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 A B S T R A C T

A one dimensional two-phase Stefan problem is considered to model the solidification process 
of a semi-infinite material with power-type temperature-dependent thermal coefficients and 
a Dirichlet boundary condition at the fixed face. Through a similarity transformation, an 
equivalent system of ordinary differential equations is obtained, which will be shown to have a 
unique solution. Since the domain is unbounded, a novel condition is imposed to transform it 
into a finite domain, allowing the application of the Tau approximation method. This method 
is based on shifted Chebyshev operational matrix of differentiation. Some comparisons between 
exact and numerical solutions are shown in order to test the accuracy of the method.

1. Introduction

Phase-change Stefan problems have been widely studied through the years due to their applicability to many significant areas 
of engineering, nature and industry [1,2]. They are essential to understand phase transition phenomena, specially in situations 
that involve heat transfer and solidification or melting processes. Stefan problems aim not only to describe the solid and liquid 
phases for a material undergoing a phase change process but also to determine the location of the sharp interface separating both 
phases, known as the free boundary. Among the multiple applications of Stefan type problems one can mention the solidification of 
binary alloys [3], the continuous casting of steel [4], the cryopreservation of cells [5] or the shoreline movement in a sedimentary 
basis [6]. The classical formulation of Stefan problems presented in [7] was obtained assuming certain hypothesis on the various 
physical factors that influence the phase change process, in order to obtain a simpler model. One of these assumptions is to consider 
constant thermal coefficients, like thermal conductivity, specific heat, latent heat or mass density. However, some extensions have 
been developed to describe and elucidate more complex physical scenarios. These generalizations and from various arguments from 
thermodynamics motivate the solution of Stefan’s problems with variable thermal coefficients [8–11], imposing different boundary 
conditions [12,13] or considering source or convective terms in the heat equation [14,15].

A more recent (and broad) field of research within the study of Stefan problems involves the consideration of thermal coefficients 
that may vary with temperature or position. An analysis of Stefan problems with linear thermal conductivity and specific heat can 
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be found in [16]. Some extensions taking power-type thermal coefficients were given in [10,14,17,18]. Examples with quadratic 
polynomials thermophysical properties are exhibited in [19]. In [20], a thermal conductivity that depends not only on the 
temperature but also on time was considered.

Another branch on the study of Stefan problems is devoted to developing numerical methods in order to obtain approximate 
solutions. To this aim, there have been classically three approaches available, each one having advantages and disadvantages. One 
of the most used is the finite difference approach, which implies dividing a continuous domain into a grid of discrete points and 
approximating function derivatives in time and space by using finite differences between neighboring grid points [21]. Another 
approach is the finite element method, which consists on partitioning the domain into a tessellation of smaller, simpler subdomains 
and expressing the solution as a linear combination of basis functions defined on each subdomain [22].

The so called Tau method was developed by Lanczos [23] in the late thirties of last century as a tool to approximate special 
functions. In 1969, Ortiz [24] gave a systematic account in his paper ‘‘The Tau method’’ and since then, it has become a powerful tool 
for obtaining numerical solutions to many kinds of problems, from optimal control [25] to integro-differential equations, [26–30], 
and even fractional differential equations [31]. Later on, in a joint work with Samara [32], Ortiz presented an operational approach 
to the Tau method, that could be applied to compute a numerical solution for linear and nonlinear IVPs, BVPs or mixed problems for 
ODEs. In order to obtain an approximate solution with this method, one has to consider a basis comprised of the shifted Chebyshev 
polynomials which will allow them to approximate the solution of the problem, without it being analytically derived.

Since then, the method has been used to compute approximate solutions to real-life problems whose analytic solution cannot be 
obtained, and many authors have investigated variations on the kind of Chebyshev functions that are considered to comprise such 
basis [33].

With the development of the fractional calculus in the last decades, an effort has been made to adapt the Tau method to fractional 
differential equations (FDEs). This is when the rational Chebyshev Tau method appears. In [34], the rational Chebyshev Tau method 
is proposed by the authors to solve ordinary differential equations of higher order. The use of shifted Chebyshev Tau technique to 
approximate the solution of FDEs is described in [35] and [31]. In [36] a generalization of the Tau method and a convergence 
analysis to the numerical solution of multi-order fractional differential equations were discussed.

Nevertheless, its application to phase change boundary moving problems is quite scarce in the literature. One of the first works 
would be [37] and more recently, there are several works by Kumar et al. [17,20,38,39] where the authors applied the Tau method 
to this kind of problem with different particularities, like variable thermal conductivity, convection on the boundary, and so on.

Matlab code packages have been developed to implement the spectral Chebyshev Tau method for solving initial value problems, 
boundary value problems, eigenproblems, non-local problems for ordinary, fractional or distributed order differential equations [40]. 
In this work, we develop a computer code in SciLab to compute an approximate solution to the two-phase Stefan problem by applying 
the Tau method based on shifted Chebyshev polynomials for both phases.

The aim of this work is threefold. The first one is to prove existence and uniqueness of solution to the two-phase solidification 
Stefan problem when considering power-type temperature-dependent thermal coefficients. The second one is to transform the 
unbounded domain into a finite one, by introducing a thermal layer, beyond which there is no heat transfer. The third one  is 
to develop  a Scilab computer code for obtaining numerical solutions to this problem using the operational Tau method based on 
shifted Chebyshev polynomials. Furthermore, we will illustrate the accuracy of the method by providing a comparison between the 
exact and approximate solutions obtained for each problem.

The structure of the paper is the following: First, in Section 2, we present the mathematical formulation of a two-phase Stefan 
problem taking power-type thermal coefficients. By means of a similarity transformation, the Stefan problem is reduced to an 
ordinary differential problem. Next, in Section 3, we will prove that there exists a unique solution, through an equivalent functional 
problem. Section 4 is devoted to  presenting the implementation of the Tau method technique based on shifted Chebyshev operational 
matrix of differentiation. In this step it will be key to simulate the behavior at the infinity, the assumption of a heat penetration 
depth 𝜔(𝜀) > 𝜗(𝜀), beyond which there is no heat transfer. Finally, Section 5 will be devoted to the presentation of the obtained 
numerical results. The exact solutions analytically derived will be compared with the numerical approximations to give an account 
of the error committed.

2. Mathematical model

Based on the bibliography mentioned in the previous section, it is quite natural from a mathematical standpoint to define a 
one-dimensional two-phase Stefan problem with a power-type temperature-dependent thermal coefficients. The governing process 
can be described as in the following two-phase Stefan problem:

Problem (2PSP).  Find the temperature 𝜛 = 𝜛(𝜚, 𝜀) and the phase-changing interface 𝜚 = 𝜗(𝜀) such that

𝜍𝜑1(𝜛1)
𝛻𝜛1
𝛻𝜀

= 𝛻

𝛻𝜚

⌋
𝜕1(𝜛1)

𝛻𝜛1
𝛻𝜚

⌈
, 0 < 𝜚 < 𝜗(𝜀), 𝜀 > 0, (2.1)

𝜍𝜑2(𝜛2)
𝛻𝜛2
𝛻𝜀

= 𝛻

𝛻𝜚

⌋
𝜕2(𝜛2)

𝛻𝜛2
𝛻𝜚

⌈
, 𝜚 > 𝜗(𝜀), 𝜀 > 0, (2.2)

𝜛2(+ε, 𝜀) = 𝜛2(𝜚, 0) = 𝜛ε, 𝜚 > 0, 𝜀 > 0, (2.3)

𝜛1(𝜗(𝜀), 𝜀) = 𝜛2(𝜗(𝜀), 𝜀) = 𝜛
𝜗
, 𝜀 > 0, (2.4)
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𝜛1(0, 𝜀) = 𝜛0, 𝜀 > 0, (2.5)

𝜕1(𝜛1(𝜗(𝜀), 𝜀))
𝛻𝜛1
𝛻𝜚

(𝜗(𝜀), 𝜀) ϑ 𝜕2(𝜛2(𝜗(𝜀), 𝜀))
𝛻𝜛2
𝛻𝜚

(𝜗(𝜀), 𝜀) = 𝜍⋛ ℵ𝜗(𝜀), 𝜀 > 0, (2.6)

𝜗(0) = 0, (2.7)

where 𝜛 = 𝜛(𝜚, 𝜀) represents the temperature and is given by:

𝜛(𝜚, 𝜀) =
⌉

𝜛1(𝜚, 𝜀) in 0 < 𝜚 < 𝜗(𝜀), 𝜀 > 0,
𝜛2(𝜚, 𝜀) in 𝜚 > 𝜗(𝜀), 𝜀 > 0,

where 𝜛
ℶ
(𝜚, 𝜀) are the temperatures in the solid and the liquid region ℶ respectively. From now on, and throughout the paper, Latin 

index ℶ will take values ℶ = 1, 2 referring to each material phase respectively, unless otherwise explicitly indicated.
The following parameters are known data: 𝜍 > 0 is the mass density, ⋛ > 0 is the latent heat per unit mass, 𝜛0 is the temperature 

imposed at 𝜚 = 0, 𝜛ε is the initial temperature of the material, 𝜛
𝜗
 is the phase change temperature at 𝜚 = 𝜗(𝜀) such that 𝜛0 < 𝜛

𝜗
< 𝜛ε.

The thermal conductivity and specific heat in each phase are given by

𝜕
ℶ
(𝜛

ℶ
) = 𝜕

0
ℶ

⌋
1 + ℷ

⌋
𝜛ε ϑ 𝜛

ℶ

𝜛ε ϑ 𝜛
𝜗

⌈ℸ⌈
, (2.8)

𝜑
ℶ
(𝜛

ℶ
) = 𝜑

0
ℶ

⌋
1 + ℷ

⌋
𝜛ε ϑ 𝜛

ℶ

𝜛ε ϑ 𝜛
𝜗

⌈ℸ⌈
, (2.9)

where ℷ ∱ 0 and ℸ ∱ 0 are known parameters, 𝜕0
ℶ
> 0 represents the reference thermal conductivity and 𝜑0

ℶ
> 0 the specific heat. 

Moreover, we define the thermal diffusivity of each phase as ⊳
ℶ
= 𝜕

0
ℶ

𝜍𝜑
0
ℶ

.
We look for similarity type solutions to (2PSP). More precisely, the aim is to write the temperature 𝜛 = 𝜛(𝜚, 𝜀) as a function of a 

single variable, ⊲. This will be achieved through the following change of variables: 

0
ℶ
(⊲) =

𝜛ε ϑ 𝜛
ℶ
(𝜚, 𝜀)

𝜛ε ϑ 𝜛
𝜗

∱ 0, (2.10)

and 
⊲ = 𝜚

2
{
⊳2𝜀

, 𝜚 > 0, 𝜀 > 0. (2.11)

Taking into account condition (2.4), it follows that the sharp interface takes the form 
𝜗(𝜀) = 21

{
⊳2𝜀, 𝜀 ∱ 0, (2.12)

where 1 is an unknown positive parameter.
Assuming the hypothesis 

2 ϖ
}
⦃
⦄
⦃⟨

ℸ, ℷ ϱ R+
0 , 1 ϱ R+

,

01 is twice differentiable on (0, 1),
02 is twice differentiable on (1,+ε),

(2.13)

 and considering (2.10)–(2.12), we can establish the following immediate result.

Theorem 2.1.  Under the assumption 2 given by (2.13) the problem (2PSP) has a similarity type solution (𝜛, 𝜗) given by

𝜛1(𝜚, 𝜀) =
⟩
𝜛
𝜗
ϑ 𝜛ε

⟪
01

⌋
𝜚

2
{
⊳2𝜀

⌈
+ 𝜛ε, 0 < 𝜚 ∲ 𝜗(𝜀), 𝜀 > 0, (2.14)

𝜛2(𝜚, 𝜀) =
⟩
𝜛
𝜗
ϑ 𝜛ε

⟪
02

⌋
𝜚

2
{
⊳2𝜀

⌈
+ 𝜛ε, 𝜚 > 𝜗(𝜀), 𝜀 > 0, (2.15)

𝜗(𝜀) = 21
{
⊳2𝜀, 𝜀 ∱ 0, (2.16)

if and only if (01, 02, 1) is a solution to the following ordinary differential problem (ODP⊲) given by
2⊳⊲(1 + ℷ0

ℸ

1(⊲))0
ς
1(⊲) + [(1 + ℷ0

ℸ

1(⊲))0
ς
1(⊲)]

ς = 0, ⊲ ϱ (0, 1), (2.17)

01(0) = 31, (2.18)

01(1) = 1, (2.19)

2⊲(1 + ℷ0
ℸ

2(⊲))0
ς
2(⊲) + [(1 + ℷ0

ℸ

2(⊲))0
ς
2(⊲)]

ς = 0, ⊲ ϱ (1,+ε), (2.20)

02(1) = 1, (2.21)

02(+ε) = 0, (2.22)

0
ς
1(1) ϑ

𝜕
0
2

𝜕
0
1
0
ς
2(1) =

ϑ2⊳1
(1+ℷ)Ste , (2.23)
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where the dimensionless parameters 31, ⊳ and the Stefan number Ste are given by 

31 =
𝜛ε ϑ 𝜛0
𝜛ε ϑ 𝜛

𝜗

> 1, ⊳ =
⊳2
⊳1

> 0, Ste =
𝜑
0
1
⟩
𝜛ε ϑ 𝜛

𝜗

⟪

⋛
> 0. (2.24)

Proof.  If (𝜛, 𝜗), given by (2.14)–(2.16), is a solution to (2PSP), then the following expressions hold:
𝛻𝜛

ℶ

𝛻𝜀
= ϑ

𝜛
𝜗
ϑ 𝜛ε
2𝜀 ⊲ 0

ς
ℶ
(⊲),

𝛻𝜛
ℶ

𝛻𝜚
=

𝜛
𝜗
ϑ 𝜛ε

2
{
⊳2𝜀

0
ς
ℶ
(⊲),

and

𝜕
ℶ
(𝜛

ℶ
) = 𝜕

0
ℶ

⟩
1 + ℷ0

ℸ

ℶ
(⊲)

⟪
, 𝜑

ℶ
(𝜛

ℶ
) = 𝜑

0
ℶ

⟩
1 + ℷ0

ℸ

ℶ
(⊲)

⟪
,

for ℶ = 1, 2 where ⊲ is given by (2.11).
By substituting these expressions into Eqs. (2.1) and (2.2) we obtain Eqs. (2.17) and (2.20). Likewise, conditions (2.3)–(2.5) 

yield the boundary conditions (2.18), (2.19), (2.21), and (2.22). Finally, applying the Stefan condition (2.6) we derive Eq. (2.23).
Therefore, the triplet (01, 02, 1) satisfies the problem (ODP⊲). The converse implication follows immediately. ⋜

3. Existence and uniqueness of solution

In this section, we will find the conditions that ensure the existence of a unique solution to (2PSP) through the analysis of the 
equivalent problem (ODP⊲).

Lemma 3.1.  Under the assumption 2 given by (2.13), (01, 02, 1) is a solution to problem (ODP⊲) if and only if (01, 02, 1) is a solution 
to the following  functional problem (FP⊲) given by

01(⊲) +
ℷ

ℸ+1 0
ℸ+1
1 (⊲) =

⟫
31 +

ℷ

ℸ+1 3
ℸ+1
1

❲
ϑ 4

erf(
{
⊳⊲)

erf(
{
⊳1)

, ⊲ ϱ [0, 1], (3.1)

02(⊲) +
ℷ

ℸ+1 0
ℸ+1
2 (⊲) =

⟫
1 + ℷ

ℸ+1

❲ erfc(⊲)
erfc(1) , ⊲ ϱ [1,+ε), (3.2)

4 exp(ϑ⊳12)
erf(

{
⊳1)

ϑ 5 exp(ϑ12)
erfc(1) =

{
⊳6

Ste 1, (3.3)

where erf and erfc denote the error function and the complementary error function, respectively, defined as

erf(⊲) = 2{
6
∳

⊲

0
7
ϑ82

98, erfc(⊲) = 1 ϑ erf(⊲), ⊲ ∱ 0,

and

4 = 31 ϑ 1 + ℷ

ℸ+1

⟫
3
ℸ+1
1 ϑ 1

❲
> 0, 5 = 𝜕

0
2

𝜕
0
1
{
⊳

⟫
1 + ℷ

ℸ+1

❲
> 0.

Proof.  Assume that (01, 02, 1) verifies the problem (ODP⊲). Firstly, let us consider the change of variable 
.1(⊲) =

⟩
1 + ℷ0

ℸ

1(⊲)
⟪
0
ς
1(⊲), ⊲ ϱ [0, 1], (3.4)

in the ordinary differential Eq. (2.17). Taking into account condition (2.18), it follows that 
.1(⊲) = (1 + ℷ3

ℸ

1 )0
ς
1(0) exp(ϑ⊳⊲

2), ⊲ ϱ [0, 1]. (3.5)

By equating expressions (3.4) and (3.5), integrating from 0 to ⊲ and using condition (2.18), we obtain: 
01(⊲) +

ℷ

ℸ+1 0
ℸ+1
1 (⊲) = 31

⟫
1 + ℷ

ℸ+1 3
ℸ

1

❲
+
⟩
1 + ℷ3

ℸ

1
⟪
0
ς
1(0)

{
6

2
{
⊳
erf

⟫{
⊳⊲

❲
. (3.6)

Now, let us evaluate the above equation at ⊲ = 1 and from the condition (2.19), it follows the value 0ς1(0). Furthermore, we can 
rewrite (3.6) as (3.1).

Secondly, we can proceed analogously to prove that the function 02 satisfies the functional Eq. (3.2). Defining: 
.2(⊲) =

⟩
1 + ℷ0

ℸ

2(⊲)
⟪
0
ς
2(⊲), ⊲ ϱ [1,+ε), (3.7)

replacing it in the ordinary differential equation (2.20) and taking into account the condition (2.21), we obtain 
0
ς
2(⊲) + ℷ0

ℸ

2(⊲)0
ς
2(⊲) = (1 + ℷ)0ς2(1) exp(1

2 ϑ ⊲
2). (3.8)

Integrating (3.8) in [⊲,+ε) and using condition (2.22) we can deduce that 

02(⊲) +
ℷ

ℸ + 1 0
ℸ+1
2 (⊲) = ϑ (1 + ℷ) 0ς2(1)

{
6

2 exp(12) erfc (⊲) . (3.9)
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Substituting ⊲ = 1 in the above equation and from (2.21), we obtain 0ς2(1) and therefore we can rewrite (3.9) as (3.2).
Finally, deriving (3.1) and (3.2) with respect to ⊲, taking ⊲ = 1 and using the condition (2.23), we obtain that 1 ϱ R+ must be 

a solution to Eq.  (3.3).
Reciprocally, assuming that (01, 02, 1) is a solution to the functional problem (FP⊲) we have that: 

01(⊲) = ϑ ℷ

ℸ+1 0
ℸ+1
1 (⊲) +

⟫
31 +

ℷ

ℸ+1 3
ℸ+1
1

❲
ϑ 4

erf(
{
⊳⊲)

erf(
{
⊳1)

, ⊲ ϱ [0, 1], (3.10)

02(⊲) = ϑ ℷ

ℸ+1 0
ℸ+1
2 (⊲) +

⟫
1 + ℷ

ℸ+1

❲ erfc(⊲)
erfc(1) , ⊲ ϱ [1,+ε), (3.11)

and it is straightforward to check that (01, 02, 1) solves the problem (ODP⊲). ⋜

Next, we will show that the aforementioned solution to the functional problem (FP⊲) is indeed unique.

Lemma 3.2.  Assuming hypothesis 2 given by (2.13), the problem (FP⊲) has a unique solution.

Proof.  Let us define the function 
,(<) = 4 exp(ϑ⊳<2)

erf(
{
⊳<)

ϑ 5 exp(ϑ<2)
erfc(<) , < ϱ R+

. (3.12)

The derivative of the function is given by

,
ς(<) = ϑ

❳
/
/
/\
247ϑ⊳<2

⊳< erf(
{
⊳<) +

{
⊳{
6
7
ϑ⊳<2

⟫
erf(

{
⊳<)

❲2 + 257ϑ2<2{
6

1 ϑ
{
6<7

<
2 erfc(<)

(erfc(<))2

(
)
)
)⦅
.

Since it has been established in [41] that
1 ϑ

{
6 < 7

<
2 erfc(<) > 0 for < ∱ 0,

it follows that ,ς(<) < 0 for all < ∱ 0. From the fact that , is a strictly decreasing function such that ,(0+) = +ε and ,(+ε) = ϑε, 
one can infer that the solution 1 to the equation 

,(<) =
{
⊳6

Ste
<, (3.13)

is, indeed, unique in R+. Now, for this 1, let us rewrite (3.1) and (3.2) as 
ℏ
⟩
01(⊲)

⟪
= 21(⊲), ⊲ ϱ [0, 1], (3.14)

and 
ℏ
⟩
02(⊲)

⟪
= 22(⊲), ⊲ ϱ [1,+ε), (3.15)

respectively, where 

21(⊲) = 31 +
ℷ

ℸ + 1 3
ℸ+1
1 ϑ 4

erf(
{
⊳⊲)

erf(
{
⊳1)

, ⊲ ϱ [0, 1], (3.16)

22(⊲) =
⌋
1 + ℷ

ℸ + 1

⌈
erfc(⊲)
erfc(1) , ⊲ ϱ [1,+ε), (3.17)

and 
ℏ (<) = < + ℷ

ℸ + 1 <
ℸ+1

, < ϱ R+
0 . (3.18)

It is also quite straightforward to prove that ℏ  is  a strictly increasing function, so that  the inverse function, ℏϑ1 ϖ [0,+ε) 
[0,+ε),  is well defined. As 21 is a strictly decreasing function such that 21(0) = 31 +

ℷ

ℸ+1 3
ℸ+1
1 > 1 + ℷ

ℸ+1 = 21(1) > 0, then 21 is a 
positive function. In a similar way,  one can check that 22 is  also a positive function. Therefore, the functions 01 and 02 given by 

01(⊲) = ℏ
ϑ1 ⟩

21(⊲)
⟪
, ⊲ ϱ [0, 1], (3.19)

and 
02(⊲) = ℏ

ϑ1 ⟩
22(⊲)

⟪
, ⊲ ϱ [1,+ε), (3.20)

are the unique solutions to equations (3.1) and (3.2), respectively. ⋜

Remark 3.3.  Notice that since ℏ ς(<) > 0 in [0, 1] with ℏ (0) = 0 and ℏ (1) = 1 + ℷ

ℸ+1 ; 2 ς
1(⊲) < 0 in [0, 1] with 21(0) = 31 +

ℷ

ℸ+1 3
ℸ+1
1

and 21(1) = 1 + ℷ

ℸ+1 ; 2 ς
2(⊲) < 0 in [1,+ε) with 22(1) = 1 + ℷ

ℸ+1  and 22(+ε) = 0, it follows that
01(1) = 1 ∲ 01(⊲) ∲ 31 = 01(0), ⊲ ϱ [0, 1],
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and

02(+ε) = 0 ∲ 02(⊲) ∲ 1 = 02(1), ⊲ ϱ [1,+ε).

Now, the previous lemmas and Theorem  2.1 allow us to postulate this work main result: 

Theorem 3.4.  Suppose that hypothesis 2 given by (2.13) holds and let (01, 02, 1) be the unique solution to problem (FP⊲). Then, (𝜛, 𝜗)
given by (2.14)–(2.16) constitutes the unique similarity type solution to problem (2PSP).

Remark 3.5.  Notice that from Remark  3.3 and Theorem  3.4 we have, as expected, the following relations:
𝜛0 ∲ 𝜛1(𝜚, 𝜀) ∲ 𝜛

𝜗
, 0 < 𝜚 < 𝜗(𝜀), 𝜀 > 0,

and

𝜛
𝜗
∲ 𝜛2(𝜚, 𝜀) ∲ 𝜛ε, 𝜚 > 𝜗(𝜀), 𝜀 > 0.

4. Tau method implementation

In this section we are going to obtain an approximate solution to the Stefan (2PSP) applying the Tau method based on shifted 
Chebyshev operational matrix of differentiation.

Let us present some properties of the Chebyshev polynomials. It is common knowledge [28] that the classical Chebyshev 
polynomials ⦆>

⋆
(𝜚)

[
⋆∱0 are defined on the interval [ϑ1, 1] by the following recurrent system:

>0(𝜚) = 1, (4.1)

>1(𝜚) = 𝜚, (4.2)

>
⋆
(𝜚) = 2𝜚>

⋆ϑ1(𝜚) ϑ >
⋆ϑ2(𝜚), ⋆ = 2, 3, 4,… . (4.3)

The set ⦆>
⋆
(𝜚)

[
⋆∱0 is orthogonal with respect to the inner product with a weight function ≨(𝜚) = 1{

1ϑ𝜚2
, 𝜚 ϱ [ϑ1, 1], i.e., 

⟩
>
𝜕
, >

⋆

⟪
= ∳

1

ϑ1
>
𝜕
(𝜚)>

⋆
(𝜚)≨(𝜚)9𝜚 =

}
⦃
⦄
⦃⟨

6 if 𝜕 = ⋆ = 0
6

2 if 𝜕 = ⋆ ⨋ 0
0 if 𝜕 ⨋ ⋆

. (4.4)

A function 𝐴 ϱ 𝐵
2(ϑ1, 1) may be formulated in terms of Chebyshev polynomials through the following series 

𝐴 (𝜚) =
ε]
⋆=0

𝐶
⋆
>
⋆
(𝜚), (4.5)

where the coefficients 𝐶
⋆
 are given by 

𝐶0 =
1
6 ∳

1

ϑ1
𝐴 (𝜚)>0(𝜚)≨(𝜚)9𝜚, 𝐶

⋆
= 2

6 ∳
1

ϑ1
𝐴 (𝜚)>

⋆
(𝜚)≨(𝜚)9𝜚, ⋆ = 1, 2,… (4.6)

For the purpose of using the Chebyshev polynomials on a general interval [𝐶, 𝐷], we introduce the shifted Chebyshev polynomi-
als [27,33], denoted by > [𝐶,𝐷]

⋆
(𝜚), satisfying the following recurrence formula 

>
[𝐶,𝐷]
⋆

(𝜚) = >
⋆

⟫ 2
𝐷 ϑ 𝐶

𝜚 ϑ 𝐷 + 𝐶

𝐷 ϑ 𝐶

❲
, ⋆ = 2, 3, 4,… . (4.7)

where > [𝐶,𝐷]
0 (𝜚) = 1 and > [𝐶,𝐷]

1 (𝜚) = 2
𝐷ϑ𝐶 𝜚 ϑ 𝐷+𝐶

𝐷ϑ𝐶 . In a similar manner, a function 𝐴 ϱ 𝐵
2[𝐶, 𝐷] can be written in terms of shifted 

Chebyshev polynomials > [𝐶,𝐷]
⋆

(𝜚) as in (4.5).
In practice, only the first (𝐸 + 1)-terms shifted Chebyshev polynomials are considered. In approximate theory, the series given 

by (4.5) can be approximated by taking the first 𝐸 + 1 terms as follows: 

𝐴 (𝜚) φ 𝐴
𝐸
(𝜚) =

𝐸]
⋆=0

𝐶
⋆
>
[𝐶,𝐷]
⋆

(𝜚) = 4 >
[𝐶,𝐷](𝜚), 𝜚 ϱ [𝐶, 𝐷], (4.8)

where 4 =
⟦
𝐶0 𝐶1 ... 𝐶𝐸

⟧ is a row (𝐸 + 1)-vector and

>
[𝐶,𝐷](𝜚) =

⌊
>
[𝐶,𝐷]
0 (𝜚) > [𝐶,𝐷]

1 (𝜚) ... > [𝐶,𝐷]
𝐸

(𝜚)
⌋𝜀

is a (𝐸 + 1)-vector.
Following [29], we can deduce that 

>
[𝐶,𝐷](𝜚) = >𝐹

𝐶,𝐷
𝐺(𝜚), (4.9)
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where the (𝐸 + 1)-vector 𝐺 is given by 
𝐺(𝜚) =

⟦
1 𝜚 𝜚

2
... 𝜚

𝐸
⟧𝜀
, (4.10)

> = [𝜀
𝜕⋆
] is the matrix (𝐸 + 1) ∇ (𝐸 + 1) defined by 

> =

❳
/
/
/
/
/
/
/
/\

1 0 0 0 0 0 ... 0
0 1 0 0 0 0 .... 0
ϑ1 𝜀21 2 0 0 0 ... 0
0 𝜀31 𝜀32 22 0 0 ... 0
1 𝜀41 𝜀42 𝜀43 23 0 ... 0
⋝ ⋝ ⋝ ⋝ ⋝ ⋝ ... ⋝

cos
⟫
𝐸6

2

❲
𝜀
𝐸1 𝜀

𝐸2 𝜀
𝐸3 𝜀

𝐸4 𝜀
𝐸5 ... 2𝐸ϑ1

(
)
)
)
)
)
)
)
)⦅

, (4.11)

with

𝜀
𝜕⋆

=

}
⦃
⦃
⦃
⦄
⦃
⦃
⦃⟨

cos
⟫
𝜕6

2

❲
if 𝜕 = 0, 1,… ,𝐸 , ⋆ = 0,

2𝜕ϑ1 if 𝜕 = ⋆ = 1, 2,… ,𝐸 ,

sgn
⟩
𝜀
𝜕ϑ1, ⋆ϑ1

⟪ ⟩
2⌈𝜀

𝜕ϑ1, ⋆ϑ1⌈ + ⌈𝜀
𝜕ϑ2, ⋆ ⌈

⟪
if 𝜕 = 2, 3,… ,𝐸 ,

⋆ = 1,… , 𝜕 ϑ 1.
0 otherwise,

and 
𝐹

𝐶,𝐷
= [≨

𝜕⋆
], (4.12)

is the matrix (𝐸 + 1) ∇ (𝐸 + 1) where

≨
𝜕⋆

=
⌉ ⟩

𝜕

⋆

⟪ ⟫
ϑ 𝐷+𝐶

𝐷ϑ𝐶

❲𝜕ϑ⋆ ⟫ 2
𝐷ϑ𝐶

❲⋆

if 𝜕 = 0, 1,… ,𝐸 , ⋆ = 0, 1,… , 𝜕,

0 if 𝜕 < ⋆.

Taking into account [28], the 𝐻th order derivative of the vector > [𝐶,𝐷](𝜚) given by (4.9) can be written as 
⟩
>
[𝐶,𝐷]⟪(𝐻) (𝜚) = > 𝐹

𝐶,𝐷
5
𝐻
𝐺(𝜚), (4.13)

where 
5 = [𝐷

𝜕⋆
], (4.14)

is the (𝐸 + 1) ∇ (𝐸 + 1) matrix defined by:

𝐷
𝜕⋆

=
⌉

⋆ + 1 if 𝜕 = ⋆ + 1, ⋆ = 0, 1,… ,𝐸 ,

0 otherwise,

and 𝐻 ϱ N denotes 𝐻th powers of matrix 5. Then, from (4.8), the 𝐻th order derivative of the function 𝐴
𝐸
 is given by 

𝐴
(𝐻)
𝐸

(𝜚) = 4 > 𝐹
𝐶,𝐷

5
𝐻
𝐺(𝜚). (4.15)

4.1. Approximate solution to problem (2PSP)

In order to obtain approximate solutions to the Stefan problem (2PSP), following [9], let us assume in the liquid phase the 
existence of a heat penetration depth 𝐼𝜔(𝜀) > 𝜗(𝜀), called thermal layer, beyond which there is no heat transfer. This is equivalent to 
assume that for each 𝜚 > 𝐼𝜔(𝜀), the slab, is at an equilibrium temperature and so 

𝛻𝜛2
𝛻𝜚

(𝐼𝜔(𝜀), 𝜀) = 0, 𝜛2(𝐼𝜔(𝜀), 𝜀) = 𝜛ε, 𝜀 > 0. (4.16)

For this reason, we consider a new two-phase Stefan problem that takes into account the above assumptions and can be stated 
as:

Problem (2PSPN).  Find (𝐼𝜛1,𝐼𝜛2,𝐼𝜗,𝐼𝜔) such that:

𝜍𝜑1(𝐼𝜛1)
𝛻𝐼𝜛1
𝛻𝜀

= 𝛻

𝛻𝜚

⌋
𝜕1(𝐼𝜛1)

𝛻𝐼𝜛1
𝛻𝜚

⌈
, 0 < 𝜚 < 𝐼𝜗(𝜀), 𝜀 > 0, (4.17)

𝜍𝜑2(𝐼𝜛2)
𝛻𝐼𝜛2
𝛻𝜀

= 𝛻

𝛻𝜚

⌋
𝜕2(𝐼𝜛2)

𝛻𝐼𝜛2
𝛻𝜚

⌈
, 𝐼𝜗(𝜀) < 𝜚 < 𝐼𝜔(𝜀), 𝜀 > 0, (4.18)

𝐼𝜛2(𝐼𝜔(𝜀), 𝜀) = 𝜛ε, 𝜀 > 0, (4.19)

𝐼𝜛1(𝐼𝜗(𝜀), 𝜀) = 𝐼𝜛2(𝐼𝜗(𝜀), 𝜀) = 𝜛
𝜗
, 𝜀 > 0, (4.20)
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𝐼𝜛1(0, 𝜀) = 𝜛0, 𝜀 > 0, (4.21)

𝜕1(𝐼𝜛1(𝐼𝜗(𝜀), 𝜀))
𝛻𝐼𝜛1
𝛻𝜚

(𝐼𝜗(𝜀), 𝜀) ϑ 𝜕2(𝐼𝜛2(𝐼𝜗(𝜀), 𝜀))
𝛻𝐼𝜛2
𝛻𝜚

(𝐼𝜗(𝜀), 𝜀) = 𝜍⋛ ℵ𝐼𝜗(𝜀), 𝜀 > 0, (4.22)

𝛻𝐼𝜛2
𝛻𝜚

(𝐼𝜔(𝜀), 𝜀) = 0, 𝜀 > 0, (4.23)

𝐼𝜗(0) = 0, (4.24)

𝐼𝜔(0) = 0. (4.25)

Through the change of variables given by (2.10) and (2.11), we can establish the following direct result:

Theorem 4.1.  Under the assumption: 

𝐼2 ϖ
}
⦃
⦄
⦃⟨

ℸ, ℷ ϱ R+
0 ,

𝐼1 ϱ R+
, 𝐼𝐽 ϱ (𝐼1,+ε),

𝐼01 is twice differentiable on (0, 𝐼1),
𝐼02 is twice differentiable on (𝐼1, 𝐼𝐽),

(4.26)

 the problem (2PSPN) has a similarity solution ( 𝐼𝜛1, 𝐼𝜛2,𝐼𝜗,𝐼𝜔) given by:

𝐼𝜛1(𝜚, 𝜀) =
⟩
𝜛
𝜗
ϑ 𝜛ε

⟪
𝐼01

⌋
𝜚

2
{
⊳2𝜀

⌈
+ 𝜛ε, 0 < 𝜚 < 𝐼𝜗(𝜀), 𝜀 > 0, (4.27)

𝐼𝜛2(𝜚, 𝜀) =
⟩
𝜛
𝜗
ϑ 𝜛ε

⟪
𝐼02

⌋
𝜚

2
{
⊳2𝜀

⌈
+ 𝜛ε, 𝐼𝜗(𝜀) < 𝜚 < 𝐼𝜔(𝜀), 𝜀 > 0, (4.28)

𝐼𝜗(𝜀) = 2𝐼1
{
⊳2𝜀, 𝜀 > 0, (4.29)

𝐼𝜔(𝜀) = 2𝐼𝐽
{
⊳2𝜀, 𝜀 > 0, (4.30)

if and only if (𝐼01, 𝐼02, 𝐼1, 𝐼𝐽) satisfies the ordinary differential problem (ODP⊲N) given by
2⊳⊲(1 + ℷ 𝐼01

ℸ(⊲)) 𝐼01ς(⊲) + [(1 + ℷ 𝐼01
ℸ(⊲)) 𝐼01ς(⊲)]ς = 0, ⊲ ϱ (0, 𝐼1), (4.31)

𝐼01(0) = 31, (4.32)

𝐼01(𝐼1) = 1, (4.33)

2⊲(1 + ℷ 𝐼02
ℸ(⊲)) 𝐼02ς(⊲) + [(1 + ℷ 𝐼02

ℸ(⊲)) 𝐼02ς(⊲)]ς = 0, ⊲ ϱ (𝐼1, 𝐼𝐽), (4.34)

𝐼02(𝐼1) = 1, (4.35)

𝐼02(𝐼𝐽) = 0, (4.36)

𝐼02
ς(𝐼𝐽) = 0, (4.37)

𝐼01
ς(𝐼1) ϑ 𝜕

0
2

𝜕
0
1
𝐼02
ς(𝐼1) = ϑ2⊳𝐼1

(1+ℷ)Ste , (4.38)

where the dimensionless parameters 31, ⊳ and Ste are given in Theorem  2.1.
In order to obtain approximate solutions to this ordinary differential problem in the bounded domain [0, 𝐼𝐽], we apply the Tau 

method based on shifted Chebyshev polynomials. If the unknown functions 𝐼01 = 𝐼01(⊲) and 𝐼02 = 𝐼02(⊲) are expressed in terms of the 
shifted Chebyshev polynomials as in (4.8):

𝐼01(⊲) φ 𝐼01𝐸 (⊲) =
𝐸]
⋆=0

𝜑
⋆
>
[0,𝐼1𝐸 ]
⋆

(⊲) = 𝐾 >
[0,𝐼1𝐸 ](⊲), ⊲ ϱ [0, 𝐼1

𝐸
], (4.39)

𝐼02(⊲) φ 𝐼02𝐸 (⊲) =
𝐸]
⋆=0

9
⋆
>
[𝐼1𝐸 ,𝐼𝐽𝐸 ]
⋆

(⊲) = 𝐿 >
[𝐼1𝐸 ,𝐼𝐽𝐸 ](⊲), ⊲ ϱ [𝐼1

𝐸
, 𝐼𝐽

𝐸
], (4.40)

where 𝐾 =
⟦
𝜑0 𝜑1 ... 𝜑𝐸

⟧ and 𝐿 =
⟦
90 91 ... 9𝐸

⟧ are row (𝐸 + 1)-vectors to be determined, according to (4.9), we have that
𝐼01𝐸 (⊲) = 𝐾 > 𝐹0,𝐼1𝐸

𝐺(⊲) ⊲ ϱ [0, 𝐼1
𝐸
], (4.41)

𝐼02𝐸 (⊲) = 𝐿 > 𝐹𝐼1𝐸 ,𝐼𝐽𝐸
𝐺(⊲), ⊲ ϱ [𝐼1

𝐸
, 𝐼𝐽

𝐸
], (4.42)

where >  is given by (4.11), 𝐹
𝐶,𝐷

 is defined by (4.12) and 𝐺 is given by (4.10).
From (4.41) and (4.42), and taking into account that the derivatives are approximated as in (4.15), the residual 𝑀

𝐸 ,𝐼0ℶ𝐸

(⊲) for 
ℶ = 1, 2 is defined as:

𝑀
𝐸 , 𝐼01𝐸

(⊲) = 2⊳⊲
⟫
1 + ℷ(𝐾 > 𝐹0,𝐼1𝐸

𝐺)ℸ
❲
𝐾>𝐹0,𝐼1𝐸

5𝐺

+ ℷℸ(𝐾>𝐹0,𝐼1𝐸
𝐺)ℸϑ1𝐾>𝐹0,𝐼1𝐸

5𝐺𝐾>𝐹0,𝐼1𝐸
5𝐺
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+
⟫
1 + ℷ(𝐾 > 𝐹0,𝐼1𝐸

𝐺)ℸ
❲
𝐾>𝐹0,𝐼1𝐸

5
2
𝐺, (4.43)

𝑀
𝐸 , 𝐼02𝐸

(⊲) = 2⊲
⟫
1 + ℷ(𝐿 > 𝐹𝐼1𝐸 ,𝐼𝐽𝐸

𝐺)ℸ
❲
𝐿>𝐹𝐼1𝐸 ,𝐼𝐽𝐸

5𝐺

+ ℷℸ(𝐿>𝐹𝐼1𝐸 ,𝐼𝐽𝐸
𝐺)ℸϑ1𝐿>𝐹𝐼1𝐸 ,𝐼𝐽𝐸

5𝐺𝐿>𝐹𝐼1𝐸 ,𝐼𝐽𝐸
5𝐺

+
⟫
1 + ℷ(𝐿 > 𝐹𝐼1𝐸 ,𝐼𝐽𝐸

𝐺)ℸ
❲
𝐿>𝐹𝐼1𝐸 ,𝐼𝐽𝐸

5
2
𝐺. (4.44)

By virtue of the two equations above, from now on, we will assume ℸ ∱ 1. According to Tau method, to minimize the residuals 
in the sense that the first (𝐸 + 1) terms of its spectral series are 0, we generate the following 2𝐸 ϑ 2 non-linear equations:

{
𝑀
𝐸 , 𝐼01𝐸

(⊲), > [0,𝐼1𝐸 ]
⋆

(⊲)
}
= ∳

𝐼1𝐸

0
𝑀
𝐸 , 𝐼01𝐸

(⊲)> [0,𝐼1𝐸 ]
⋆

(⊲)9⊲ = 0, (4.45)

{
𝑀
𝐸 , 𝐼02𝐸

(⊲), > [𝐼1𝐸 ,𝐼𝐽𝐸 ]
⋆

(⊲)
}
= ∳

𝐼𝐽𝐸

𝐼1𝐸

𝑀
𝐸 , 𝐼02𝐸

(⊲)> [𝐼1𝐸 ,𝐼𝐽𝐸 ]
⋆

(⊲)9⊲ = 0, (4.46)

for ⋆ = 0, 1,… ,𝐸 ϑ 2, where ⦃⋞, ⋞⦄ is the usual inner product in 𝐵2(𝐶, 𝐷).
Also, by using (4.41) and taking into account conditions (4.32) and (4.33), we obtain: 

𝐾>𝐹0,𝐼1𝐸
𝐺(0) = 31, 𝐾>𝐹0,𝐼1𝐸

𝐺(𝐼1
𝐸
) = 1, (4.47)

respectively. In the same manner, using (4.42) and from conditions (4.35), (4.36) and (4.37), we get 
𝐿>𝐹𝐼1𝐸 ,𝐼𝐽𝐸

𝐺(𝐼1
𝐸
) = 1, 𝐿>𝐹𝐼1𝐸 ,𝐼𝐽𝐸

𝐺(𝐼𝐽
𝐸
) = 0, 𝐿>𝐹𝐼1𝐸 ,𝐼𝐽𝐸

5𝐺(𝐼𝐽
𝐸
) = 0, (4.48)

respectively. And finally, using (4.41) and (4.42) and taking into account the condition (4.38), we obtain that 
⌋
𝐾>𝐹0,𝐼1𝐸

ϑ 𝜕
0
2

𝜕
0
1
𝐿>𝐹𝐼1𝐸 ,𝐼𝐽𝐸

⌈
5𝐺(𝐼1

𝐸
) = ϑ 2⊳

(1+ℷ)Ste
𝐼1
𝐸
. (4.49)

Therefore, in order to obtain the (𝐸+1)-vectors 𝐾 and 𝐿, and the positive parameters 𝐼1
𝐸
 and 𝐼𝐽

𝐸
, we have to solve the non-linear 

system of 2𝐸 + 4 equations defined by (4.45)–(4.49).
In order to numerically solve the nonlinear system of Eqs. (4.45)–(4.49), we proceed as follows:

Algorithm 1 Numerical solution of the nonlinear system (4.45)–(4.49)
1: Input: Integer 𝐸 ; initial guess 𝜚0 = (𝐾0,𝐿0, 10,𝐽0) ϱ R2𝐸+4

2: Define function ℏ ϖ R2𝐸+4  R2𝐸+4 as follows:
3:  Let 𝜚 = (𝐾 ,𝐿, 1,𝐽), where 𝐾 ,𝐿 ϱ R𝐸+1 and 1,𝐽 ϱ R
4:  Return vector ℏ (𝜚) corresponding to the system (4.45)–(4.49) set to zero (approximate the integrals in equations (4.45) and 
(4.46) using the composite trapezoidal rule)

5: Use fsolve from Scilab with inputs:
6:  Initial guess 𝜚0
7:  Function ℏ
8: Obtain numerical solution 𝜚sol = (𝐾 ,𝐿, 1,𝐽) such that ℏ (𝜚sol) φ 0

The solver fsolve typically employs variations of the Newton–Raphson method or quasi-Newton methods. A future improve-
ment to the code could involve gaining more control over the nonlinear solver, or even developing specific algorithms to solve this 
system. 

5. Numerical results

In virtue of the equivalences given in the previous Theorems, in this section, we will analyze the accuracy of the approximate 
solutions obtained for problem (ODP⊲N) by applying the Tau method comparing them with the exact solution to problem (ODP⊲) 
presented in Section 3.

Firstly, we will address the specific scenario involving constant thermal coefficients. Secondly, we will shift our attention to the 
broader context involving power-type temperature-dependent thermal coefficients.

5.1. Constant thermal coefficients

As presented in Section 3, the exact solution to problem (ODP⊲) for the positive constant thermal coefficients 𝜕
ℶ
= 𝜕

0
ℶ
, 𝜑

ℶ
= 𝜑

0
ℶ
, 

(i.e. ℷ = 0) is given by Eqs. (2.14)–(2.16) where 1 ϱ R+ is the unique solution to the following equation 
⟩
31 ϑ 1

⟪ exp(ϑ⊳<2)
erf(

{
⊳<)

ϑ
𝜕
0
2

𝜕
0
1

1{
⊳

exp(ϑ<2)
erfc(<) =

{
⊳6

Ste
<, < ϱ R+

, (5.1)
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Table 1
Solutions to the non-linear system (4.45)-(4.49) for ℷ = 0.
 𝐸 𝐼1

𝐸
𝐼𝐽
𝐸

Vectors 𝐾 and 𝐿 for coefficients of 𝐼0
ℶ
𝐸

, ℶ = 1, 2 respectively  
 2 0.4068404 1.6330352 [2.9636606 ϑ 2.0000000 0.0363394]  
 [0.3750000 ϑ 0.5000000 0.1250000]  
 3 0.4002221 2.1869234 [2.9648161 ϑ 2.0055373 0.0351947 0.0055324]  
 [0.3108273 ϑ 0.4679717 0.1888369 ϑ 0.032445]  
 4 0.4007662 2.2194037 [2.9642863 ϑ 2.0055161 0.0359064 0.0055716 ϑ 0.0002002]  
 [0.2981045 ϑ 0.4684118 0.2057383 ϑ 0.0328739 ϑ 0.0043209]  
 5 0.4005504 2.4391824 [2.9642907 ϑ 2.0055606 0.0358661 0.0055745 ϑ 0.0001568 ϑ 0.0000139] 
 [0.2871744 ϑ 0.448296 0.2122791 ϑ 0.0551898 0.0005464 0.0034858]  

Fig. 1. Absolute error 7
𝐸
(𝜀), 𝐸 = 2, 3, 4, 5 up to 𝜀 = 5 s for ⊳2 = 1.3 m2

s .

31, ⊳ and Ste are given by (2.24) and
01(⊲) = 31 +

1ϑ31
erf

⟫{
⊳1

❲ erf
⟫{

⊳⊲

❲
, ⊲ ϱ [0, 1], (5.2)

02(⊲) =
erfc (⊲)
erfc(1) , ⊲ ϱ [1,+ε). (5.3)

If we fix the values Ste = 0.1, ⊳ = 0.9, 𝜛ε = 2 ⋟C, 𝜛
𝜗
= 1.8 ⋟C, 𝜛0 = 1 ⋟C, ⊳2 = 1.3𝑁

2

𝜗
 and 𝜕

0
2

𝜕
0
1
= 1.1, then the unique solution to Eq. 

(5.1) is 
1 = 0.4005556. (5.4)

The approximate solution (𝐼01𝐸 , 𝐼02𝐸 , 𝐼1
𝐸
, 𝐼𝐽

𝐸
) to the problem (ODP⊲N) is obtained by solving the non-linear system defined by 

(4.45)–(4.49) where
𝑀
𝐸 , 𝐼01𝐸

(⊲) = 𝐾 > 𝐹0,𝐼1𝐸

⟩
2⊳⊲5 + 5

2⟪
𝐺(⊲), ⊲ ϱ [0, 𝐼1

𝐸
], (5.5)

𝑀
𝐸 , 𝐼02𝐸

(⊲) = 𝐿 > 𝐹𝐼1𝐸 ,𝐼𝐽𝐸

⟩
2⊲5 + 5

2⟪
𝐺(⊲), ⊲ ϱ [𝐼1

𝐸
, 𝐼𝐽

𝐸
]. (5.6)

For 𝐸 = 2, 𝐸 = 3, 𝐸 = 4 and 𝐸 = 5, the solutions to the non-linear systems (4.45)–(4.49) of 2𝐸 + 4 equations is given in Table 
1.

Due to the similarity of the coefficients 1 and 𝐼1
𝐸
, in order to appreciate the difference between the approximate and exact free 

boundaries, Fig.  1 displays the absolute error given by 7
𝐸
(𝜀) = ⌈𝜗(𝜀) ϑ 𝐼𝜗

𝐸
(𝜀)⌈ where 𝐼𝜗

𝐸
(𝜀) = 2𝐼1

𝐸

{
⊳2𝜀, for 𝐸 = 2, 3, 4, 5 on the time 

interval 𝜀 ϱ (0, 5) s. As expected, the absolute error grows over time 𝜀 and decreases as 𝐸 increases.
Note that the relative error associated with the free boundaries

7𝜔
𝐸
(𝜀) =

⟨⟨⟨⟨
𝜗(𝜀) ϑ 𝐼𝜗

𝐸
(𝜀)

𝜗(𝜀)
⟨⟨⟨⟨ =

⟨⟨⟨⟨⟨
1 ϑ 𝐼1

𝐸

1

⟨⟨⟨⟨⟨
remains constant over time. Table  2 presents the relative errors for 𝐸 = 2, 3, 4, and 5. As observed, the relative error decreases as 
𝐸 increases.
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Table 2
Relative errors for different values of 𝐸 .
 𝐸 Relative Error 
 2 0.0156902  
 3 0.0008326  
 4 0.0005258  
 5 0.0000130  

Fig. 2. Absolute error 𝑂
𝐸
(⊲) for ⊲ ϱ [0, 𝐼𝐽

𝐸
], 𝐸 = 2, 3, 4, 5.

Fig. 3. Relative error 𝑂𝜔
𝐸
(⊲) for ⊲ ϱ [0, 𝐼𝐽

𝐸
], 𝐸 = 2, 3, 4, 5.

Fig.  2 shows the absolute error 𝑂
𝐸
(⊲) = ⌈0(⊲) ϑ 𝐼0

𝐸
(⊲)⌈ against ⊲ ϱ [0, 𝐼𝐽

𝐸
] for 𝐸 = 2, 3, 4, 5, where

0(⊲) =
⌉

01(⊲) if ⊲ ϱ [0, 1],
02(⊲) if ⊲ ϱ [1,+ε), and 𝐼0

𝐸
(⊲) =

⌉
𝐼01𝐸 (⊲) if ⊲ ϱ [0, 𝐼1

𝐸
],

𝐼02𝐸 (⊲) if ⊲ ϱ [𝐼1
𝐸
, 𝐼𝐽

𝐸
]

 and Fig.  3 shows the relative error 𝑂
𝐸
(⊲) = ⟨⟨⟨

0(⊲)ϑ𝐼0𝐸 (⊲)
0(⊲)

⟨⟨⟨.
From Figs.  1 and 2, it is clear that the smallest absolute errors, for both the free boundary 𝜗 and the function 0, occur when 

𝐸 = 5. For this case, in Fig.  4 we plot the exact function 0 = 0(⊲) given by (3.1) and (3.2) and the approximate one 0 = 𝐼05(⊲) given 
by (4.41) and (4.42) against ⊲ ϱ [0, 𝐼𝐽5] with 𝐼𝐽5 = 2.4391824. In accordance with expectations, the derivatives of the functions 0 and 
𝐼05 have a discontinuity at 1 and 𝐼15, respectively. This arises due to the discontinuity of the heat flux at the phase-change interface, 
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Fig. 4. Exact 0 = 0(⊲) and approximate 0 = 𝐼05(⊲) functions for ⊲ ϱ [0, 𝐼𝐽5] and ℷ = 0.

Fig. 5. Exact 𝜚 = 𝜗(𝜀) and approximate 𝜚 = 𝐼𝜗5(𝜀) free boundaries and thermal layer 𝜚 = 𝐼𝜔(𝜀) against time 𝜀 ϱ (0, 5)𝜗, for ⊳2 = 1.3 m2

s  and ℷ = 0.

𝑃 (𝜀). Finally, Fig.  5 illustrates the agreement between the exact free boundary 𝜚 = 𝜗(𝜀) and its numerical approximation 𝜚 = 𝐼𝜗5(𝜀) as 
well as the evolution of the thermal layer 𝐼𝜔(𝜀) = 2𝐼𝐽5

{
⊳2𝜀 for 𝜀 ϱ (0, 5) s. We can see that 𝜚 = 𝐼𝜔(𝜀) simulates the infinity in the Stefan 

problem, i.e., condition (2.3).
These results confirm that the numerical method used for obtaining the approximated solutions is efficient and accurate in the 

case of constant thermal coefficients. Also, as expected, we conclude that the higher the order of the matrix of differentiation is, 
the more accurate the results are.

5.2. Variable thermal coefficients

Now that the accuracy of the Tau method for the particular case that the thermal coefficients are constants has been established, 
we are going to approximate the solution to the problem (ODP⊲) through the solution to the problem (ODP⊲N), for the variable 
thermal coefficients given by (2.8) and (2.9).

Let us take the fixed values Ste = 0.1, ⊳ = 0.9, 𝜛ε = 2 ⋟C, 𝜛
𝜗
= 1.8 ⋟C, 𝜛0 = 1 ⋟C, ⊳2 = 1.3𝑁

2

𝜗
, 𝜕

0
2

𝜕
0
1
= 1.1 and ℷ = 0.1. Then, we are 

going to consider two cases: linear (ℸ = 1) and quadratic (ℸ = 2) temperature-dependent thermal coefficients.
For both cases, the approximate solutions (𝐼01𝐸 , 𝐼02𝐸 , 𝐼1

𝐸
, 𝐼𝐽

𝐸
) are obtained by solving the non-linear system defined by (4.45)–(4.49).
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Table 3
Solutions to the non-linear system (4.45)-(4.49) for ℸ = 1.
 𝐸 𝐼1

𝐸
𝐼𝐽
𝐸

Vectors 𝐾 and 𝐿 for coefficients of 𝐼0
ℶ
𝐸

, ℶ = 1, 2 respectively  
 2 0.4575845 1.6797615 [3.0312449 ϑ 2 ϑ 0.0312449]  
 [0.375 ϑ 0.5 0.125]  
 3 0.4515848 2.1589221 [3.0310540 ϑ 2.0044779 ϑ 0.0310540 0.0044779]  
 [0.3196039 ϑ 0.4723020 0.1803961 ϑ 0.0276980]  
 4 0.4519006 2.2690646 [3.0312505 ϑ 2.0044871 ϑ 0.0312823 0.0044763 0.0000996]  
 [0.2988557 ϑ 0.4675062 0.2046120 ϑ 0.0341250 ϑ 0.0040214]  
 5 0.4518571 2.4586225 [3.0312152 ϑ 2.0045138 ϑ 0.0312902 0.0045240 0.0000750 ϑ 0.0000102] 
 [0.2884689 ϑ 0.4496585 0.2118087 ϑ 0.0540876 ϑ 0.0002775 0.0037461] 

Fig. 6. Exact 0 = 0(⊲) and approximate 0 = 𝐼05(⊲) functions for ⊲ ϱ [0, 𝐼𝐽5] and ℸ = 1.

5.2.1. Case 1: Linear temperature-dependent thermal coefficients
This case corresponds to setting ℸ = 1 in (2.8) and (2.9). First, we obtain the value of the coefficient that characterizes the exact 

free boundary, which is the unique solution to Eq.  (3.3), and it is given by 
1 = 0.4518618. (5.7)

On the other hand, for 𝐸 = 2, 3, 4, 5, the approximate solutions obtained through the solution to the non-linear system 
(4.45)–(4.49) are presented in Table  3.

Due to the similarity between the exact and approximate solutions for 𝐸 = 2, 3, 4, 5, it becomes visually challenging to observe 
the difference among them. Therefore, in Fig.  6 we only consider the particular case 𝐸 = 5, and plot the exact function 0 = 0(⊲)
given by (3.1) and (3.2) and the approximate one 0 = 𝐼05(⊲) given by (4.41) and (4.42) for values of ⊲ ϱ [0, 𝐼𝐽5] with 𝐼𝐽5 = 2.4586225. 
Additionally for this case, in Fig.  7 we show the exact free boundary 𝜚 = 𝜗(𝜀), the approximate free boundary 𝜚 = 𝐼𝜗5(𝜀) and the 
thermal layer 𝐼𝜔(𝜀) = 2𝐼𝐽5

{
⊳2𝜀 for 𝜀 ϱ (0, 5) s.

Moreover, when calculating the global error in 𝐵2(0,+ε), defined as 

𝑂
𝑄

𝐸
(⊲) = ∳

+ε

0

⟩
0(⊲) ϑ 𝐼0

𝐸
(⊲)

⟪2
9⊲, (5.8)

we observe that for 𝐸 = 2, the error is on the order of 10ϑ1, while for 𝐸 = 3 and 𝐸 = 4, it is of the order of 10ϑ3. For 𝐸 = 5, the 
global error is on the order of 10ϑ4. These results clearly demonstrate that the approximate values are sufficiently accurate and in 
good agreement with the exact solution for thermal coefficients that depend linearly on temperature when 𝐸 increases.

5.2.2. Case 2: Quadratic temperature-dependent thermal coefficients
If we consider the thermal coefficients given by (2.8) and (2.9) with ℸ = 2 then the parameter that characterizes the exact free 

boundary is the unique solution to Eq.  (3.3) and is given by 
1 = 0.5544354. (5.9)

Moreover, the approximate solutions for 𝐸 = 2, 3, 4, 5, are obtained through the solution to the non-linear system (4.45)–(4.49) 
and they are given in Table  4.
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Fig. 7. Exact 𝜚 = 𝜗(𝜀) and approximate 𝜚 = 𝐼𝜗5(𝜀) free boundaries and thermal layer 𝜚 = 𝐼𝜔(𝜀) against time 𝜀 ϱ (0, 5) s, for ⊳2 = 1.3 m2

s  and ℸ = 1.

Table 4
Solutions to the non-linear system (4.45)-(4.49) for ℸ = 2.
 𝐸 𝑅1

𝐸
𝐼𝐽
𝐸

Vectors 𝐾 and 𝐿 for coefficients of 𝐼0
ℶ
𝐸

, ℶ = 1, 2 respectively  
 2 0.5331905 1.6976789 [3.2074222 ϑ 2.0000000 ϑ 0.2074222]  
 [0.3750000 ϑ 0.5000000 0.1250000]  
 3 0.5542882 2.2253863 [3.2245372 ϑ 1.9789331 ϑ 0.2245041 ϑ 0.0210198]  
 [0.3110687 ϑ 0.4680610 0.1888094 ϑ 0.0323157]  
 4 0.5545971 2.2352235 [3.2255878 ϑ 1.9790813 ϑ 0.2260442 ϑ 0.0209858 0.0004544]  
 [0.2954854 ϑ 0.4689558 0.2091319 ϑ 0.0330290 ϑ 0.0052971]  
 5 0.5544276 2.4512475 [3.2265636 ϑ 1.9759522 ϑ 0.2273316 ϑ 0.0256361 0.0007680 0.0015883] 
 [0.2878182 ϑ 0.4479734 0.2117631 ϑ 0.0559304 0.0004187 0.0039038]  

In this case, the global error in 𝐵2(0,+ε), as given by Eq.  (5.8), is on the order of 10ϑ1 for 𝐸 = 2, while for 𝐸 = 3 and 𝐸 = 4, 
it is on the order of 10ϑ3. Furthermore, for 𝐸 = 5, we observe that the error is on the order of 10ϑ4. For this reason, we consider 
the particular case 𝐸 = 5 as an example.

In Fig.  8 we plot the exact function 0 = 0(⊲) given by (3.1) and (3.2) and the approximate one 0 = 𝐼05(⊲) given by (4.41) and 
(4.42) against ⊲ ϱ [0, 𝐼𝐽5] with 𝐼𝐽5 = 2.4512475. Moreover, for this case, in Fig.  9 we show the exact free boundary 𝜚 = 𝜗(𝜀), the 
approximate free boundary 𝜚 = 𝐼𝜗5(𝜀) and the thermal layer 𝐼𝜔(𝜀) = 2𝐼𝐽5

{
⊳2𝜀 for 𝜀 ϱ (0, 5) s.

From Figs.  8 and 9 we can see that the solution obtained by numerical scheme is nearly equal to the exact solution.
From the analyzed cases, we observed that as 𝐸 increases, the value of 1

𝐸
 gets closer to the exact value 1. In particular, for 

𝐸 = 10, we obtained 𝐼110 = 0.5544353 and 𝐼𝐽10 = 3.7137011, resulting in an absolute error in 1 on the order of 10ϑ6. For this case, a 
temperature color map of the approximate 𝐼𝜛 is shown in Fig.  10, and a 3D plot of the same is presented in Fig.  11.

Remark 5.1.  The parameter ℸ introduces a nonlinear effect in the model; however, within the tested range and numerical resolution, 
this influence does not significantly affect the numerical accuracy in the considered examples. As a result, the convergence errors 
for ℸ = 1 and ℸ = 2 remain nearly identical.

Conclusions

A one-dimensional two-phase Stefan problem that models the solidification process of a semi-infinite material with temperature-
dependent thermal conductivity and specific heat assuming a Dirichlet boundary condition at the fixed face was analyzed. An 
equivalent ordinary differential problem was obtained through a similarity transformation. Then, a functional problem was deduced 
and the existence and uniqueness of solution was proved. Furthermore, numerical approximations were obtained using the Tau 
method, which relies on differentiation using shifted Chebyshev operational matrices. The accuracy of this approach was validated 
against exact solutions of test problems, highlighting the attractiveness of the Tau method based on shifted Chebyshev polynomials. 
This validation underscores its ability to achieve excellent agreement between approximate and exact values in numerical examples.
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Fig. 8. Exact 0 = 0(⊲) and approximate 0 = 𝐼05(⊲) functions for ⊲ ϱ [0, 𝐼𝐽5] and ℸ = 2.

Fig. 9. Exact 𝜚 = 𝜗(𝜀) and approximate 𝜚 = 𝐼𝜗5(𝜀) free boundaries and thermal layer 𝜚 = 𝐼𝜔(𝜀) against time 𝜀 ϱ (0, 5) s, for ⊳2 = 1.3 m2

s  and ℸ = 2.
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Fig. 10. Approximate temperature color map for ⊳2 = 1.3 m2

s , ℸ = 2 and 𝐸 = 10.

Fig. 11. Approximate temperature 𝐼𝜛 = 𝐼𝜛(𝜚, 𝜀) for ⊳2 = 1.3 m2

s , ℸ = 2 and 𝐸 = 10.

Data availability

Data will be made available on request.

References

[1] V. Alexiades, A.D. Solomon, Mathematical Modeling of Melting and Freezing Processes, Hemisphere Publishing Corporation, Washington, 1993.
[2] D.A. Tarzia, A bibliography on moving-free boundary problems for heat diffusion equation. The Stefan problem, in: MAT-Serie A, vol. 2, 2000, pp. 1–297.
[3] F. Brosa Planella, C.P. Please, R.A. Van Gorder, Extended Stefan problem for the solidification of binay alloys in a sphere, European J. Appl. Math. 32 

(2) (2021) 242–279.
[4] Y. Belhamadia, G.O. Cassol, S. Dubljevic, Numerical modelling of hyperbolic phase change problems: Application to continuous casting, Int. J. Heat Mass 

Transfer 209 (2023).
[5] M.P. Dalwadi, S.L. Waters, H.M. Byrne, I.J. Hewitt, A mathematical framework for developing freezing protocols in the cryopreservation of cells, SIAM J. 

Appl. Math. 80 (2020) 667–689.
[6] V.R. Voller, J.B. Swenson, C. Paola, An analytical solution for a Stefan problem with variable latent heat, Int. J. Heat Mass Transfer 47 (2004) 5387–5390.
[7] S.C. Gupta, The Classical Stefan Problem. Basic Concepts, Modelling and Analysis, Elsevier, Amsterdam, 2018.
[8] J. Bollati, M.F. Natale, J.A. Semitiel, D.A. Tarzia, in: J. Hristov, R. Bennacer (Eds.), Approximate Solutions to the One-Phase Stefan Problem with 

Temperature-Dependent Thermal Conductivity, Nova Science Publishers, Inc., 2019, pp. 1–20.
[9] J. Bollati, M.F. Natale, J.A. Semitiel, D.A. Tarzia, A two-phase Stefan problem with power-type temperature-dependent thermal conductivity. Existence 

of a solution by two fixed points and numerical results, in: Special Issue Free or Moving Boundary Problems in Fluid Mechanics, vol. 9, no. 8, AIMS 
Mathematics, 2024, pp. 21189–21211.

Journal�of�Computational�and�Applied�Mathematics�475��������117001�

16�

http://refhub.elsevier.com/S0377-0427(25)00515-1/sb1
http://refhub.elsevier.com/S0377-0427(25)00515-1/sb2
http://refhub.elsevier.com/S0377-0427(25)00515-1/sb3
http://refhub.elsevier.com/S0377-0427(25)00515-1/sb3
http://refhub.elsevier.com/S0377-0427(25)00515-1/sb3
http://refhub.elsevier.com/S0377-0427(25)00515-1/sb4
http://refhub.elsevier.com/S0377-0427(25)00515-1/sb4
http://refhub.elsevier.com/S0377-0427(25)00515-1/sb4
http://refhub.elsevier.com/S0377-0427(25)00515-1/sb5
http://refhub.elsevier.com/S0377-0427(25)00515-1/sb5
http://refhub.elsevier.com/S0377-0427(25)00515-1/sb5
http://refhub.elsevier.com/S0377-0427(25)00515-1/sb6
http://refhub.elsevier.com/S0377-0427(25)00515-1/sb7
http://refhub.elsevier.com/S0377-0427(25)00515-1/sb8
http://refhub.elsevier.com/S0377-0427(25)00515-1/sb8
http://refhub.elsevier.com/S0377-0427(25)00515-1/sb8
http://refhub.elsevier.com/S0377-0427(25)00515-1/sb9
http://refhub.elsevier.com/S0377-0427(25)00515-1/sb9
http://refhub.elsevier.com/S0377-0427(25)00515-1/sb9
http://refhub.elsevier.com/S0377-0427(25)00515-1/sb9
http://refhub.elsevier.com/S0377-0427(25)00515-1/sb9


J. Bollati et al.

[10] L. Bougoffa, S. Bougouffa, A. Khanfer, An analysis of the one-phase Stefan problem with variable thermal coefficients of order p, Axioms 12 (2023).
[11] T. Nauryz, S. Kharin, Existence and uniqueness for one-phase spherical Stefan problem with nonlinear thermal coefficients and heat flux condition, Int. J. 

Appl. Math. 35 (2022) 645–659.
[12] D.A. Tarzia, Relationship between Neumann solutions for two-phase Lamé-Clapeyron-Stefan problems with convective and temperature boundary conditions, 

Therm. Sci. 21–1 (2017) 187–197.
[13] L.D. Venturato, M.B. Cirelli, D.A. Tarzia, Explicit solutions related to the Rubinstein binary-alloy solidification problem with a heat flux or a convective 

condition at the fixed face, Math. Methods Appl. Sci. 47 (2024) 6770–6788.
[14] J. Bollati, M.F. Natale, J.A. Semitiel, D.A. Tarzia, Exact solution for non-classical one-phase Stefan problem with variable thermal coefficients and two 

different heat source terms, Comput. Appl. Math. 41 (2022) 1–11.
[15] A.C. Briozzo, C. Rogers, D.A. Tarzia, A class of moving boundary problems with a source term: Application of a reciprocal transformation, Acta Mech. 

234 (2023) 1889–1900.
[16] L. Bougoffa, R.C. Rach, A. Mennouni, On the existence, uniqueness, and new analytic approximate solution of the modified error function in two-phase 

Stefan problems, Math. Methods Appl. Sci. 44 (2021) 10948–10956.
[17] A. Kumar, A.K. Singh, R. Rajeev, A moving boundary problem with variable specific heat and thermal conductivity, J. King Saud Univ. - Sci. 32 (2020) 

384–389.
[18] N.N. Salva, D.A. Tarzia, Explicit solution for a Stefan problem with variable latent heat and constant heat flux boundary conditions, J. Math. Anal. Appl. 

379 (2011) 240–244.
[19] H. Hekmatjou, Z. Zeng, J. Shen, J.P. Oliveira, H. Naffakh-Moosavy, A comparative study of analytical rosenthal, finite element, and experimental approaches 

in laser welding of AA5456 alloy, Metals 10 (4) (2020).
[20] A. Kumar, A.K. Singh, R. Rajeev, A Stefan problem with temperature and time dependent thermal conductivity, J. King Saud Univ. - Sci. 32 (2020) 

97–101.
[21] S.L. Mitchell, M. Vynnycky, On the numerical solution of two-phase Stefan problems with heat-flux boundary conditions, J. Comput. Appl. Math. 264 

(2014) 49–64.
[22] R. Hidki, L. El Moutaouakil, M. Boukendil, Z. Charqui, B. Jamal, Application of an artificial intelligence model for natural convection of nano-encapsulated 

phase change materials (NEPCMs) confined in a porous square enclosure with an inclined elliptical heated block, Int. Commun. Heat Mass Transfer 155 
(107546) (2024) 1–13.

[23] C. Lanczos, Trigonometric interpolation of empirical and analytical functions, Stud. Appl. Math. 17 (1–4) (1938) 123–199.
[24] E.L. Ortiz, The Tau method, SIAM J. Numer. Anal. 6 (3) (1969) 480–492.
[25] I.-R. Horng, J.-H. Chou, Application of shifted Chebyshev series to the optimal control of linear distributed-parameter systems, Internat. J. Control 42 (1) 

(1985) 233–241.
[26] S. Abbasbandy, A. Taati, Numerical solution of the system of nonlinear Volterra integro-differential equations with nonlinear differential part by the 

operational Tau method and error estimation, J. Comput. Appl. Math. 231 (1) (2009) 106–113.
[27] E. Hesameddini, M. Riahi, Shifted Chebyshev polynomial method for solving systems of linear and nonlinear Fredhom-Volterra integro-differential equations, 

J. Math. Ext. 12 (3) (2018) 55–79.
[28] K. Raslan, K. Ali, E. Mohamed, J. Younis, M. Abd El salam, An operational matrix technique based on Chebyshev polynomials for solving mixed 

Volterra-Fredholm delay integro-differential equations of variable-order, J. Funct. Spaces 2022 (6203440) (2022) 1–15.
[29] M. Sahlan, H. Feyzollahzadeh, Operational matrices of Chebyshev polynomials for solving singular Volterra integral equations, Math. Sci. 11 (2017) 

165–171.
[30] H. Samara, Resolución numérica de ecuaciones diferenciales. Formulación variacional del método Tau, Cuadernos Instituto Matemático Beppo Levi, Rosario, 

1979.
[31] E. Doha, A. Bhrawy, S. Ezz-Eldien, Efficient Chebyshev spectral methods for solving multi-term fractional orders differential equations, Appl. Math. Model. 

35 (12) (2011) 5662–5672.
[32] E. Ortiz, H. Samara, An operational approach to the Tau method for the numerical solution of non-linear differential equations, Computing 27 (1981) 

15–25.
[33] D. Abdelhamied, M. Abdelhakem, M. El-Kady, M. Youssri, Adapted shifted ChebyshevU operational matrix of derivates: Two algorithms for solving 

even-order BVPs, Appl. Math. Inf. 17 (3) (2023) 575–581.
[34] K. Parand, M. Razzaghi, Rational Chebyshev Tau method for solving higher-order ordinary differential equations, Int. J. Comput. Math. 81 (2004) 73–80.
[35] E. Doha, A. Bhrawy, S. Ezz-Eldien, A Chebyshev spectral method based on operational matrix for initial and boundary value problems of fractional order, 

Comput. Math. Appl. 62 (5) (2011) 2364–2373.
[36] F. Ghoreishi, S. Yazdani, An extension of the spectral Tau method for numerical solution of multi-order fractional differential equations with convergence 

analysis, Comput. Math. Appl. 61 (2011) 30–43.
[37] M. AliAbadi, E. Ortiz, Numerical treatment of moving and free boundary value problems with the Tau method, Comput. Math. Appl. 35 (8) (1998) 53–61.
[38] A. Kumar, R. Rajeev, A Stefan problem with moving phase change material, variable thermal conductivity and periodic boundary condition, Appl. Math. 

Comput. 386 (125490) (2020) 1–13.
[39] A. Kumar, A.K. Singh, R. Rajeev, A Stefan problem with variable thermal coefficients and moving phase change material, J. King Saud Univ. Sci. 31 

(2019) 1064–1069.
[40] D. Trif, Matrix based operatorial approach to differential and integral problems, in: C.M. Ionescu (Ed.), MATLAB, IntechOpen, Rijeka, 2011.
[41] A.M. Gonzalez, D.A. Tarzia, Determination of unknown coefficients of a semi-infinite material through a simple mushy zone model for the two-phase 

Stefan problem, Internat. J. Engrg. Sci. 34 (1996) 799–817.

Journal�of�Computational�and�Applied�Mathematics�475��������117001�

17�

http://refhub.elsevier.com/S0377-0427(25)00515-1/sb10
http://refhub.elsevier.com/S0377-0427(25)00515-1/sb11
http://refhub.elsevier.com/S0377-0427(25)00515-1/sb11
http://refhub.elsevier.com/S0377-0427(25)00515-1/sb11
http://refhub.elsevier.com/S0377-0427(25)00515-1/sb12
http://refhub.elsevier.com/S0377-0427(25)00515-1/sb12
http://refhub.elsevier.com/S0377-0427(25)00515-1/sb12
http://refhub.elsevier.com/S0377-0427(25)00515-1/sb13
http://refhub.elsevier.com/S0377-0427(25)00515-1/sb13
http://refhub.elsevier.com/S0377-0427(25)00515-1/sb13
http://refhub.elsevier.com/S0377-0427(25)00515-1/sb14
http://refhub.elsevier.com/S0377-0427(25)00515-1/sb14
http://refhub.elsevier.com/S0377-0427(25)00515-1/sb14
http://refhub.elsevier.com/S0377-0427(25)00515-1/sb15
http://refhub.elsevier.com/S0377-0427(25)00515-1/sb15
http://refhub.elsevier.com/S0377-0427(25)00515-1/sb15
http://refhub.elsevier.com/S0377-0427(25)00515-1/sb16
http://refhub.elsevier.com/S0377-0427(25)00515-1/sb16
http://refhub.elsevier.com/S0377-0427(25)00515-1/sb16
http://refhub.elsevier.com/S0377-0427(25)00515-1/sb17
http://refhub.elsevier.com/S0377-0427(25)00515-1/sb17
http://refhub.elsevier.com/S0377-0427(25)00515-1/sb17
http://refhub.elsevier.com/S0377-0427(25)00515-1/sb18
http://refhub.elsevier.com/S0377-0427(25)00515-1/sb18
http://refhub.elsevier.com/S0377-0427(25)00515-1/sb18
http://refhub.elsevier.com/S0377-0427(25)00515-1/sb19
http://refhub.elsevier.com/S0377-0427(25)00515-1/sb19
http://refhub.elsevier.com/S0377-0427(25)00515-1/sb19
http://refhub.elsevier.com/S0377-0427(25)00515-1/sb20
http://refhub.elsevier.com/S0377-0427(25)00515-1/sb20
http://refhub.elsevier.com/S0377-0427(25)00515-1/sb20
http://refhub.elsevier.com/S0377-0427(25)00515-1/sb21
http://refhub.elsevier.com/S0377-0427(25)00515-1/sb21
http://refhub.elsevier.com/S0377-0427(25)00515-1/sb21
http://refhub.elsevier.com/S0377-0427(25)00515-1/sb22
http://refhub.elsevier.com/S0377-0427(25)00515-1/sb22
http://refhub.elsevier.com/S0377-0427(25)00515-1/sb22
http://refhub.elsevier.com/S0377-0427(25)00515-1/sb22
http://refhub.elsevier.com/S0377-0427(25)00515-1/sb22
http://refhub.elsevier.com/S0377-0427(25)00515-1/sb23
http://refhub.elsevier.com/S0377-0427(25)00515-1/sb24
http://refhub.elsevier.com/S0377-0427(25)00515-1/sb25
http://refhub.elsevier.com/S0377-0427(25)00515-1/sb25
http://refhub.elsevier.com/S0377-0427(25)00515-1/sb25
http://refhub.elsevier.com/S0377-0427(25)00515-1/sb26
http://refhub.elsevier.com/S0377-0427(25)00515-1/sb26
http://refhub.elsevier.com/S0377-0427(25)00515-1/sb26
http://refhub.elsevier.com/S0377-0427(25)00515-1/sb27
http://refhub.elsevier.com/S0377-0427(25)00515-1/sb27
http://refhub.elsevier.com/S0377-0427(25)00515-1/sb27
http://refhub.elsevier.com/S0377-0427(25)00515-1/sb28
http://refhub.elsevier.com/S0377-0427(25)00515-1/sb28
http://refhub.elsevier.com/S0377-0427(25)00515-1/sb28
http://refhub.elsevier.com/S0377-0427(25)00515-1/sb29
http://refhub.elsevier.com/S0377-0427(25)00515-1/sb29
http://refhub.elsevier.com/S0377-0427(25)00515-1/sb29
http://refhub.elsevier.com/S0377-0427(25)00515-1/sb30
http://refhub.elsevier.com/S0377-0427(25)00515-1/sb30
http://refhub.elsevier.com/S0377-0427(25)00515-1/sb30
http://refhub.elsevier.com/S0377-0427(25)00515-1/sb31
http://refhub.elsevier.com/S0377-0427(25)00515-1/sb31
http://refhub.elsevier.com/S0377-0427(25)00515-1/sb31
http://refhub.elsevier.com/S0377-0427(25)00515-1/sb32
http://refhub.elsevier.com/S0377-0427(25)00515-1/sb32
http://refhub.elsevier.com/S0377-0427(25)00515-1/sb32
http://refhub.elsevier.com/S0377-0427(25)00515-1/sb33
http://refhub.elsevier.com/S0377-0427(25)00515-1/sb33
http://refhub.elsevier.com/S0377-0427(25)00515-1/sb33
http://refhub.elsevier.com/S0377-0427(25)00515-1/sb34
http://refhub.elsevier.com/S0377-0427(25)00515-1/sb35
http://refhub.elsevier.com/S0377-0427(25)00515-1/sb35
http://refhub.elsevier.com/S0377-0427(25)00515-1/sb35
http://refhub.elsevier.com/S0377-0427(25)00515-1/sb36
http://refhub.elsevier.com/S0377-0427(25)00515-1/sb36
http://refhub.elsevier.com/S0377-0427(25)00515-1/sb36
http://refhub.elsevier.com/S0377-0427(25)00515-1/sb37
http://refhub.elsevier.com/S0377-0427(25)00515-1/sb38
http://refhub.elsevier.com/S0377-0427(25)00515-1/sb38
http://refhub.elsevier.com/S0377-0427(25)00515-1/sb38
http://refhub.elsevier.com/S0377-0427(25)00515-1/sb39
http://refhub.elsevier.com/S0377-0427(25)00515-1/sb39
http://refhub.elsevier.com/S0377-0427(25)00515-1/sb39
http://refhub.elsevier.com/S0377-0427(25)00515-1/sb40
http://refhub.elsevier.com/S0377-0427(25)00515-1/sb41
http://refhub.elsevier.com/S0377-0427(25)00515-1/sb41
http://refhub.elsevier.com/S0377-0427(25)00515-1/sb41

	Tau method implementation for approximating the solution to a two-phase change problem with temperature-dependent thermal coefficients
	Introduction
	Mathematical model
	Existence and uniqueness of solution
	Tau method implementation 
	Approximate solution to problem (2PSP) 

	Numerical Results
	Constant thermal coefficients
	Variable thermal coefficients
	Case 1: Linear temperature-dependent thermal coefficients
	Case 2: Quadratic temperature-dependent thermal coefficients


	Conclusions
	CRediT authorship contribution statement
	Acknowledgment
	Data availability
	References


