimal
solutions are given by:

2 2
Gag 2 + Gs(b — za) Gaaq 2 + Gsalb — 24)

) gOtnp = -
2r? (G1 + G3 Aj—ig> 2r? (Gla + G3a”r4—ig>

8op = — (39)

The optimal values corresponding to those optimal controls are given by the fol-
lowing formulas:

_ M, 273 2 3
J1(gop) = |4 G]-l-GgF Gag ¥+G3(b—zd) +GﬁqH(b—Zd)

’ wri
— | Gaa7 +Gsb—za) (40)
2 (G] + G3%)
1

and

_ M, 21 2 7
J1a(8a,y) = [4| Gla + G3a? Gag i G3a(b —2a)" + Geaq 7 (b — 2a)

5 2
- <G4aq% +Gsa(b - Zd)) }
:(

3
Try

(4D
Gio + G3g Mf)
1

(ii) For the boundary optimal control problems (5) and (6), the optimal solutions are

given by:
ri (Gagri + Ge(b — z4)) r1 (Gaagri + Gea (b — z4))
qu:_p s Gagy, :_p
2 (Gz + Lﬁ) 2 (Gza + Lzz)
riry riry

(42)

The corresponding optimal values can be expressed by:
J2(qop) = [4 (Gz + %> (Grg?rt +Gsb = 20 + Gsgritb — z))
)

- (Gasrt + oo - 20)) |
d

(43)
G+ 1)
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and

20 (qa,,) = [4 (Gza + %) (Gragr! + Gaalb — 20 + Gsagri (b — 2a)

nr}
2 (G2 + 223

(iii) For the boundary optimal control problems (7) and (8), the optimal controls are
given by

2
- (G4o[gr12 + Geu (b — Zd)) } 44)

2 s 2 ry
Gsgri + Geq;r —2G3z4 Gsagri + Geaq 7 — 2G3a2d
- Y ) Cop — - M
2 (G3 n r—f) 2 (G3a + —3)

bop =

i (45)

Moreover, J3(bop) and J34(by,,) can be obtained by the following formulas:

Qop

4
J3(bop) = [4 (G5+%%) (Gngri‘ +G2g* % + Gazg + Gagarir
2 ry
—Gsgriza + Geq 7r2a

2\ 2
_ <—263zd + Gsgri + G6q%) } (46)
2(

and

4
J3a(be,,) = [4 <G3a + /1;141) (Gmgzri1 + Gzaqz:—% + G3azj + Gaagqrirs

2 3
—Gsag8rizd + Geaq 7+2d

3
Try

owrm)

I\ 2
_ (—2G3azd + Gsotgrl2 + Goaq :—21> :|

(iv) For the distributed-boundary optimal control problem (9) and (10), the optimal
solutions are given by

b—z b—
(& )op = (g7, g = [ L7 a5 L= 200 (48)
1 )
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with
<G4G6—2G5 (Gz—i—LSz)) <G4G5—ZG(, (G1+G3 %f))
A3 — rlrz 1_[3 — rl
My Ms \_ 2\’ My Ms \_ 2
oo Y ) ™ o) (o))
and
b —zq) b —za)ri
(ga Q)ao,, (go[ ’ qa ) ( 2 A30p 2 H3a (49)
n )
with
G40Gea—2G54 (Gza-i-%) G40 G54 —2Gey (Gla+G3a %44)
A3 2 I3 "1

o« = M ’ o = M.
(G.H+Gsa 4)<Gza+—> G3, <G1a+G%a 4>(Gza ljz)fcia
1 2 1 2

Furthermore, Jy at (g, q)op and Jag at (g, q)a,, can be computed by the following
expressions:

48 q) = [G4G5G6 +4 <61 + 03%) (Gz + %) Gs - (Gl + G3%> G
1 2 1

2w (b — zd)zr3

(G2 + >G2 G3Gii|
M.
<4 (Gl + G3r—if> (Gz + ) ) - Gi)

(50)
and
Jao (8 qP) = [GmGsdGﬁa +4 (Gm + Gsaﬁl—;> (Gza + ) G3a
— (Gm + GzMT) Gy
- (Gza + r’:”—j%) G3, — GaaGia] 27;(19 — )’ - (51)
(4 (Gm + Gsa,—;> (Gza + —%) - G§a>

(v) The estimates and convergences obtained in (v) of Theorem 2.5 are also verified
for the spherical shell in R3.

Proof (i) Taking into account that the functional J; and Ji, can be expressed in the
following quadratic forms:

Ji(g) =27 [(G1r17 MGy + (G4qr;‘r2 4G (b — zd)) g

+ (Gag?rird + Gar} b — z)* + Gearird b — z0)) |
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and

Ja(®) =27 [(Grar] + MiGaarD)g? + (Gaaarirs + Gsarib —20) ) 8
+ (Gaud®173 + Gaari (b = 2)* + Goaarird b — 20)) |
it can be obtained that the optimal solutions g, and gq,, for the problems (3)
and (4) are given by (39) since the second derivative is positive in both cases. The
optimal values formulas (40) and (41) are deduced by evaluating J; and Ji4 at g,
and gq,,, respectively.
(i1) The functional J, and J,, are given by the expressions:
J(g) =21 [(Gzrlré + M2r22) q2 + (G4rfr22g + G6r12r22(b - zd)) q

+ <G1r17g2 + G3r13(b — zd)2 + Gsrlsg(b - Zd))]
and

D2a(@) = 27 [(Gaarird + Mar}) ¢ + (Guartrdg + Goarfrd(b = 20)) 4
+ (Glarzgz + G3ar?(b - Zd)2 + G&ﬂ'fg(b - Zd))] .
Therefore it is immediate that the optimal controls for problems (5) and (6) are
given by (42) since the second derivative is positive in both cases.
The computation of J>(q,p) and Jog (C]a,,p) leads to the closed formulas (43) and

(44) for the optimal values of the control problems considered.
(iii) For the problems (7) and (8), the functional J3 and J3, are given by

J3(b) =27 [(Gﬁi3 + M3r]2) b+ (—2G3r?z¢1 + G5r15g + G6r12r22q> b

—i—G1r17g2 + G2r1r§q2 + Ggrfzﬁ + G4rfr22gq — Gsrfgzd + Gﬁrlzrzzqzd}
and

T (b) = 27 [(G3arf + Mar?) b2 + (—ZG3ar13Zd + Gsarig + Gmr%r%q) b

+G1ar18? + Gaarirq® + Gaariz + Gaartrigq — Gsarigza + Geartriqza .

Therefore the optimal controls are given by (45) since the second derivative is
positive in both cases.
The optimal values given by expressions (46) and (47) are obtained by computing
J3 and J34 at by, and b%p respectively.

(iv) For the distributed-boundary optimal control problems (9) and (10), the func-
tional J4 can be expressed as
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Ja(g.q) = 27 [(G1r] + MaGard)g? + (Garird + Msida® + Garfrigg

+ Gsrigb — za) + Gortrda(b — z) + Gari (b — z0)? |
and the functional Jy, is given by:

Jia(8.@) =27 [ (Grar] + MaGar)g® + (Gaani7d + MsrD)g? + Guaririsg

+ Gsar{8(b = 20) + Goartriq(b = 2) + Gaari b = 20)?

from where it can be obtained that the optimal solutions are given by (48) and
(49), respectively, due to the second partial derivative test. Formulas (50) and
(51) are deduced by evaluating Jy4 at (g, q)op and Jy, at (g, q)%p.

(v) The convergences and estimates of the optimal controls and the optimal values,
when o — o0 are obtained by taking into account the formulas given in (i)—(iv)
and the Remark 4.4. The corresponding computations can be found in Appendix
A of our arXiv version (pages 27-29) [6]. They are omitted here due to the fact
that they become cumbersome.

O

5 Conclusions

In this paper, two different steady-state heat conduction problems S and Sy, for the
Poisson equation with constant internal energy g and mixed boundary conditions have
been considered. The problem S corresponds to the case when a constant temperature b
is prescribed in the portion I'; of the boundary and a constant flux g on I';, while in the
problem S, a convective condition is imposed at I'; with a heat transfer coefficient «
and external temperature b. Different optimal control problems can be also considered:
a distributed control problem on the internal energy g, a boundary optimal control
problem on the heat flux ¢, a boundary optimal control problem on the external
temperature b and a distributed-boundary simultaneous optimal control problem on
the source g and the flux ¢ have been defined. We have obtained explicitly the optimal
values of these optimal control problems, already study theoretically in literature in a
general framework, for the particular domains: arectangle in R?, an annulus in R? and a
spherical shell in R3. We point out that this solutions provide a benchmark for testing
the accuracy of numerical methods. Also, the limit behaviour of the system state,
adjoint state, optimal controls and optimal values for the optimal control problems
defined from S, when @ — oo have been analysed; concluding that they converge
to the corresponding system state, adjoint state, optimal controls and optimal values
for the optimal control problems defined from S. All these limits have been proved
to present an order of convergence of 1/« which can be considered as new results
for these kind of elliptic optimal control problems. This estimate, obtained for this
particular domains, make us to believe that it also holds for a more general domain,
encouraging to prove it analytically.

@ Springer



J.Bollati et al.

Acknowledgements The present work has been partially sponsored by the European Union’s Horizon
2020 Research and Innovation Programme under the Marie Sklodowska-Curie Grant agreement 823731
CONMECH, and by the Project PIP No. 0275 from CONICET-UA, Rosario, Argentina; by the Project
ANPCyT PICTO Austral 2016 No. 0090 for the first and third authors; and by Project PPI No. 18/C468
from SECyT-UNRC, Rio Cuarto, Argentina for the second author.

References

11.

12.

15.
16.

17.

19.

20.

21.

22.

23.

24.

. Azzam, A., Kreyszig, E.: On solutions of elliptic equations satisfying mixed boundary conditions.

SIAM J. Math. Anal. 13, 254-262 (1982)

. Barbu, V.: Optimal Control of Variational Inequalities, Research Notes in Mathematics, vol. 100.

Pitman (Advanced Publishing Program), Boston (1984)

. Ben Belgacem, F., El Fekih, H., Metoui, H.: Singular perturbation for the Dirichlet boundary control

of elliptic problems. ESAIM: M2AN 37, 833-850 (2003)

. Bensoussan, A.: Teorfa moderna de control 6ptimo, Cuadern. Inst. Mat. Beppo Levi # 7, Rosario (1974)
. Bergounioux, M., Kunisch, K.: Augmented Lagrangian techniques for elliptic state constrained optimal

control problems. SIAM J. Control Optim. 35, 1524-1543 (1997)

. Bollati, J., Gariboldi, C.M., Tarzia, D.A.: Explicit Solutions for Distributed, Boundary and Distributed-

Boundary Elliptic Optimal Control Problems. arXiv:1902.09261

. Casas, E.,DeLosReyes, J.C., Troltzsch, F.: Sufficient second-order optimality conditions for semilinear

control problems with pointwise state constraints. STAM J. Optim 19, 616-643 (2008)

. Casas, E., Mateos, M., Raymond, J.P.: Penalization of Dirichlet optimal control problems. ESAIM:

COCYV 14, 782-809 (2009)

. Casas, E., Raymond, J.P.: Error estimates for the numerical approximation of Dirichlet boundary

control for semilinear elliptic equations. STAM J. Control Optim. 45(5), 1586-1611 (2006)

. Casas, E., Troltzsch, F.: Second-order necessary and sufficient optimality conditions for optimization

problems and applications to control theory. SIAM J. Optim. 13, 406—431 (2002)

Garguichevich, G., Tarzia, D.A.: The steady-state two-phase Stefan problem with an internal energy
and some related problems. Atti Sem. Mat. Univ. Modena 39, 615-634 (1991)

Gariboldi, C.M., Tarzia, D.A.: Convergence of distributed optimal controls on the internal energy in
mixed elliptic problems when the heat transfer coefficient goes to infinity. Appl. Math. Optim. 47,
213-230 (2003)

. Gariboldi, C.M., Tarzia, D.A.: Convergence of boundary optimal control problems with restrictions in

mixed elliptic Stefan-like problems. Adv. Differ. Equ. Control Process. 1(2), 113-132 (2008)

. Gariboldi, C.M., Tarzia, D.A.: Existence, uniqueness and convergence of simultaneous distributed-

boundary optimal control problems. Control Cybern. 44(1), 5-17 (2015)

Grisvard, P.: Elliptic problems in non-smooth domains. Pitman, London (1985)

Haller-Dintelmann-, R., Meyer-, C., Rehberg-, J., Schiela, A.: Holder continuity and optimal control
for nonsmooth elliptic problems. Appl. Math. Optim. 60, 397-428 (2009)

Hintermiiller, M., Hinze, M.: Moreau—Yosida regularization in state constrained elliptic control prob-
lems: error estimates and parameter adjustment. SIAM J. Numer. Anal. 47, 1666—1683 (2009)

. Hinze, M.: A variational discretization concept in control constrained optimization: the linear-quadratic

case. Comput. Optim. Appl. 30, 45-61 (2005)

Kesavan, S., Saint Jean Paulin, J.: Optimal control on perforated domains. J. Math. Anal. Appl. 229,
563-586 (1999)

Lanzani-, L., Capogna-, L., Brown, R.M.: The mixed problem in L? for some two-dimensional Lips-
chitz domains. Math. Ann. 342, 91-124 (2008)

Lions, J.L.: Controle optimal de systemes gouvernés par des équations aux dérivées partielles. Dunod,
Paris (1968)

Meyer-, C., Rosch-, A., Troltzsch, F.: Optimal control pf PDEs with regularized pointwise state con-
straints. Comput. Optim. Appl. 33, 209-228 (2006)

Neittaanmiki-, P., Sprekels-, J., Tiba, D.: Optimization of Elliptic Systems. Theory and Applications,
Springer Monographs in Mathematics. Springer, New York (2006)

Shamir, E.: Regularization of mixed second order elliptic problems. Isr. J. Math. 6, 150-168 (1968)

@ Springer


http://arxiv.org/abs/1902.09261

Explicit solutions for distributed, boundary...

25.

26.

27.

28.

29.

30.

Tabacman, E.D., Tarzia, D.A.: Sufficient and/or necessary condition for the heat transfer coefficient
on I'y and the heat flux on I'; to obtain a steady-state two-phase Stefan problem. J. Difter. Equ. 77,
16-37 (1989)

Tarzia, D.A.: Sur le probleme de Stefan & deux phases, pp. 941-944. Comptes Rendus Acad. Sci., Paris
(1979)

Tarzia, D.A.: An inequality for the constant heat flux to obtain a steady-state two-phase Stefan problem.
Eng. Anal. 5, 177-181 (1988)

Tarzia, D.A.: Double convergence of a family of discrete distributed mixed elliptic optimal control
problems with a parameter. In: Bociu, L., Desideri, J.-A., Habbal, A. (eds.) Proceedings of the 27th
IFIP TC 7 Conference on System Modelling and Optimization, CSMO 2015, IFIP AICT 494, pp.
493-504. Springer, Berlin (2016)

Troltzsch, E.: Optimal Control of Partial Differential Equations. Theory, Methods and Applications.
American Math. Soc., Providence (2010)

Wachsmuth-G, D.: Wachsmuth, regularization error estimates and discrepancy principle for optimal
control problems with inequality constraints. Control Cybern. 40, 1125-1158 (2011)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Affiliations

Julieta Bollati' - Claudia M. Gariboldi? - Domingo A. Tarzia'

Julieta Bollati
JBollati @austral.edu.ar

Claudia M. Gariboldi

cgariboldi @exa.unrc.edu.ar

Departamento de Matematica-CONICET, FCE, Univ. Austral, Paraguay 1950, S2000FZF
Rosario, Argentina

Departamento de Matematica, FCEFQyN, Univ. Nac. de Rio Cuarto, Ruta 36 Km 601, 5800 Rio
Cuarto, Argentina

@ Springer


http://orcid.org/0000-0002-2813-0419

	Explicit solutions for distributed, boundary and distributed-boundary elliptic optimal control problems
	Abstract
	1 Introduction
	1.1 Distributed optimal control on the constant internal energy g
	1.2 Boundary optimal control on the constant heat flux q on Γ2
	1.3 Boundary optimal control on the constant temperature b in an external neighborhood of Γ1
	1.4 Simultaneous distributed-boundary optimal control on the constant source g and the constant flux q
	1.5 Adjoint states

	2 Optimal solutions for a rectangle in mathbbR2 
	3 Optimal solutions for an annulus in mathbbR2
	4 Optimal solutions for a spherical shell in mathbbR3
	5 Conclusions
	Acknowledgements
	References




