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The asymptotic behaviour of a heat conduction problem involving a non-linear heat source depending
on the heat-#ux occurring in the extremum of a semi-in"nite slab is discussed. Conditions are given
on the non-linearity so as to accelerate the convergence of the solution to zero. Copyright ( 2000 John
Wiley & Sons, Ltd.

1. Introduction and preliminaries

The following non-classical heat conduction problem for a semi-in"nite material
was studied in [21]:

u
t
(x, t)!u

xx
(x, t)"'(x) ( F (u

x
(0, ) ), ) )) (t), x'0, t'0

u(0, t)"g(t), t'0

u(x, 0)"h (x), x'0

(1)

where ', g, h are real functions de"ned on R` and F is a function depending on the
heat #ux at the extremum x"0. Non-classical problems like (1) are motivated by
the modelling of a system of temperature regulation in isotropic media and the source
term '(x) ( F(u

x
(0, ) ))(t) describes a cooling or heating e!ect depending on the

properties of F which are related to the evolution of the heat #ux u
x
(0, t). It is called

the thermostat problem. Related problems are considered in [3}9, 12, 13, 20]. Under
suitable assumptions on data, existence, uniqueness and monotone-continuous
dependence on the data are established in [21] for problem (1).
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In this paper we shall consider the simple instance of problem (1) given by

u
t
!u

xx
"!F (u

x
(0, t)), x'0, t'0

u(0, t)"0, t'0

u(x, 0)"h (x), x'0

(2)

where h(x), x'0, and F (v), v3R, are continuous functions. The function F, hence-
forth referred as control function, is assumed to ful"ll the following conditions:

(A) vF (v)*0,
(B) F (0)"0,

which intuitively means that the control attempts to stabilize the process at every
time. As it is shown in [23] (see also [21, 22]), the solution to problem (2) can be
represented by

u(x, t)"u
0
(x, t)!P

t

0

erf A
x

2 J(t!q)B F (< (q)) dq (3)

where u
0
"u

0
(x, t), de"ned by

u
0
(x, t)"P

`=

0

G (x, t; m, 0) h (m) dm (4)

is the solution to problem (2) with null source term. Function <"< (t) in (3)
represents the heat #ux at the extremum of the slab, i.e.

<(t)"u
x
(0, t), t'0, (5)

and is satis"ed by the following Volterra integral equation:

<(t)"<
0
(t)!P

t

0

F (< (q))

J[n (t!q)]
dq (6)

where the forcing function <
0
(t) is given by

<
0
(t)"

1

2 Jn t3@2 P
`=

0

m exp A!
m2

4tB h (m) dm, t'0 (7)

Function G in (4) denotes the Green's function of the heat equation in the quarter
plane and, as it is well-known, it can be written as G(x, t; m, q)"K (x, t; m, q)!
K(!x, t; m, q), x, m'0, t'q'0, where

K(x, t; m, q)"
1

J[4n(t!q)]
expA!

(x!m)2

4(t!q)B
is the one-dimensional heat kernel.

Control function F has been supposed Lipschitzian in [23, 22] in order to prove
local existence and uniqueness of the solution to the integral equation (6). However, it
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is well known that this equation admits a solution under less stringent conditions. In
fact, conditions (A) and (B) of F are usually su$cient to guarantee global existence and
uniqueness of solution (see, for example, chapter 4 [15]).

From now on, we suppose that h is a non-negative and non-identically null function
which, in view of (7), implies <

0
(t)'0, t'0. When the control function F satis"es

conditions (A) and (B) and, moreover, the initial temperature h is non-negative, then
the solution u (x, t) to problem (2) tends to zero when tP#R (see [21, 23]). The
present paper is devoted to the study of &controlling' problem (2) through F so that, by
the stabilizing e!ect of the control, its solution should converge to zero (when the time
goes to in"nity) faster than that corresponding to problem (2) in the absence of
control; i.e.:

lim
t?`=

u (x, t)

u
0
(x, t)

"0

As it was observed in [23], from the continuity up to the boundary of the solution u to
(2) follows that the heat #ux w (x, t)"u

x
(x, t) satis"es a classical heat conduction

problem with a nonlinear convective condition at x"0, which can be written in
the form

w
t
!w

xx
"0, x'0, t'0

w
x
(0, t)"F(w (0, t)), t'0

w (x, 0)"h@ (x), x'0

(8)

The literature concerning problem (8) has constantly increased from the apparition of
the papers [14, 18]. Other related problems in this direction are considered in
[2, 19, 11]. In [16, 10, 17] the asymptotic behaviour of the solution to (8) is investi-
gated by formal expansion schemes. However, the techniques we shall employ in this
paper to manage the same problem are substantially di!erent. Section 2 of this paper
is devoted to clarify the connection between the initial temperature h (x) with the
forcing function<

0
(t) of the Volterra integral equation (6). In section 3, a general study

of the above-stated control problem for (2) is undertaken for the case of bounded
initial temperatures. Speci"cally, we "nd spatially uniform bounds for the quotient
u(x, t)/u

0
(x, t) which depend on the solution < (t) to integral equation (6), from which

becomes apparent that conditions (A) and (B) are not su$cient to attain the objective
of the control; i.e., to obtain lim

t?`=
u (x, t)/u

0
(x, t)"0. In section 4, for linear

control functions F (v)"jv, we give an example to illustrate that there exists an exact
solution to problem (6) providing u (x, t)/u

0
(x, t):1/(2j2t), tP#R. Generalizing

this fact, we also give su$cient conditions on F so that the control goal may be
reached.

2. Relationships between <0(t) and h(x)

In this section we will make several observations concerning the forcing functions
<
0
(t) of Volterra integral equation (6). Indeed, the behaviour of the solution < (t) of
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integral equation (6) depends on the function <
0
(t) and, in turn, this depends strongly

on h taking di!erent values. Let us begin with the following result, which explains the
behaviour of <

0
(t) for the small times.

Lemma 1. (a) If h veri,es the following assumptions:

(i) h3C0 [0, #R),
(ii) there exist positive constants, A, B and a3[0, 1) such that D h(x) D)A exp (Bx1`a),

x*x
0
,

then

lim
t?0`

J(nt) <
0
(t)"h(0)

(b) Moreover, if h3C1,b [0, #R) then there exists a positive constant C such that

DJ(nt) <
0
(t)!h(0) D)J(nt) [ Dh@ (0) D#Ctb@2]

Proof. By making the change of variable m"2 J(tx) in (7) we obtain

J(nt)<
0
(t)"P

`=

0

h (2J(tx) ) exp(!x) dx (9)

Now, from hypothesis (ii) we derive, for 0)t(1 and certain positive constants
A

0
, B

0
,

D h (2J(tx) ) exp(!x) D)A
0
exp [B

0
x(1#a)/2

!x], x*0

and therefore, the dominated convergence theorem can be applied to the right-hand
side of (9) to show the assertion of (a). To prove (b) we make an integration by parts of
the right-hand side of (9), getting

J(nt)<
0
(t)!h(0)"Jt P

=̀

0

h@ (2J(tx) )
exp (!x)

Jx
dx

and so

DJ(nt)<
0
(t)!h(0) D)Jt P

`=

0

D h@ (2J(tx) ) D
exp (!x)

Jx
dx (10)

Since h@ is supposed to be a HoK lder-continuous function, we can write

D h@ (2 J(tx) ) D)D h@ (0) D#Ktb@2xb@2, x, t*0 (11)

where K is a positive constant. Inequality of (b) easily follows from (10) and (11).

K

We remark that, as a consequence of the previous lemma, the function<
0
(t) cannot

have a singularity of order greater than 1
2

at the origin. Our following result provides
a useful inequality involving <

0
(t).
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Lemma 2. If h veri,es assumptions (i) and (ii) of ¸emma 1 and h is a non-decreasing
function, then <

0
satis,es the condition

<
0
(q)

<
0
(t)

)SA
t!s

q!sB , 0)s(q(t (12)

Proof. From (9) and (iii) we obtain, for every 0)s(q(t,

<
0
(q)

<
0
(t)

"SA
t

qB C
:`=
0

h (2J(qm) ) exp(!m) dm

:`=
0

h (2J(tm) ) exp(!m) dmD)SA
t

qB)SA
t!s

q!sB K

Corollary 3. ;nder the same assumptions made on h in ¸emma 2, the solution of the
integral equation (6) satis,es the following inequality:

0)< (t))<
0
(t), t'0 (13)

Proof. Since <
0
(t) veri"es the inequality (12) and F veri"es condition (A) from the

introduction, we can apply Theorem 6.1 from [15, chapter 2] to obtain the bounds
for <(t) given by (13). K

In the case of constant initial temperature h (x)"h
0
, x*0, inequalities (13) become

0)< (t))
h
0

J(nt)
, t'0

that is

0)
J(nt)

h
0

< (t))1, t'0

It should be noted that the function

t C P
t

0

<(q)

J[n (t!q)]
dq

is decreasing. In fact, we have

d

dt AP
t

0

<(q)

J[n (t!q)]
dqB"!F (<(t)))0

The qualitative analysis of the solution to equation (6) often requires the additional
hypothesis of monotonicity on its forcing function <

0
(t) (cf. [15]). So, to establish

connections between the monotonicity of <
0
(t) and properties of the initial tem-

perature h (x) is an interesting matter. With this purpose in mind, let us de"ne
a function H by

H(x)"xh@ (x)!h (x), x'0
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In the following result, a relationship between the monotonicity of <
0

and the sign of
H is established.

Lemma 4. If h3C1 [0,#R), then <
0

is a non-decreasing [non-increasing] function
provided that H(x)*0, x'0, [H(x))0, x'0].

Proof. By taking derivatives in (9) we obtain

<@
0
(t)"

1

2Jn t3@2 P
`=

0

H (2J(qm) ) exp(!m) dm, t'0

hence, <@
0
(t)*0, t'0, when H (x)*0, x'0. K

Consider, for instance, an initial temperature given by h(x)"Axa, x*0, (A'0,
a*0), then

H(x)"A (a!1)xa, x*0

<
0
(t)"A

2a
Jn

! A1#
a
2B t(a!1)/2, t'0

that is, the function <
0

is increasing [decreasing] if and only if a'1 [a(1] and it is
constant (<

0
(t)"A) when a"1.

3. Bounded initial temperatures

In this section we shall consider in some detail the instance of problem (2)
corresponding to a bounded initial temperature h. The main result could be stated by
saying that conditions (A) and (B) on the control function F do not guarantee for
themselves that lim

t?`=
u (x, t) /u

0
(x, t)"0. Examples of this unexpected behaviour

are given and auxiliary conditions are imposed on F in order to attain that objective.
We reduce the study of the relatively general situation in which h is bounded to the
more simpler instance h (x)"h

0
'0, x*0. For constant temperatures, the solution

to problem (2) is represented by (3) with

u
0
(x, t)"h

0
erf A

x

2JtB , x'0, t'0 (14)

while <"<(t) becomes the solution to the Volterra integral equation

<(t)"
h
0

J(nt)
!P

t

0

F (< (q))

J[n (t!q)]
dq, t'0 (15)

Equations (14) and (15) have been, respectively, obtained from (4) and (6) by simply
substituting h (x)"h

0
. First, we prove two simple lemmas.
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Lemma 5. If <(q) denotes the solution to equation (15), then the identity

1

h
0
P

t

0

< (q)

J[n(t!q)]
dq"1!

1

h
0
P

t

0

F (< (q)) dq

holds for t'0.

Proof. The identity immediately follows from an application of the Abel transforma-
tion to both members of (15). K

Lemma 6. ¸et A and B be two positive real constant such that B)A. ¹hen, we have

1)
erf (Ax)

erf (Bx)
)

A

B
, x3R

Observe that the above inequalities are strict when B(A.

Proof. It is su$cient to realize that the error function is an odd increasing one and the
auxiliary real function u(x)"A erf (Bx)!B erf (Ax), x3R, satis"es

u (0)"0, u (#R)"A!B*0

u@(x)"
2AB

Jn
exp (!A2x2) [exp ((A2!B2) x2)!1]*0, x3R K

Our next results will be the cornerstone of the ulterior analysis.

Theorem 7. ¹he following inequalities:

J(nt)

h
0

< (t))
u (x, t)

u
0
(x, t)

)

1

h
0
P

t

0

<(q)

J[n (t!q)]
dq (16)

hold for x'0, t'0.

Proof. From (3) and (14) we deduce

u (x, t)

u
0
(x, t)

"1!
1

h
0
P

t

0
C
erf (x/2J(t!q) )

erf (x/2Jt) D F (<(q)) dq (17)

hence, an application of Lemma 6 gives, for x'0, t'0

1!
1

h
0
P

t

0
SA

t

(t!qBF (< (q)) dq)
u (x, t)

u
0
(x, t)

)1!
1

h
0
P

t

0

F (<(q)) dq (18)

In view of (15), for the last member of (18) we have

1!
1

h
0
P

t

0
SA

t

t!qB F (<(q)) dq"
J(nt)

h
0

<(t)
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thus proving the "rst inequality of the statement. In respect to the second one, it easily
follows from (18) and Lemma 5. K

As it can be easily seen, the data corresponding to the Volterra integral equation
(15) verify the hypothesis of Corollary 3, so that its solution < (t) satis"es the
inequalities

0)
J(nt)

h
0

< (t))1, t'0 (19)

and therefore

0)lim inf
t?`= A

J(nt)

h
0

< (t)B)lim sup
t?`= A

J(nt)

h
0

<(t)B)1

Next result relates the asymptotic behaviour of the quotient u (x, t)/u
0
(x, t) with the

oscillation limits of J(nt)< (t)/h
0
.

Corollary 8. (i) If lim sup
t?`=

(J(nt)< (t)/h
0
)"d (with 0)d)1) then

lim sup
t?`=

u(x, t)

u
0
(x, t)

"d, uniformly in x'0

(ii) If, for some x'0, lim sup
t?`=

(u (x, t)/u
0
(x, t))"d (with 0)d)1), then

lim sup
t?`=

1

h
0
P

t

0

<(q)

J[n (t!q)]
dq"d

(iii) If lim
t?`= P

t

0

(<(q)/J[n (t!q)] ) dq"0, then

lim
t?`=

u (x, t)

u
0
(x, t)

"0, uniformly in x'0

(iv) If for certain x'0, lim sup
t?`=

(u(x, t)/u
0
(x, t))"0, then

lim
t?`= A

J(nt)

h
0

<(t)B" lim
t?`=

1

h
0
P

t

0

<(q)

J[n (t!q)]
dq"0

Proof. In order to prove (i) we apply Theorem 7 and Fatou's Lemma obtaining

d)lim sup
t?`=

u (x, t)

u
0
(x, t)

)lim sup
t?`=

1

h
0
P

t

0

<(q)

J[n (t!q)]
dq

"lim sup
t?`=

1

h
0
P
1

0

Jt< (jt)

J[n (1!j)]
dj )P

1

0

lim sup
t?`=

1

h
0

J(njt)< (jt)

J(nj)J[n (1!j)]
dj

"d P
1

0

dj

J(nj)J[n (1!j)]
"d
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(ii) It follows from another application of Theorem 7 along the same lines:

lim sup
t?`=

J(nt)

h
0

< (t))d)lim sup
t?`=

1

h
0
P

t

0

< (q)

J[n(t!q)]
dq

)d P
1

0

lim sup
t?`=

1

h
0

J(njt)< (jt)

J(nj)J[n (1!j)]
dj

"d P
1

0

dj

J(nj)J[n (1!j)]
"d

(iii) It easily follows from Theorem 7 if we realize that, due to the monotonicity of

tC :t
0

(<(q)/J[n(t!q)] ) dq, the oscillation limit lim sup
t? =̀

:t
0
(<(q)/J[n(t!q)] ) dq

can be replaced by an ordinary one. In fact, we have

0)lim inf
t?`=

u (x, t)

u
0
(x, t)

)lim sup
t?`=

u(x, t)

u
0
(x, t)

) lim
t?`=

1

h
0
P

t

0

<(q)

J[n (t!q)]
dq"0, x'0

In a similar way, we deduce

0)lim inf
t?`=

J(nt)

h
0

<(t))lim sup
t?`=

J(nt)

h
0

<(t))lim sup
t?`=

u (x, t)

u
0
(x, t)

"0

so providing (iv). K

It should be observed that a necessary and su$cient condition that implies
lim

t?`=
(u(x, t)/u

0
(x, t))"0, uniformly in x3R`, is that

lim
t?`= P

t

0

<(q)

J[n(t!q)]
dq"0

thanks to Corollary 8. In the following lemma, we shall prove that the left and right
bounds provided by Theorem 7 for the quotient u(x, t)/u

0
(x, t), actually are its limit

values when xP0` and xP#R respectively.

Lemma 9. ¸et t'0 be given; then we have

(i)

lim
x?0`

u (x, t)

u
0
(x, t)

"

J(nt)

h
0

<(t), t'0

(ii)

lim
x?`=

u (x, t)

u
0
(x, t)

"

1

h
0
P

t

0

<(q)

J(n (t!q)]
dq, t'0
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Proof. Taking into account Lemma 6, expression (17) and the fact that the real
function

q C SA
t

t!qB F (<(q))

belongs to ¸1 (0, t) because

P
t

0
SA

t

t!qB F (< (q)) dq"h
0
!J(nt)<(t), t'0

an application of the dominated convergence theorem provides

lim
x?`=

u (x, t)

u
0
(x, t)

"1!
1

h
0
P

t

0

lim
x?`= A

erf (x/2J(t!q) )

erf (x/2Jt ) B F (<(q)) dq

"1!
1

h
0
P

t

0

F (<(q)) dq, t'0

from which (ii) is immediate. We proceed analogously to derive (i). Indeed we have

lim
x?`0

u (x, t)

u
0
(x, t)

"1!
1

h
0
P

t

0

lim
x?0` A

erf (x/2J(t!q) )

erf (x/2Jt ) B F (<(q)) dq

"1!
1

h
0
P

t

0
SA

t

t!qB F (< (q)) dq"
J(nt)

h
0

<(t), t'0 K

The proof of Lemma 9 can also be carried out by using the L'Hospital rule. For
instance, to derive (i) we set

lim
x?0`

u (x, t)

u
0
(x, t)

" lim
x?0`

u
x
(x, t)

u
0x

(x, t)
" lim

x?0`

J(nt) u
x
(x, t)

h
0
exp (!x2/4t)

"

J(nt)

h
0

<(t)

The inequalities in Theorem 7 can be used, in certain cases, to estimate the order of the
convergence of the quotient u (x, t)/u

0
(x, t) to zero. To show this use, now we prove

the following lemma.

Lemma 10. ¸et C
1
, C

2
, a be three positive constants such that

C
1

ta
)

J(nt)

h
0

<(t))
C

2
ta

then, we have

u (x, t)

u
0
(x, t)

"O (t~a), as tP#R

provided that a(1/2.
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Proof. From Theorem 7 and the hypothesis, we realize that it is enough to prove that

1

h
0
P

t

0

< (q)

J[n (t!q)]
dq"O (t~a), as tP#R

Now, for t'0 we have

1

h
0
P

t

0

<(q)

J[n (t!q)]
dq"

1

h
0
P
1

0

< (jt)Jt

J[n (1!j)]
dj

)

C
2

nta P
1

0

dj
ja`1@2 (1!j)1@2

"

C
2
B (1

2
!a, 1

2
)

nta

where B denotes the beta function. Hence, we obtain

C
1
t~a)

u(x, t)

u
0
(x, t)

)

C
2

n
B A

1

2
!a,

1

2B t~a, t'0

which completes the proof. K

Generally speaking, the quotient u (x, t)/u
0
(x, t) does not need to converge to zero

for a given control function F that only satis"es conditions (A) and (B) from the
introduction. This can be easily realized for the general problem (1) when the initial
temperature h is non-constant on R`. Take, for instance, the following data h (x)"x,
F (m)"m (m!1)2 in problem (1); thus, we obtain

u(x, t)"u
0
(x, t)"x, x'0, t'0

<(t)"1, t'0

whence

u (x, t)

u
0
(x, t)

"1, x'0, t'0

The same fact is less obvious for the simpli"ed problem under consideration. Indeed,
the following example shows that the quotient u (x, t)/u

0
(x, t) may not tend to zero if

a general control function F is prescribed in problem (2). Let us consider a real
function F which veri"es conditions (A) and (B), and the following ones:

f F is non-decreasing;
f :`=

0
m~3F (m) dm"c for certain 0(c(n/h

0
.

An example of a function satisfying all these conditions with c"1 is given by

F (m)"G
m D m D3@2/3, D m D)1

m/3, D m D*1
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Taking into account that the solution of the integral equation (15) veri"es inequality
(19) we can write

P
`=

0

F (<(q)) dq)P
`=

0

F A
h
0

J(nq)B dq"
h2
0
n P

`=

0

F(g)

g3
dg"

ch2
0

n
(h

0

where c(n/h
0
. In this case, Lemma 5 shows that the quotient u (x, t)/u

0
(x, t) cannot

converge to zero when t goes to in"nity. Therefore, the necessity of imposing addi-
tional restrictions on the control F arise in order that the quotient u (x, t)/u

0
(x, t)

should tend to zero when t goes to in"nity. As a clarifying example where this
situation occurs, we shall discuss in the next section the case of linear controls: i.e.,

F (v)"jv, (j'0) (20)

4. An example and a general result

For the case of a linear control explicited by (20) and in order to obtain the explicit
solutions u and < of problems (2) and (15), respectively, we de"ne the real function

Q(x)"Jnx exp(x2) erfc(x), x'0

which satis"es the following properties:

Q(0)"0, Q(#R)"1, Q@(x)'0, x'0

The most important facts on the behaviour of the solution <(t) to equation (15)
corresponding to a linear control (20) are collected in the following result.

Lemma 11. If F is given by (20), we have

0(< (t)"
h
0

J(nt)
[1!Q(jJt )](

h
0

J(nt)
(21)

P
t

0

< (q) dq"
h
0
j

[1!exp(j2t) erfc (jJt )] (22)

1!
1

h
0
P

t

0

F (< (q)) dq"exp (j2t) erfc (j Jt ) (23)

for all t'0 and

lim
t?`=

u(x, t)

u
0
(x, t)

"0, uniformly in x'0

Furthermore, we have the estimates

1

nj2t
)

u (x, t)

u
0
(x, t)

)

1

jJ(nt)
(24)

as tP#R.
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Proof. The integral equation for <(t) can be transformed into the following initial
value problem for a "rst-order ordinary di!erential equation

;Q (t)"
h
0

J(nt)
!jh

0
#j2; (t), t'0

; (0)"0

where

; (t)"P
t

0

< (q) dq, t'0 (25)

The solution ;(t) of (25) is given by (22) and so, simple calculations show that <(t) is
given by (21). Moreover, we have

1!
1

h
0
P

t

0

F (< (q)) dq"1!
j
h
0

;(t)"exp (j2t) erfc(jJt )

that is (23). To derive inequalities (24) we need the following (see [1]):

2

3z
(

2

z#J(z2#z)
)Jn exp (z2) erfc (z))

2

z#J(z2#4/n)
(

1

z
, z'S

2

3

from which we derive

1

nz2
)1!Q (z))

1

2z2
, z'S

2

3

Therefore, the following inequalities:

1

nj2t
)

J(nt)

h
0

<(t))
1

2j2t

2

3jJ(nt)
)1!

1

h
0
P

t

0

F (< (q)) dq)
1

jJ(nt)

hold for tP#R. Inequality (24) follows from inequalities (16) of Theorem 7. This
completes the proof. K

Now, by means of the explicit expression of the solution u (x, t) to the problem with
linear control given by (20), the asymptotic behaviour of the quotient u(x, t)/u

0
(x, t) is

established in our next result.

Theorem 12. If F(v),jv (with j'0) and h(x),h
0
'0, the solution to problem (2) can

be written in the form

u(x, t)"h
0
exp (j2t)Cerfc (jJt )!exp(jx) erfc Aj Jt#

x

2 JtBD (26)
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Furthermore,

u (x, t)

u
0
(x, t)

&1/(2jt2) (27)

when tP#R, uniformly in x'0.

Proof. Let I"I (x, t) be the function de"ned by

I(x, t)"P
t

0

erf A
x

2J(t!q)B < (q) dq

By using the Laplace transformation in the variable t, we deduce

IK (x, s)"h
0 C

1

s (j#Js)
!

exp(!x Js )

s (j#Js ) D
whence, using tables of Laplace transformation (see, for example, [1]), an exact
expression for I is obtained as follows:

I(x, t)"
h
0
j Aerf A

x

2JtB#exp (j2t#jx) erfcAjJt#
x

2JtB
!exp (j2t) erfc (J(jt) )B (28)

Now, taking into account that

u(x, t)"h
0
erf A

x

2JtB!jI (x, t)

we deduce the expression (26) for u. On the other hand, for the quotient u (x, t)/u
0
(x, t)

we get

u(x, t)

u
0
(x, t)

"

exp (j2t) erfc (jJt )!exp (j2t#jx) erfc ((j Jt )#(x/2Jt ))

erf (x/2Jt )

whence, in view of the estimation erf(z)&2z/Jn when zP0, we deduce the estimate

u (x, t)

u
0
(x, t)

&

1

2tj (j#x/(2t))
&

1

2j2t
, tP#R

as expression (27) states. K

In the next theorem we extend the above study of linear control functions to a large
class of functions F.
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Theorem 13. ¸et F be a continuous real function verifying conditions (A) and (B) of the
introduction. Furthermore, we assume that

(C) F is convex on (0, #R),
(D) F@ (0`)"j'0.

¹hen the solution to problem (2) with h (x)"h
0
, x'0, satis,es the following asymp-

totic behaviour:

lim
t?`=

u (x, t)

u
0

(x, t)
"0

Proof. From conditions (A), (C) and (D) we can write F (m)"jm#u (m), m'0,
where u is a non-negative function de"ned on (0, #R) such that u(0)"0 and
limm?`=

u (m)/m"0. Moreover, since

0)u(em)"u ((1!e)0#em))(1!e)u (0)#eu(m)"eu (m)(u(m), e3[0, 1]

u is an increasing convex function. If < denotes the solution to integral equation (15),
then we can write

lim
t?`=

Jtu (<(t))"0, lim
t?`= P

t

0

u (< (t))

J(t!q)
dq"0

Since that 0)< (t))h
0
/J(nt), t'0, from the monotonicity of u we obtain

0) lim
t`?=

Jtu (<(t))) lim
t?`=

Jtu A
h
0

J(nt)B"
h
0

J(nt)
lim
m?0` A

u (m)

m B"0

i.e., lim
t?`=

Jtu (< (t))"0 and lim
t?`=

<(t)"0. From this and from the Fatou's
lemma we get

0)lim inf
t?`= P

t

0

u (< (q))

J(t!q)
dq)lim sup

t?`= P
t

0

u (< (q))

J(t!q)
dq

"lim sup
t?`= P

1

0

J(mt)u (< (mt))

Jm(1!m)
dm)P

1

0

lim sup
t?`=

J(mt) u (< (mt))

J[m (1!m)]
dm"0

Now, from integral equation (15) we obtain

P
t

0

<(q)

J[n (t!q)]
dq"

1

j C
h
0

J(nt)
!<(t)!P

t

0

u (< (q))

J[n (t!q)]
dqD

whence

lim
t?`= P

t

0

< (q)

J(t!q)
dq"0

Finally, the results follows from the last equation and from the observation immedi-
ately below Corollary 8. K
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We "nish this section, and the paper, with a generalization of the previous result to
the case of bounded initial temperatures.

Theorem 14. ¸et u be the solution to problem (2) with h (x), x'0, being a non-negative,
continuous and upper and below bounded function in the sense that 0(C

1
)h(x))C

2
,

x'0, for certain positive constants C
1

and C
2
. If the control function F veri,es

conditions (A), (B) from the introduction and (C), (D) from ¹heorem 13, then we have

lim
t?`=

u (x, t)

u
0
(x, t)

"0

Proof. A simple application of the maximum principle of problem (2) shows that

0)uC
1
(x, t))u (x, t))uC

2
(x, t), x'0, t'0

where u
C

is the solution of (2) for the same control function F and initial constant
temperature C. From this inequality we deduce

C
1

C
2

uC
1
(x, t)

u
0C1

(x, t)
)

u (x, t)

u
0
(x, t)

)

uC
2
(x, t)

u
0C2

(x, t)
, x'0, t'0

where u
0C

is the solution to (2) for null control function F and initial constant
temperature C. Since lim

t?`=
(u

C
(x, t)/u

0C
(x, t))"0, for any positive constant C, by

Theorem 13, the result is immediately derived from the last inequalities. K
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