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Abstract. This paper deals with a free-moving boundary diffusion model which describes a
catalytic diffusion-reaction process in a gas-solid system with catalyst decay. We consider a one-
phase free boundary diffusion problem for the gaseous poison reactant and a two-phase moving
boundary diffusion problem for the main gas reactant.

We prove a local result in time for the existence and uniqueness of the solution of the corre-
sponding free-moving boundary diffusion problem.
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1. Introduction. It is well known that in many industrial areas, the gas-solid
catalytic process plays a significant role. Regarding this type of process, the phe-
nomenon of deactivation of the catalytic sites distributed in a given solid pellet is
particularly important from a technological and economical point of view. For some
years now, several approaches, devices, mechanisms, and models have been proposed
in order to analyze and understand this diffusion-reaction phenomenon. A review can
be found in [Ar, FrBi, Ol]. It must be pointed out that there is a lot of experimental
evidence that in many gas-solid catalytic industrial processes, the phenomenom of
catalyst decay which concerns us seems to occur according to a moving boundary
model. This paper deals with a theoretical mathematical analysis of an isothermal
free-moving boundary model postulated to describe a gas-solid catalytic system which
involves a main reactant gas A, a reactant B absorbed in the solid phase, catalytic
active sites S distributed in a solid phase, and a gaseous reactant P at a very low
concentration that is only able to interact chemically with active sites S. The species
P constitutes a poison for the catalyst in the sense that active catalytic sites are ren-
dered inactive by the absorption of P during the evolution of the process. In this way,
it is postulated that once the catalytic pellet is immersed in the medium containing
the gaseous mixture A + P , the diffusion-reaction process begins from the outside
surface of the pellet with a quick and irreversible isothermal chemical reaction. We
suppose that the chemical reaction takes place under operative conditions such that
the equilibrium constant is very large; this fact accounts for the irreversibility in our
model. As a consequence of the decay of the catalyst, at any instant there is a dead
region or inert layer, because the catalyst was totally deactivated or completely poi-
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soned, separated by a free boundary or reaction front from the active region (not yet
deactivated core). In the formulation of the chemical reaction mechanism we shall
suppose that the poisoning reaction is related to the process not by a reaction par-
allel or consecutive to the main one (that is, for gas A) but through an independent
chemical reaction. On the other hand, we suppose that the reactant B absorbed in
the solid and the active sites S are uniformly distributed. At any time, the concen-
tration of B is supposed to be in excess with respect to the concentration of A. In
section 2 we give the model equations as a free-moving boundary diffusion problem
[CaJa, Cr1, Cr2, ElOc, OlPrRa, Pr, Ru, Ta], that is, a one-phase free boundary dif-
fusion problem for the poison P and a two-phase moving boundary diffusion problem
for the main gas reactant. The first free boundary problem was solved in [TaVi].
Another formulation is given in [Co, FaPr]. For the difference between a free bound-
ary problem and a moving boundary problem, see [Ta]. We give a new equivalent
integral formulation for the second two-phase moving boundary problem. In section 3
we prove a local result in time for the existence and uniqueness of the corresponding
second kind Volterra integral equations system.

2. Model equations and integral formulation. Let us consider a solid slab
catalytic particle of semithickness L along the gas diffusion direction and with a very
low permeability for the gaseous species A and P .

Let us denote by CA = CA(Y, τ), C̃A = C̃A(Y, τ), P = P (y, τ), P̃ = P̃ (y, τ) the
concentration of gas A and poison P in the inert layer and in the core or active
region, respectively. W = W (Y, τ) denotes the concentration of active sites S in the
core or reaction zone; σ = σ (τ) denotes the position of the free boundary at time
τ (it separates the inert layer from the reaction zone). Then, taking into account
the considerations explained in the previous section regarding the mechanism of the
system, the corresponding mathematical scheme (Wen’s model [TaVi, Vi, We]) can

be formulated as follows: Find the functions CA = CA(Y, τ), C̃A = C̃A(Y, τ), P =

P (y, τ), P̃ = P̃ (y, τ),W = W (Y, τ) of the spatial variable Y and time variable τ ,
and the free boundary σ = σ (τ) so that they satisfy the following equations and
conditions:∣∣∣∣∣∣∣∣∣

(a) ε
∂P

∂τ
= DP

∂2P

∂Y 2
, σ (τ) < Y < L, τ0 < τ < τ1,

(b)P (L, τ) = P0 = Const. > 0, τ0 < τ < τ1,
(c)P (Y, τ0) = P1(Y ), L0 ≤ Y ≤ L,
(d)σ (τ0) = L0,

(1)

∣∣∣∣∣∣∣∣∣∣
(a)

∂P̃

∂τ
= D̃P

∂2P̃

∂Y 2
−R(P̃ ,W ), 0 < Y < σ(τ), τ0 < τ < τ1,

(b) P̃ (Y, 0) = 0, 0 ≤ Y ≤ L0,

(c)
∂P̃

∂Y
(0, τ) = 0, τ0 < τ < τ1,

(2)

∣∣∣∣∣∣∣∣∣∣∣∣

(a)P (σ+ (τ) , τ) = P̃ (σ− (τ) , τ)(≡ P (σ (τ) , τ)),

(b)DP
∂P

∂Y
(σ+ (τ) , τ)− D̃P

∂P̃

∂Y
(σ− (τ) , τ) = −λa •

σ (τ),

(c)DP
∂P

∂Y
(σ+ (τ) , τ)− D̃P

∂P̃

∂Y
(σ− (τ) , τ) = g (P (σ (τ) , τ),W (σ (τ) , τ))

for τ0 < τ < τ1,

(B(1− 2))
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(
P̃ ,W

)
, 0 < Y < σ(τ), τ0 < τ < τ1,

(b)W (Y, τ0) =W0, 0 < Y ≤ L0,
(3)

∣∣∣∣∣∣∣∣
(a) ε

∂CA

∂τ
= DA

∂2CA

∂Y 2
, σ (τ) < Y < L, τ0 < τ < τ1,

(b)CA(L, τ) = V0 = Const. > 0, τ0 < τ < τ1,

(c)CA(Y, τ0) = Φ(Y ), L0 ≤ Y ≤ L,

(4)

∣∣∣∣∣∣∣∣∣∣
(a)

∂C̃A

∂τ
= D̃A

∂2C̃A

∂Y 2
− γC̃A, 0 < Y < σ(τ), τ0 < τ < τ1,

(b)
∂C̃A

∂Y
(0, τ) = 0, τ0 < τ < τ1,

(c) C̃A(Y, 0) = 0, 0 ≤ Y ≤ L0,

(5)

∣∣∣∣∣∣
(a)CA(σ

+ (τ) , τ) = C̃A(σ
− (τ) , τ)(≡ CA(σ (τ) , τ)), τ0 < τ < τ1,

(b)DA
∂CA

∂Y
(σ+ (τ) , τ) = D̃A

∂C̃A

∂Y
(σ− (τ) , τ), τ0 < τ < τ1,

(B(4− 5))

where ε,DA, D̃A, DP , D̃P , a, and γ are positive constants denoting the porosity of the
inert layer, the effective diffusion coefficients in the porous layer and in the reaction
zone, the stoichiometric coefficient, and the constant of chemical reaction velocity,
respectively. The constant λ contains the kinetic constant and W0. In (1)–(5) we are
assuming that at the time τ0 a porous inert layer of thickness L−L0 is already formed
and this explains the initial conditions (1c), (2b), (1d), (4c), and (5c). On the other
hand, we have considered a first order homogeneous chemical reaction with respect to
the gaseous reactant A. Equations (1a), (2a), (4a), and (5a) express the mass balance
in the respective domains for gaseous species A and P . On the fixed boundary,
conditions are prescribed by (1b), (2c), (4b), and (5c). On the free boundary Y =
σ (τ), (B(1−2)c) expresses the equality of the rate of mass consumption of the species
P in the surface reaction and the incoming mass flux of the same component where g
represents the kinetics on the reaction front. We remark that the term proportional

to P (σ (τ) , τ) .
•
σ (τ) has been considered to be negligible with respect to λ.

•
σ (τ) in

(B(1− 2)b) (an acceptable assumption in gas-solid systems).
Equation (B(1−2)b) states the same preceding balance in terms of the free bound-

ary velocity, taking into account that −λ. •
σ (τ) is also the rate of mass consumption

of P . Equation (3) gives the mass balance for the active sites in the reaction zone,
where R denotes the kinetic expression for the poisoning reaction. It is a known
function. It can be seen that (1)–(5) constitute a system of free-moving boundary
problems for the diffusion equation. In fact, it is clear that (1), (2), (B(1 − 2)), (3)
represent a free boundary problem related to a moving boundary problem given by
(4), (5), (B(4−5)). As a first stage, in this paper we shall analyze a moving boundary
problem which comes from (1)–(5) as a limiting case. This limiting case appears if
we assume that the diffusion of the poison P in the reaction zone is negligible, being
the amount of homogeneous chemical reaction R(P̃ ,W ), which is also negligible in
comparison to the surface chemical reaction g(P,W ), which is very fast. Under such
considerations, at the place of (2), (B(1− 2)), and (3) we can write



1670 BOBULA, TARZIA, TWARDOWSKA, AND VILLA∣∣∣∣∣∣∣∣∣∣∣∣

(a) P̃ ≡ 0, 0 < Y < σ(τ), τ0 < τ < τ1,

(b)−DP
∂P

∂Y
(σ (τ) , τ) = aλ

•
σ (τ), τ0 < τ < τ1,

(c)DP
∂P

∂Y
(σ (τ) , τ) = ĝ(P (σ (τ) , τ)), τ0 < τ < τ1,

(d)W (τ) ≡ W0 = Const. > 0, τ0 < τ < τ1.

(6)

Hence, taking into account (6), the system (1)–(3) leads to the following one:
Find the functions P = P (Y, τ) and σ = σ (τ) such that they satisfy the following
conditions:∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(a) ε
∂P

∂τ
= DP

∂2P

∂Y 2
, σ (τ) < Y < L, τ0 < τ < τ1,

(b)P (L, τ) = P0 = Const. > 0, τ0 < τ < τ1,

(c)P (Y, τ0) = P1(Y ), L0 ≤ Y ≤ L,

(d)−DP
∂P

∂Y
(σ (τ) , τ) = aλ

•
σ (τ), τ0 < τ < τ1,

(e)DP
∂P

∂Y
(σ (τ) , τ) = ĝ(P (σ (τ) , τ)), τ0 < τ < τ1,

(f)σ (τ0) = L0.

(7)

The problems (4), (5), (B(4−5)) remain unchanged in form, but we must take into
account that from now on, in these problems the moving boundary σ = σ (τ) comes
from the solution of the free boundary problem (7). We remark that in the expression
of the function ĝ = ĝ (P (σ (τ) , τ)) in the right-hand side of (7e), the concentration of
the sites appears as the constant W0. In general, in (7) ĝ may be any real function
such that

ĝ = 0 if P (σ (τ) , τ) = 0 or W0 = 0.

We pointed out that in [TaVi] a local result in time for the existence and uniqueness of
the solution of the free boundary problem (7) was obtained under suitable assumptions
on the data P0, P1, and ĝ. In what follows of this paper, we shall study the remaining
moving boundary problem (4), (5), (B(4 − 5)) taking into account that the moving
boundary σ = σ (τ) belongs to a given class of functions (see assumptions below). In
order to write the model (4), (5), (B(4 − 5)) in a more suitable form, we introduce
the variables x, t; functions u = u(Y, τ), U = U(x, t), V = V (x, t), h = h(x), s = s(t),

and parameters D̂A, b, T :∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x =
L− Y

L
, t =

1

L2
(τ − τ0),

u(Y, τ) = exp(γτ)C̃A(Y, τ), U(x, t) = u(1− x, L2t+ τ0),

V (x, t) = CA(1− x, L2t+ τ0), h (x) = Φ(L (1− x)),

s (t) =
L− σ (τ)

L
, b = 1− L0

L
∈ (0, 1),

D̂A =
DA

ε
, D =

D̃A

D̂A

, T =
1

L2

(
τ1 − τ0

)
.

(8)

Taking into account (8), the problem (4), (5), (B(4− 5)) is transformed into∣∣∣∣∣∣
(a)Vt = D̂AVxx in Ω1

T ≡ {(x, t) /0 < x < s(t) , 0 < t < T},
(b)V (0, t) = V0 = Const. > 0, 0 < t < T,
(c)V (x, 0) = h(x), 0 ≤ x ≤ b,

(9)
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(a)Ut = D̃AUxx in Ω2

T ≡ {(x, t) /s(t) < x < 1 , 0 < t < T},
(b)Ux(1, t) = 0, 0 < t < T,
(c)U(x, 0) = 0, b ≤ x ≤ 1,

(10)

∣∣∣∣ (a)V (s(t), t) = exp(−γt)U(s(t), t),(b)Vx(s(t), t) = D exp(−γτ)Ux(s(t), t).
(B(9− 10))

Remark 1. We point out that the diffusivity of the main reactant DA and D̃A in
the inert layer and in the reaction zone, respectively, are different since the inert layer
is a porous media and the reaction zone has very low permeability. Then we suppose
that

(A0) D �= 1.
From [TaVi] (see also [Co, FaPr]), we assume that the moving boundary s = s(t)

is a monotone increasing function which satisfies the following assumptions (for a
T > 0 small enough):

(A1)
s ∈ C1[0, T ], s (0) = b ∈ (0, 1), 0 < a ≤ s(t) ≤ A < 1,

0 < α0 ≤•
s (t) ≤ β0, t ∈ [0, T ].

(A2) There exists
••
s such that∣∣∣••s (t)∣∣∣ ≤ δ0, t ∈ [0, T ],

where a, A, α0, β0, and δ0 are suitable positive constants which depend upon the
data T , P0, P1, and ĝ.

We also assume, for the initial concentration h = h(x) in (9),
(A3) h ∈ C1[0, b], h ≥ 0, h (b) = 0, h (0) = V0 > 0.
We say that the functions V = V (x, t) and U = U(x, t) are a solution for the

problem (9), (10), and (B(9−10)) if V ∈ C2,1(Ω1
T ), U ∈ C2,1(Ω2

T ), and they satisfy the
(9a) and (10a) and conditions (9b), (9c), (10b), (10c), (B(9−10)a), and (B(9−10)b).

Now we shall obtain an equivalent integral formulation for problem (9), (10),
(B(9− 10)). This formulation will be used in the next section, where the main result
of the paper, that is, a theorem on local existence and uniqueness of the solution of
the moving boundary problem (9), (10), (B(9− 10)), is proved.

Let G1 = G1(x, t; ξ, τ), N1 = N1(x, t; ξ, τ) and G2 = G2(x, t; ξ, τ), N2 = N2(x, t;
ξ, τ) be the Green’s and Neumann’s functions for the sets Ω1

T and Ω
2
T , respectively,

defined by ∣∣∣∣ G1(x, t; ξ, τ) = K1(x, t; ξ, τ)−K1(−x, t; ξ, τ),
N1(x, t; ξ, τ) = K1(x, t; ξ, τ) +K1(−x, t; ξ, τ);(11) ∣∣∣∣ G2(x, t; ξ, τ) = K2(x− 1, t; ξ − 1, τ)−K2(1− x, t; ξ − 1, τ),

N2(x, t; ξ, τ) = K2(x− 1, t; ξ − 1, τ) +K2(1− x, t; ξ − 1, τ),(12)

where

K1(x, t; ξ, τ) =
1

2

√
πD̂A

√
t− τ

exp

(
− (x− ξ)

2

4D̂A (t− τ)

)
, x, ξ > 0, t > τ,(13)

K2(x, t; ξ, τ) =
1

2

√
πD̃A

√
t− τ

exp

(
− (x− ξ)

2

4D̃A (t− τ)

)
, x, ξ > 0, t > τ.(14)
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If we take into account (9), (10), (B(9− 10)), it is well known that if we integrate
the identities

D̂A
∂

∂ξ
(G1Vξ −G1ξV ) =

∂

∂τ
(G1V ),(15)

D̃A
∂

∂ξ
(N2Uξ −N2ξU) =

∂

∂τ
(N2U)(16)

over the domains 0 < ξ < s(t), 0 < ε < τ < t− ε, and s(τ) < ξ < 1, 0 < ε < τ < t− ε,
respectively, and take the limit ε → 0+, then the following representation for the
functions V = V (x, t) y U = U(x, t) can be obtained:

V (x, t) =

∫ b

0

G1(x, t; ξ, 0) h (ξ) dξ + V0D̂A

∫ t

0

G1ξ(x, t; 0, τ) dτ

+

∫ t

0

G1(x, t; s(τ), τ) V (s(τ), τ)
•
s (τ) dτ

+D̂A

∫ t

0

[G1(x, t; s(τ), τ) Vξ(s(τ), τ)−G1ξ(x, t; s(τ), τ) V (s(τ), τ)] dτ ;

(17)

U(x, t) =

∫ t

0

[
D̃AN2ξ(x, t; s(τ), τ)− •

s (τ) N2(x, t; s(τ), τ)
]
U(s(τ), τ) dτ

−D̃A

∫ t

0

N2(x, t; s(τ), τ) Uξ(s(τ), τ) dτ.

(18)

Since −N1x = G1ξ, we note that the equality given by (17) can also be written as

V (x, t) =

∫ b

0

G1(x, t; ξ, 0) h (ξ) dξ + V0D̂A

∫ t

0

G1ξ(x, t; 0, τ) dτ

+

∫ t

0

G1(x, t; s(τ), τ) V (s(τ), τ)
•
s (τ) dτ

+D̂A

∫ t

0

[G1(x, t; s(τ), τ) Vξ(s(τ), τ) +N1x(x, t; s(τ), τ) V (s(τ), τ)] dτ.

(17bis)

Remark 2. We pointed out that in our case, the following jump relation holds
[Fr, Ru]:

lim
x→s(t)−

∫ t

0

ρ (τ) G1x(x, t; s(τ), τ) dτ

=
1

2

ρ (t)

D̂A

+

∫ t

0

ρ (τ) G1x(s(t), t; s(τ), τ) dτ,

(19)

lim
x→s(t)+

∫ t

0

ρ (τ) N2x(x, t; s(τ), τ) dτ

=
1

2

ρ (t)

D̃A

+

∫ t

0

ρ (τ) N2x(s(t), t; s(τ), τ) dτ.

(20)

From (B(9 − 10)), (17), (17bis), and (18), and taking into account (A1), (A2),
(19), and (20), we obtain the following system of integral equations for the unknown
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functions Vx = Vx(s(t), t), F0 = F0(s(t)), V = V (s(t), t) (see the appendix):

∣∣∣∣∣∣∣∣∣∣
(a)Vx(s(τ), τ) =

1
1−D

{
P1 (t)−DP0 (t) +

[
γ

•
s(τ)

+
(

D̂A−D̃A

D̂AD̃A

) •
s (τ)

]
P2 (t)D

}
,

(b)F0(s(τ)) =
1

1−D

{
P1 (t)− P0 (t) +

[
Dγ
•
s(τ)

+ (1−D)
••
s (τ)
•
s
2
(τ)

]
P2 (t)

}
,

(c)V (s(t), t) = P2(t),

(21)

where ∣∣∣∣∣∣ (a)F0(s(t)) ≡ 1
•
s (τ)

d

dt
V (s(t), t), V (s(t), t) ≡ V (x, t)|x=s(t)− ;

(b)Vx(s(t), t) ≡ Vx(x, t)|x=s(t)−

(22)

and

P0 (t) = f0 (t) +

∫ t

0

H0(t, τ, Vx(s(τ), τ), V (s(τ), τ), F0(s(τ))) dτ,(23)

P1 (t) = f1 (t) +

∫ t

0

H1(t, τ, Vx(s(τ), τ), V (s(τ), τ), F0(s(τ))) dτ,(24)

P2 (t) = f2 (t) +

∫ t

0

H2(t, τ, Vx(s(τ), τ), V (s(τ), τ), F0(s(τ))) dτ,(25)

with

f0 (t) = 2

∫ b

0

G1x(s(τ), τ ; ξ, 0) h (ξ) dξ − 2V0D̂AN1(s(t), t; 0, 0),(26)

H0(t, τ) = 2
[
1 + D̂Aα (τ)

]
G1x(s(t), t; s(τ), τ) V (s(τ), τ)

•
s (τ)

+D̂A [F0(s(τ)) + Vξ(s(τ), τ)]G1x(s(t), t; s(τ), τ),
(27)

α (τ) = −
••
s (τ)
•
s
3
(τ)

,(28)

f1 (t) ≡ 0,(29)

H1(t, τ) = −2
{
exp (−γ (t− τ))DD̂AF0(s(t)) N2x(s(t), t; s(τ), τ)

+ exp (−γt)DV (s(τ), τ) .
[
exp (γτ)

•
s (τ) .

(
1 + D̂Aα(τ)

)
+D̂A β (τ)

]
N2x(s(t), t; s(τ), τ)

}
−2D̃A exp (−γ (t− τ))Vξ(s(τ), τ)N2x(s(t), t; s(τ), τ),

(30)

β (τ) =
γ

•
s (τ)

exp(γτ),(31)

f2 (t) = 2

∫ b

0

G1(s(t), t; ξ, 0) h (ξ) dξ + 2V0D̂A

∫ b

0

G1ξ(s(t), t; 0, τ)dτ,(32)
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H2(t, τ) = 2G1(s(t), t; s(τ), τ)
•
s (τ)V (s(τ), τ)

+ 2D̂AN1x(s(t), t; s(τ), τ)V (s(τ), τ)

+ 2D̂AG1(s(t), t; s(τ), τ)Vξ(s(τ), τ).

(33)

Remark 3. Let us denote by Φ0 = Φ0 (t), Φ1 = Φ1 (t) , Φ2 = Φ2 (t) the functions
defined, respectively, by

Φ0 (t) = Vx (s (t) , t), Φ1 (t) = F0 (s (t)), Φ2 (t) = V (s (t) , t)(D)

and let us introduce the functions f0 = f0 (t) , f1 = f1 (t) , µ0 = µ0 (t) , µ1 = µ1 (t) ,
H0 = H0 (t, τ,Φ0 (τ) ,Φ1 (τ) ,Φ2 (τ)) , H1 = H1 (t, τ,Φ0 (τ) ,Φ1 (τ) ,Φ2 (τ)) which are
defined by

µ0 (t) =

(
γ

•
s (t)

+

(
D̂A − D̃A

D̂AD̃A

)
•
s (t)

)
D

1−D
,(34)

µ1 (t) =

 Dγ
•
s (t)

+ (1−D)

••
s (t)
•
s
2
(t)

 1

1−D
,(35)

f0 (t) = µ0 (t) f2 (t)− D

1−D
f0 (t) ,(36)

f1 (t) = µ1 (t) f2 (t)− f0 (t)

1−D
,(37)

H1 (t, τ,Φ0 (τ) ,Φ1 (τ) ,Φ2 (τ)) =
1

1−D

(
H1 (t, τ,Φ0 (τ) ,Φ1 (τ) ,Φ2 (τ))

−H0 (t, τ,Φ0 (τ) ,Φ1 (τ) ,Φ2 (τ))
)
+ µ1 (t)H2 (t, τ,Φ0 (τ) ,Φ1 (τ) ,Φ2 (τ)) ,

(38)

H0 (t, τ,Φ0 (τ) ,Φ1 (τ) ,Φ2 (τ)) =
1

1−D

(
H1 (t, τ,Φ0 (τ) ,Φ1 (τ) ,Φ2 (τ))

−DH0 (t, τ,Φ0 (τ) ,Φ1 (τ) ,Φ2 (τ))
)
+ µ0 (t)H2 (t, τ,Φ0 (τ) ,Φ1 (τ) ,Φ2 (τ)) .

(39)

Then, the system of integral equations (21) can be written in a compact form as

Φi (t) = fi (t) +

∫ t

0

Hi (t, τ,Φ0 (τ) ,Φ1 (τ) ,Φ2 (τ)) dτ, i = 0, 1, 2.(40)

We have the following lemma.

Lemma 1. Finding the solution of problem (9), (10), and (B(9−10)) is equivalent
to the problem of solving the system of integral equations (40) (that is, (21)).

Proof. From the previous computation and the appendix we can see that the
system of integral equations (21) (that is, (40)) is a necessary condition for finding
the solution to problem (9), (10), (B(9− 10)).

Conversely, let us suppose that for some w > 0 (e.g., w ≤ T ) the functions
Φ0 = Φ0 (τ) , Φ1 = Φ1 (τ), and Φ2 = Φ2 (τ) satisfy the system of integral equations
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(40) for t ∈ [0, w]. Then we can define the functions V = V (x, t) and U = U(x, t) by

V (x, t) =

∫ b

0

G1 (x, t; ξ, 0)h (ξ) dξ + V0D̂A

∫ t

0

G1ξ (x, t; 0, τ) dτ

+

∫ t

0

[
G1 (x, t; s (τ) , τ)

•
s (τ) + D̂AN1x (x, t; s (τ) , τ)

]
Φ2 (τ) dτ

+ D̂A

∫ t

0

G1 (x, t; s (τ) , τ)Φ0 (τ) dτ,

(41)

U (x, t) =

∫ t

0

[
D̃AN2ξ (x, t; s (τ) , τ)− •

s (τ)N2 (x, t; s (τ) , τ)
]
exp (γτ)Φ2 (τ) dτ

− D̂A

∫ t

0

N2 (x, t; s (τ) , τ) exp (γτ) Φ0 (τ) dτ.

(42)

It is easy to see that they satisfy (9a) and (10a) and conditions (9b), (9c), (10b),
and (10c) because of the basic properties of the functions Gi and Ni (i = 1, 2) and
the fact that

∫ t

0

G1ξ (x, t; 0, τ) dτ =
1

D̂A

erfc

(
x

2
√
t

)
, x ≥ 0, t > 0,(43)

N2x (1, t; s (τ) , τ) = 0, t > τ.(44)

Now it remains to prove that both conditions (B(9− 10)a) and (B(9− 10)b) are
satisfied. Taking into account the jump relation (19), taking the limit x → s(t)− in
(41) we obtain that

V (s (t) , t) =

∫ b

0

G1 (s(t), t; ξ, 0)h (ξ) dξ + V0D̂A

∫ t

0

G1ξ (s(t), t; 0, τ) dτ

+

∫ t

0

G1 (s(t), t; s (τ) , τ)
•
s (τ) Φ2 (τ) dτ

+D̂A

(
1

2

Φ2 (t)

D̂A

+

∫ t

0

N1x (s(t), t; s (τ) , τ)Φ2 (τ) dτ

)
+D̂A

∫ t

0

G1 (s(t), t; s (τ) , τ)Φ0 (τ) dτ =
f2 (t)

2
+
Φ2 (t)

2

+

∫ t

0

G1 (s(t), t; s (τ) , τ)
•
s (τ) Φ2 (τ)

+D̂A

∫ t

0

N1x (s(t), t; s (τ) , τ)Φ2 (τ) dτ

+D̂A

∫ t

0

G1 (s(t), t; s (τ) , τ)Φ0 (τ) dτ = Φ2 (t) , 0 < t < w.

(45)
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In a similar way, taking the limit x → s(t)+ in (42) we obtain

U(s(t), t) =−D̃A

[
− 1

2D̃A

exp (γτ) Φ2 (t)

+

∫ t

0

G2x (s (t) , t; s (τ) , τ) exp (γτ) Φ2 (τ) dτ

]
−
∫ t

0

•
s (τ)N2 (s (t) , t; s (τ) , τ) exp (γτ) Φ2 (τ) dτ

−D̂A

∫ t

0

N2 (s (t) , t; s (τ) , τ) exp (γτ)Φ0 (τ) dτ

=
exp (γτ) Φ2 (t)

2
− D̃A

∫ t

0

G2x (s (t) , t; s (τ) , τ) exp (γτ) Φ2 (τ) dτ

−
∫ t

0

•
s (τ)N2 (s (t) , t; s (τ) , τ) exp (γτ) Φ2 (τ) dτ

−D̂A

∫ t

0

N2 (s (t) , t; s (τ) , τ) exp (γτ)Φ0 (τ) dτ.

(46)

Since Φ2(0) = 0 from (40) and the computation

∫ t

0

G1ξ (x, t; s (τ) , τ)Φ2 (τ) dτ

=

∫ s(t)

b

G1ξ

(
x, t; ξ, s−1 (ξ)

)
Φ2

(
s−1 (ξ)

) ds−1

dξ
(ξ) dξ

= −
∫ s(t)

b

G1

(
x, t; ξ, s−1 (ξ)

) d
dξ

(
Φ2

(
s−1 (ξ)

) ds−1

dξ
(ξ)

)
dξ

= −
∫ s(t)

b

G1

(
x, t; ξ, s−1 (ξ)

)(
F0 (ξ) .

ds−1

dξ
(ξ) + Φ2

(
s−1 (ξ)

)
α (ξ)

)
dξ

= −
∫ t

0

G1 (x, t; s (τ) , τ)Φ1 (τ) dτ −
∫ t

0

G1 (x, t; s (τ) , τ)Φ2 (τ)α (τ)
•
s (τ) dτ,

(47)

we get

V (x, t) =

∫ b

0

G1 (x, t; ξ, 0)h (ξ) dξ + V0D̂A

∫ t

0

G1ξ (x, t; 0, τ) dτ

+

∫ t

0

G1 (x, t; s (τ) , τ)
•
s (τ) Φ2 (τ) dτ + D̂A

∫ t

0

G1 (x, t; s (τ) , τ)Φ0 (τ) dτ

+D̂A

∫ t

0

G1 (x, t; s (τ) , τ)Φ1 (τ) dτ

+D̂A

∫ t

0

G1 (x, t; s (τ) , τ)
•
s (τ)α (τ) Φ2 (τ) dτ.

(48)
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Differentiating (48) with respect to x and taking the limit x → s(t)− we get

Vx(s(t), t) =
f0 (t)

2
+

•
s (t)Φ2 (t)

2D̂A

+
Φ0 (t)

2
+
Φ1 (t)

2
+
Φ2 (t)α (t)

•
s (t)

2

+

∫ t

0

G1x (s(t), t; s (τ) , τ)
•
s (τ) Φ2 (τ) dτ

+D̂A

∫ t

0

G1x (s(t), t; s (τ) , τ)Φ0 (τ) dτ

+D̂A

∫ t

0

G1x (s(t), t; s (τ) , τ)Φ1 (τ) dτ

+D̂A

∫ t

0

G1x (s(t), t; s (τ) , τ)Φ2 (τ)α (τ)
•
s (τ) dτ ,

(49)

∫ t

0

N2ξ (x, t; s (τ) , τ) exp (γτ) Φ2 (τ) dτ

=

∫ s(t)

b

N2ξ

(
x, t; ξ, s−1 (ξ)

)
exp
(
γs−1 (ξ)

)
Φ2

(
s−1 (ξ)

) ds−1

dξ
(ξ) dξ

= −
∫ s(t)

b

N2

(
x, t; ξ, s−1 (ξ)

) d
dξ

(
exp
(
γs−1 (ξ)

)
Φ2

(
s−1 (ξ)

) ds−1

dξ
(ξ)

)
dξ

= −
∫ s(t)

b

N2

(
x, t; ξ, s−1 (ξ)

)
×
(
G0 (ξ)

ds−1

dξ (ξ) + exp
(
γs−1 (ξ)

)
Φ2

(
s−1 (ξ)

)
d
dξ

(
ds−1

dξ (ξ)
))

dξ

= −
∫ t

0

N2 (x, t; s (τ) , τ)G0 (s(τ)) dτ

−
∫ t

0

N2 (x, t; s (τ) , τ) exp (γτ) Φ2 (τ)α (τ)
•
s (τ) dτ,

(50)

where

G0(ξ) =
d

dξ

(
exp(γs−1(ξ)) Φ2(s

−1(ξ))
)
= exp(γs−1(ξ))F0(ξ)

+Φ2(s
−1(ξ))γ exp(γs−1(ξ))

ds−1

dξ
(ξ),

(51)

G0(s(t)) = exp(γt)F0(s(t)) + Φ2(t)β(t) = exp(γt)Φ1(t) + Φ2(t)β(t).(52)

We therefore have

U(x, t) = −D̃A

∫ t

0

N2 (x, t; s (τ) , τ)G0 (s (τ)) dτ

−D̃A

∫ t

0

N2 (x, t; s (τ) , τ) exp (γτ) Φ2(τ)α (τ)
•
s (τ) dτ

−
∫ t

0

N2 (x, t; s (τ) , τ) exp (γτ) Φ2 (τ)
•
s (τ) dτ

−D̂A

∫ t

0

N2 (x, t; s (τ) , τ) exp (γτ) Φ0 (τ) dτ.

(53)
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Differentiating (53) with respect to x and taking the limit x → s(t)+ we get

Ux (s (t) , t) =
exp (γt) Φ1 (t) + Φ2 (t)β (t)

2
+
exp (γt)α (t)

•
s (t) Φ2 (t)

2

+
exp (γt) Φ2 (t)

•
s (t)

2
+
exp (γt) Φ0 (t)

2D

−D̃A

∫ t

0

N2x (x, t; s (τ) , τ) [exp (γτ) Φ1 (τ) + Φ2 (τ)β (τ)] dτ

−D̃A

∫ t

0

N2x (x, t; s (τ) , τ) exp (γτ) Φ2 (τ)α (τ)
•
s (τ) dτ

−
∫ t

0

N2x (s (t) , t; s (τ) , τ) exp (γτ) Φ2 (τ)
•
s (τ) dτ

−D̂A

∫ t

0

N2x (s(t), t; s (τ) , τ) exp (γτ) Φ0 (τ) dτ.

(54)

Let the functions Q = Q(t) and R = R(t) be defined by

Q(t) = V (s(t), t)− exp(γt)U(s(t), t),(55)

R(t) = Vx(s(t), t)−D exp(−γt)Ux(s(t), t),

(
D =

D̃A

D̂A

)
.(56)

We shall prove that Q ≡ 0 and R ≡ 0, that is, (B(9 − 10)a), (B(9 − 10)b).
Subtracting the second and the first equations in (40) (or (A8), below) we have that

P0(t)− P1(t) + (1−D)Φ1(t) + Φ2(t)[(1−D)α(t)
•
s (t)−Dβ(t)exp(−γt)] = 0.

(57)

From (49), (54), (56), and (57) we obtain

R(t) =
f0(t)

2
+
1 −D

2
Φ1(t) +

Φ2(t)α(t)
•
s (t)

2
(1−D) − D

2
Φ2(t)β(t) exp(−γt)

+(1 + D̂A)

∫ t

0

G1x(s(t), t; s(τ), τ)
•
s (τ)φ2(τ)dτ

+D̂A

∫ t

0

G1x(s(t), t; s(τ), τ)Φ0(τ)dτ + D̂A

∫ t

0

G1x(s(t), t; s(τ), τ)Φ1(τ)dτ

+D

∫ t

0

N2x(s(t), t; s(τ), τ)Φ2(τ) exp (−γτ)
×
[
D̃Aβ (τ) + D̃A exp (γτ)α (τ)

•
s (τ) + exp (γτ)

•
s (τ)
]
dτ

+DD̃A exp(−γt)
∫ t

0

N2x(s(t), t; s(τ), τ) exp(γτ)Φ1(τ)dτ

+D̃A

∫ t

0

N2(s(t), t; s(τ), τ) exp(−γ(t− τ))Φ0(τ)dτ

=
f0(t)

2
+
1 −D

2
Φ1(t) +

1 −D

2
Φ2(t)α(t)

•
s (t)

−D

2
Φ2(t)β(t) exp(−γt) + 1

2

∫ t

0

(H0 − H1)dτ

=
1

2
[P0(t)− P1(t) + (1−D)Φ1(t)

+Φ2(t)((1−D)α(t)
•
s (t)−Dβ(t) exp(−γt))] = 0,

(58)
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that is,

Vx(s(t), t) = D exp(−γt)Ux(s(t), t).(59)

Since the function V = V (x, t) verifies (9) and (45), we can integrate the identity
(15) over the domain 0 < ξ < s(τ), 0 < ε < τ < t − ε, take the limit ε → 0+ and
obtain the following expression:

V (x, t) =

∫ b

0

G1(x, t; ξ, 0)h(ξ)dξ + V0D̂A

∫ t

0

G1ξ(x, t; 0, τ)dt

+

∫ t

0

[G1(x, t; s(τ), τ)
•
s (τ) + D̂AN1x(x, t; s(τ), τ)]Φ2(τ)dτ

+D̂A

∫ t

0

G1(x, t; s(τ), τ)Vξ(s(τ), τ)dτ.

(60)

If we compare the two expressions (41) and (60) we deduce that∫ t

0

G1(x, t; s(τ), τ)[Φ0(τ)− Vξ(s(τ), τ)]dτ = 0.(61)

If we differentiate (60) with respect to variable x, take the limit x → s(t)− and
the jump relation (19), for the function Ψ(t) = Φ0(t)−Vx(s(t), t) we get the following
integral equation:

Ψ(t) = −2D̂A

∫ t

0

G1x(s(t), t; s(τ), τ)Ψ(τ)dτ.(62)

Taking into account the inequality |G1x(s(t), t; s(τ), τ)| ≤ C10√
t−τ

, from (62) we

obtain the following inequality:

|Ψ(t)| ≤ C ′
10

∫ t

0

∣∣∣∣ Ψ(τ)√
t− τ

∣∣∣∣ dτ,(63)

where

C10 =
1

2D̂
3
2

A

√
π

(
β0

2
+
AD̂A

e a2

)
, C ′

10 = 2D̂AC10,(64)

then Ψ(t) = 0, that is,

Vx(s(t), t) = Φ0(t).(65)

Since the function U = U(x, t) verifies (10) and Ux(s(t), t) =
1
D exp(γt)Φ0(t), we

can integrate the identity (16) over the domain s(τ) < ξ < 1, 0 < ε < τ < t− ε. We
take the limit ε → 0+; then we obtain the following expression

U(x, t) =

∫ t

0

[D̃AN2ξ(x, t; s(τ), τ)− •
s (τ)N2(x, t; s(τ), τ)]U(s(τ), τ)dτ

−D̂A

∫ t

0

N2(x, t; s(τ), τ) exp (γτ) Φ0 (τ) dτ.

(66)
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If we compare the two expressions (42) and (66) we deduce that (N2ξ = −G2x)∫ t

0

[D̃AG2x(x, t; s(τ), τ)+
•
s (τ)N2(x, t; s(τ), τ)] exp(γτ)Q(τ)dτ = 0.(67)

If we differentiate (67) with respect to variable x, take the limit x → s(t)+ and the
jump relation (20), for the function η(t) = exp(γt)Q(t) we get the following integral
equation:

η(t) = 2

∫ t

0

[D̃AG2x(s(t), t; s(τ), τ)+
•
s (τ)N2(s(t), t; s(τ), τ)]η(τ)dτ .(68)

Taking into account the inequality∣∣∣D̃AG2x(s(t), t; s(τ), τ)+
•
s (τ)N2(s(t), t; s(τ), τ)

∣∣∣ ≤ C11√
t− τ

,(69)

where

C11 =
1

2D̃
1
2

A

√
π

(
(1− a)D̃A

e (1−A)
2 +

5

2
β0

)
,

we obtain

|η(t)| ≤ C ′
11

∫ t

0

|η (τ)|√
t− τ

dτ , C ′
11 = 2C11;(70)

then η(t) = 0, that is,

exp(−γt)U(s(t), t) = V (s(t), t) = Φ2(t).(71)

3. Main results. Let Xw,M be the closed set in C0[0, w], defined by

Xw,M =
{
f ∈ C0([0, w])/ ‖f‖ = max0≤t≤w |f(t)| ≤ M

}
for any positive constants w and M .

Lemma 2. Let us assume that the functions h = h(x) and s = s(t) satisfy the
assumptions (A1)–(A3). Then

(i) f0 = f0(t) and f2 = f2(t) are bounded continuous functions for any t ∈ [0, T ];
(ii) H0 = H0(t, τ,Φ0(τ),Φ1(τ),Φ2(τ)), H1 = H1(t, τ,Φ0(τ),Φ1(τ),Φ2(τ)), and

H2 = H2(t, τ,Φ0(τ),Φ1(τ),Φ2(τ)) are continuous functions for all Φi ∈ XT,M (i =
0, 1, 2) and t > τ . Moreover, the following estimates hold:

|f0(t)| ≤ γ1,(72)

|f2(t)| ≤ γ2,(73) ∣∣H0(t, τ,Φ0(τ),Φ1(τ),Φ2(τ))
∣∣ ≤ γ3√

t− τ
, t > τ ,(74) ∣∣H1(t, τ,Φ0(τ),Φ1(τ),Φ2(τ))

∣∣ ≤ γ4√
t− τ

, t > τ ,(75)

|H2(t, τ,Φ0(τ),Φ1(τ),Φ2(τ))| ≤ γ5√
t− τ

, t > τ ,(76)

where γi are adequate positive constants.
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Proof. (i) The proof follows from (26) and (32) taking into account (A1)–(A3)
and the following inequality:

exp

(−x2

αt

)
tn�2

≤
( nα

2ex2

)n
2 , α, x, t > 0, n ∈ N.

(77)

(ii) The proof follows from (26), (27), (30), (32), (33), (A1)–(A3) and the fact
that

N2(s(t), t, 0, 0) ≤ 1√
2πe

(
1

a
+

1

2−A

)
, t > 0,(78) ∫ b

0

N1(s(t), t, ξ, 0)dξ ≤ 1, t > 0,(79)

|G1x(s(t), t; s(τ), τ)| ≤ C10√
t− τ

, t > τ,(80)

|N2x(s(t), t; s(τ), τ)| ≤ C20√
t− τ

, t > τ,(81)

where

C20 =
1

2D̃
3
2

A

√
π

(
(1− a)D̃A

e (1−A)
2 +

β0

2

)
,(82)

and C10 is defined by (64).
Remark 4. From (27), (30), (33), (38), and (39) it follows that

Hi(t, τ, 0, 0, 0) = 0, t > τ, i = 0, 1, 2.(83)

Theorem 3. Let us suppose the assumption (A0) and that the functions h = h(x)
and s = s(t) satisfy the assumptions (A1)–(A3). Then, there exists one and only
one solution in XT,M of the system of integral equations (40), for suitable positive
constants T and M .

Proof. We note from (A1), (A2), and Lemma 2 that f0 = f0(t), f1 = f1(t), f2 =
f2(t) defined by (36), (37), and (32), respectively, are continuous functions for any
t ∈ (0, T ].

On the other hand, we shall show that the functions

H0 = H0(t, τ,Φ0(τ),Φ1(τ),Φ2(τ)), H1 = H1(t, τ,Φ0(τ),Φ1(τ),Φ2(τ))

verify the condition (C1), that is,
(C1) H0 and H1 are continuous functions for all i ∈ XT,M , i = 0, 1, 2,

t > τ .
Furthermore, the condition (C2),

(C2)
∣∣Hi(t, τ,Φ

1
0,Φ

1
1,Φ

1
2)−Hi(t, τ,Φ

2
0,Φ

2
1,Φ

2
2)
∣∣ ≤ L(t, τ)

(
2∑

i=0

∣∣Φ1
i − Φ2

i

∣∣ ),
i = 0, 1, 2,

where ∫ t2

t1

L (t2, τ) dτ ≤ Θ(t2 − t1), t2 > t1,(84)



1682 BOBULA, TARZIA, TWARDOWSKA, AND VILLA

for some monotone increasing function Θ with

lim
z→0

Θ(z) = 0(85)

and ∫ t2

t1

|Hi(t2, τ, 0, 0, 0)| dτ ≤ Φ(t2 − t1), t2 > t1,(86)

for some nonnegative function Φ with

lim
z→0

Φ(z) = 0.(87)

Condition (C1) follows from (38) and (39) as a direct consequence of Lemma 2.
To prove (C2), first we note that∣∣H0(t, τ,Φ

1
0,Φ

1
1,Φ

1
2)−H0(t, τ,Φ

2
0,Φ

2
1,Φ

2
2)
∣∣

≤ 1

|1−D|
(∣∣H1(t, τ,Φ

1
0,Φ

1
1,Φ

1
2)−H1(t, τ,Φ

2
0,Φ

2
1,Φ

2
2)
∣∣)

+
D

|1−D|
(∣∣H0(t, τ,Φ

1
0,Φ

1
1,Φ

1
2)−H0(t, τ,Φ

2
0,Φ

2
1,Φ

2
2)
∣∣)

+ ‖µ0 (t)‖
(∣∣H2(t, τ,Φ

1
0,Φ

1
1,Φ

1
2)−H2(t, τ,Φ

2
0,Φ

2
1,Φ

2
2)
∣∣),

(88)

where, for each term on the right-hand side of (88), the following estimates are ob-
tained (we denote H2 = H2):

∣∣Hi(t, τ,Φ
1
0,Φ

1
1,Φ

1
2)−Hi(t, τ,Φ

2
0,Φ

2
1,Φ

2
2)
∣∣ ≤ Ji√

t− τ

2∑
i=0

∣∣Φ1
i − Φ2

i

∣∣,
i = 0, 1, 2,

(89)

where Ji are adequate positive constants.
The inequality (89) follows from (27), (30), (33), (78), (80), and (81). Therefore,

we have proved (C2) where the function L = L(t, τ) is given by

L(t, τ) =
γ√
t− τ

, t > τ ,(90)

where γ is an adequate positive constant.
Because (90), it is evident that conditions (84) and (85) are satisfied, e.g., Θ =

Θ(z) can be taken as Θ(z) = Const.
√
z. Conditions (86) and (87) follow immediately

from (33), (38), (39), and Remark 4. At this point, the conclusion of the theorem
follows from Corollary 8.2.1 of Theorem 8.2.1 of [Ca].

Appendix. We shall explain some calculations leading to the computation of
the system of integral equations (21). First, taking into account the jump relation
(19), taking x → s(t)− in (17bis), we obtain

V (s(t), t) = 2

∫ b

0

G1(s(t), t; ξ, 0)h (ξ) dξ + 2V0D̂A

∫ t

0

G1ξ(s(t), t; 0, τ)dτ

+2

∫ t

0

G1(s(t), t; s(τ), τ)V (s(τ), τ)
•
s (τ) dτ + 2D̂A

∫ t

0

N1x(s(t), t; s(τ), τ)V (s(τ), τ)dτ

+2D̂A

∫ t

0

G1(s(t), t; s(τ), τ)Vξ(s(τ), τ)dτ.

(A1)
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Next, the fifth term on the right-hand side of (17) can be written as [BoTw]

∫ t

0

G1ξ(x, t; s(τ), τ)V (s(τ), τ)dτ = −G1(x, t; b, 0)V (b, 0)
ds−1

dξ
|ξ=b

−
∫ t

0

G1(x, t; s(τ), τ)F (s(τ))
•
s (τ) dτ,

(A2)

because the transformation τ = s−1(ξ) (or ξ = s(τ)) and the expression

F (ξ) =
d

dξ

(
V (ξ, s−1(ξ))

ds−1

dξ
(ξ)

)
.(A3)

Inserting expression (A2) in (17), we have

V (x, t) =

∫ b

0

G1(x, t; ξ, 0)h (ξ) dξ + V0D̂A

∫ t

0

G1ξ(x, t; 0, τ)dτ

+
∧
DA G1(x, t; b, 0)V (b, 0)

ds−1

dξ
|ξ=b +

∫ t

0

G1(x, t; s(τ), τ)V (s(τ), τ)
•
s (τ)dτ

+
∧
DA

∫ t

0

G1(x, t; s(τ), τ)V (s(τ), τ)α(τ)
•
s (τ)dτ

+
∧
DA

∫ t

0

G1(x, t; s(τ), τ)F0(s(τ))dτ + D̂A

∫ t

0

G1(x, t; s(τ), τ)Vξ(s(τ), τ)dτ,

(A4)

where

∣∣∣∣∣∣∣∣∣∣
α(τ) = −

••
s (τ)[•
s (τ)
]3 = d

dξ

(
d

dξ
s−1(ξ)

) ∣∣
ξ=s(τ)

,

F0(ξ) =
d

dξ

(
V
(
ξ, s−1(ξ)

) )
.

(A5)

We differentiate (A4) with respect to x, we take into account that G1ξx
= N1τ

and the jump relation (19), and taking x → s(t), we deduce

Vx(s(t), t) = 2

∫ b

0

G1x(s(t), t; ξ, 0)h(ξ)dξ − 2V0D̂AN1(s(t), t; 0, 0)dτ

+2D̂AGx(s(t), t; b, 0)h(b)
ds−1

dξ

∣∣∣∣
ξ=b

+

(
1

D̂A

+ α (t)

)
V (s(t), t)

•
s (t)

+2

∫ t

0

[
1 + D̂Aα (τ)

]
G1x (s (t) , t; s (τ) , τ)V (s (τ) , τ)

•
s (τ) dτ + F0 (s (t))

+D̂A

∫ t

0

[F0 (s (τ)) + Vξ (s (τ) , τ)]G1x (s (t) , t; s (τ) , τ) dτ.

(A6)
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Following a procedure similar to the preceding one, we have

Ux(s(t), t) = exp(γt)F0(s(t))− 2D̃A

∫ t

0

exp(γτ)N2x(s(t), t; s(τ), τ)dτ

+V (s(t), t)

(
exp(γt)

•
s (t)

(
1

D̃A

+ α (t)

)
+ β(t)

)
−2
∫ t

0

V (s(t), t)
[
exp(γt)

•
s (t)
(
1 + D̃Aα (t)

)
+ D̃Aβ(t)

]
N2x(s(t), t; s(τ), τ)dτ

−2D̃A

∫ t

0

N2x(s(t), t; s(τ), τ)Uξ (s(t), t) dτ.

(A7)

By using the relation (B(9− 10)b), (A1), (A6), and (A7) we get∣∣∣∣∣∣∣∣
Vx(s(t), t)− F0(s(t))−

(
1

D̂A

+ α(t)

)
•
s (t)V (s(t), t) = P0(t),

Vx(s(t), t)−DF0(s(t))−Dδ (t)V (s(t), t) = P1 (t) ,
V (s(t), t) = P2 (t) ,

(A8)

where P0, P1, and P2 are defined by (23), (24), and (25), respectively, and

δ(t) =
•
s (t)

(
1

D̂A

+ α(t)

)
+ exp(−γt)β(t).(A9)

Owing to D �= 1, from (A8) we deduce (21).
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