Mathematical Methods in the Applied Sciences
Math. Meth. Appl. Sci., 23, 1161-1177 (2000)
MOS subject classification: 35 K 05; 45 D 05, 35 B 40

Asymptotic Behaviour of a Non-classical Heat
Conduction Problem for a Semi-infinite Material

L. R. Berrone!, D. A. Tarzia>*" and L. T. Villa®

! Instituto de Matematica “Beppo Levi” and CONICET, Av. Pellegrini 250, 2000 Rosario, Argentina
2 Departamento de Matematica and CONICET, FCE, Universidad Austral, Paraguay 1950,
S2000FZF Rosario, Argentina
3INIQUI (CONICET-UNSa), Facultad de Ingenieria, Universidad Nacional de Salta,
Buenos Aires 177, 4400 Salta, Argentina

Communicated by H. A. Levine

The asymptotic behaviour of a heat conduction problem involving a non-linear heat source depending
on the heat-flux occurring in the extremum of a semi-infinite slab is discussed. Conditions are given
on the non-linearity so as to accelerate the convergence of the solution to zero. Copyright © 2000 John
Wiley & Sons, Ltd.

1. Introduction and preliminaries

The following non-classical heat conduction problem for a semi-infinite material
was studied in [21]:

U (X, 1) — g (x, 1) = D(x) (F (u(0,),")(t), x>0, t>0
u0,t)=g(), t>0 (1)
u(x,0)=h(x), x>0

where @, g, h are real functions defined on R* and % is a function depending on the
heat flux at the extremum x = 0. Non-classical problems like (1) are motivated by
the modelling of a system of temperature regulation in isotropic media and the source
term ®D(x) ( F (u,(0,))(t) describes a cooling or heating effect depending on the
properties of # which are related to the evolution of the heat flux u,(0, t). It is called
the thermostat problem. Related problems are considered in [3-9, 12, 13, 20]. Under
suitable assumptions on data, existence, uniqueness and monotone-continuous
dependence on the data are established in [21] for problem (1).
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1162 L. R. Berrone et al.

In this paper we shall consider the simple instance of problem (1) given by
U — Uy = — F(u(0,1), x>0, t>0
u0,1)=0, t>0 (2)
u(x,0)=h(x), x>0

where h(x), x > 0, and F(v), v € R, are continuous functions. The function F, hence-
forth referred as control function, is assumed to fulfill the following conditions:

(A)vF(v) >0,
(B) F(0) =0,

which intuitively means that the control attempts to stabilize the process at every
time. As it is shown in [23] (see also [21, 22]), the solution to problem (2) can be
represented by

t

u(x, 1) = uo(x, 1) — L erf <2J%>

where u, = ug(x, t), defined by

F(V(1)de 3)

o, 1 =f Gt & 0)h(E) de @

0

is the solution to problem (2) with null source term. Function V = V(¢) in (3)
represents the heat flux at the extremum of the slab, i.e.

V(t) =u.0,1), t>0, (5)

and is satisfied by the following Volterra integral equation:

V(t) = Vo(t) — f V@) 6)

o/[n(t—1)]
where the forcing function V(¢) is given by
1 + 52
Vo(t) W T L éeXp<—4t> h(§)dé, >0 (7)

Function G in (4) denotes the Green’s function of the heat equation in the quarter
plane and, as it is well-known, it can be written as G(x,t; & 1) = K(x,t; & 1) —
K(—x,t¢1),x,E>0,t>1>0, where

PN S (x=¢?
R ten Gt — o] " < At — r))

is the one-dimensional heat kernel.
Control function F has been supposed Lipschitzian in [23, 22] in order to prove
local existence and uniqueness of the solution to the integral equation (6). However, it
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Heat Conduction Problem for a Semi-infinite Material 1163

is well known that this equation admits a solution under less stringent conditions. In
fact, conditions (A) and (B) of F are usually sufficient to guarantee global existence and
uniqueness of solution (see, for example, chapter 4 [15]).

From now on, we suppose that h is a non-negative and non-identically null function
which, in view of (7), implies V,(t) > 0, t > 0. When the control function F satisfies
conditions (A) and (B) and, moreover, the initial temperature h is non-negative, then
the solution u(x, t) to problem (2) tends to zero when t —» + oo (see [21, 23]). The
present paper is devoted to the study of ‘controlling’ problem (2) through F so that, by
the stabilizing effect of the control, its solution should converge to zero (when the time
goes to infinity) faster than that corresponding to problem (2) in the absence of
control; i.e.:

u(x, t)

t— + o0 UO(X, t)

=0

As it was observed in [23], from the continuity up to the boundary of the solution u to
(2) follows that the heat flux w(x, t) = u.(x, t) satisfies a classical heat conduction
problem with a nonlinear convective condition at x = 0, which can be written in
the form

W, — W =0, x>0,t>0
we(0,1) = F(w(0,1)), t>0 ®)
w(x,0)=h'(x), x>0

The literature concerning problem (8) has constantly increased from the apparition of
the papers [14, 18]. Other related problems in this direction are considered in
[2,19, 11]. In [16, 10, 17] the asymptotic behaviour of the solution to (8) is investi-
gated by formal expansion schemes. However, the techniques we shall employ in this
paper to manage the same problem are substantially different. Section 2 of this paper
is devoted to clarify the connection between the initial temperature h(x) with the
forcing function V,(t) of the Volterra integral equation (6). In section 3, a general study
of the above-stated control problem for (2) is undertaken for the case of bounded
initial temperatures. Specifically, we find spatially uniform bounds for the quotient
u(x, t)/uq(x, t) which depend on the solution V () to integral equation (6), from which
becomes apparent that conditions (A) and (B) are not sufficient to attain the objective
of the control; ie., to obtain lim,, ;. u(x,t)/uy(x,t) =0. In section 4, for linear
control functions F(v) = Av, we give an example to illustrate that there exists an exact
solution to problem (6) providing u(x, t)/uq (x, t) = 1/(24%t), t —» + co. Generalizing
this fact, we also give sufficient conditions on F so that the control goal may be
reached.

2. Relationships between V(1) and h(x)

In this section we will make several observations concerning the forcing functions
Vo(t) of Volterra integral equation (6). Indeed, the behaviour of the solution V(¢) of
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1164 L. R. Berrone et al.

integral equation (6) depends on the function V,(t) and, in turn, this depends strongly
on h taking different values. Let us begin with the following result, which explains the
behaviour of V,(t) for the small times.

Lemma 1. (a) If h verifies the following assumptions:

(i) he 6°[0, + o),
(ii) there exist positive constants, A, B and o € [0, 1) such that | h(x)| < Aexp (Bx'*?),
X > X0,

then

lim /(nt) Vo(t)

t-0"

(b) Moreover, if h e €1 [0, + o0) then there exists a positive constant C such that
|/ (@) Vo(t) = hO)| < /(mt) [ (0)] + Ct2]

Proof. By making the change of variable ¢ =2 . /(tx) in (7) we obtain

S0 Volt) = j b2 exp( — x)dx )

Now, from hypothesis (i) we derive, for 0 <t < 1 and certain positive constants
AOa BO»

h(2/(tx)) exp( — x)| < Agexp [Box" T2 —x], x=0
| p P

and therefore, the dominated convergence theorem can be applied to the right-hand
side of (9) to show the assertion of (a). To prove (b) we make an integration by parts of
the right-hand side of (9), getting

Vv =10 = i | e ) % d

and so

v o) < e [ e Je) e""(f;x) dx (10)

Since K" is supposed to be a Holder-continuous function, we can write

|2 J/tx)| <|WO)] + Kt;PxP2 x>0 (11)
where K is a positive constant. Inequality of (b) easily follows from (10) and (11).
U

We remark that, as a consequence of the previous lemma, the function Vj (t) cannot
have a singularity of order greater than % at the origin. Our following result provides
a useful inequality involving V4 (t).

Copyright © 2000 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci., 23, 1161-1177 (2000)
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Lemma 2. If h verifies assumptions (i) and (ii) of Lemma 1 and h is a non-decreasing
function, then V,, satisfies the condition

Vo(7) <t —s

<
Vo(t) T—35

>, O<s<rt<t (12)
Proof. From (9) and (iii) we obtain, for every 0 < s <7 <,
Vo) _ /<r> [ 0" h(2/d)exp(~ &) dé] - /<t> - /(z ~ s>

- - ~ - ~ D
Vo) NAT/ L[5 h(2/(t)) exp(—&)d¢ g T

Corollary 3. Under the same assumptions made on h in Lemma 2, the solution of the
integral equation (6) satisfies the following inequality:

0< V()< Volt), t>0 (13)

Proof. Since V,(t) verifies the inequality (12) and F verifies condition (A) from the
introduction, we can apply Theorem 6.1 from [15, chapter 2] to obtain the bounds
for V(t) given by (13). O

In the case of constant initial temperature h(x) = hy, x = 0, inequalities (13) become

h
0<Vi<—=, t>0
()
that is
t
0<¥™ pi<t =0

It should be noted that the function

IHJ‘I&C{T
o~/[m(t—1)]

is decreasing. In fact, we have

[
de \Jo /[n(t — )]

The qualitative analysis of the solution to equation (6) often requires the additional
hypothesis of monotonicity on its forcing function V,(¢) (cf. [15]). So, to establish
connections between the monotonicity of V;(t) and properties of the initial tem-
perature h(x) is an interesting matter. With this purpose in mind, let us define
a function H by

> = —F(V@)<0

H(x) = xh'(x) — h(x), x>0

Copyright © 2000 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci., 23, 1161-1177 (2000)
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In the following result, a relationship between the monotonicity of ¥, and the sign of
H is established.

Lemma 4. If he €' [0, + o), then Vy is a non-decreasing [non-increasing] function
provided that H(x) > 0, x > 0, [H(x) <0, x > 0].

Proof. By taking derivatives in (9) we obtain

+

, 1 .
0= s [, HeVE en(- g >0
hence, Vy(t) =0, t > 0, when H(x) =0, x > 0. O

Consider, for instance, an initial temperature given by h(x) = Ax* x >0, (4 > 0,
o = 0), then

H(x)=A(x—1)x*, x=0

2(1
Vo) = A —-T <1 + g) (=02 >0

ﬁ 2

that is, the function Vj is increasing [decreasing] if and only if « > 1 [« < 1] and it is
constant (V,(t) = A) when o = 1.

3. Bounded initial temperatures

In this section we shall consider in some detail the instance of problem (2)
corresponding to a bounded initial temperature h. The main result could be stated by
saying that conditions (A) and (B) on the control function F do not guarantee for
themselves that lim,_, , o, u(x, t)/ug(x, t) = 0. Examples of this unexpected behaviour
are given and auxiliary conditions are imposed on F in order to attain that objective.
We reduce the study of the relatively general situation in which & is bounded to the
more simpler instance h(x) = ho > 0, x = 0. For constant temperatures, the solution
to problem (2) is represented by (3) with

X
ug(x,ty=hoerf(——=), x>0,t>0 14
o(x, ) = ho (2\/t> (14)

while V' = V(t) becomes the solution to the Volterra integral equation

V(t) >0 (15)

[0
= — T,
V@) Jo /[m(t —1)]
Equations (14) and (15) have been, respectively, obtained from (4) and (6) by simply
substituting h(x) = h,. First, we prove two simple lemmas.

Copyright © 2000 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci., 23, 1161-1177 (2000)
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Lemma 5. If V(1) denotes the solution to equation (15), then the identity

I V(1) 1 f
— | ————=dt=1—— | F(V(r))d
ho _[o [n(t —1)] i ho Jo (V(w) de

holds for t > 0.

Proof. The identity immediately follows from an application of the Abel transforma-
tion to both members of (15). O

Lemma 6. Let A and B be two positive real constant such that B < A. Then, we have

erf(Ax)<A cR
x5, X

1<
erf(Bx) ~ B

Observe that the above inequalities are strict when B < A.

Proof. 1tis sufficient to realize that the error function is an odd increasing one and the
auxiliary real function ¢(x) = A erf(Bx) — B erf(Ax), x € R, satisfies

@0)=0, ¢p(+0)=A—-B=0

— A%x?) [exp((4*> — B>)x*) —1]120, xeR O

, 2AB
@'(x) = —= exp(
N
Our next results will be the cornerstone of the ulterior analysis.

Theorem 7. The following inequalities:

() u(x, 1) L Y(r)
o Y0 e < o Tt o "

hold for x >0, t > 0.
Proof. From (3) and (14) we deduce

u(x, t) 1 J [erf(x/Zﬁ/ )] (1) de (17)
uo (x, 1) ho erf(x/2 \/;f)

hence, an application of Lemma 6 gives, for x >0, ¢t >0

1 t
1—h—0f /<U%T>F(V(T))dr<u”;(é;tg) 1—hioj F(V(x) dt (18)

In view of (15), for the last member of (18) we have

s / t J(n_t)

Copyright © 2000 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci., 23, 1161-1177 (2000)
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thus proving the first inequality of the statement. In respect to the second one, it easily
follows from (18) and Lemma 5. O

As it can be easily seen, the data corresponding to the Volterra integral equation
(15) verify the hypothesis of Corollary 3, so that its solution V(t) satisfies the
inequalities

0< Vi)<1, t>0 (19)

and therefore

0 < lim inf ( (=) V(t)> < lim sup <V :”) V(t)) <1

t—=+ o 0 t—=+ oo 0

Next result relates the asymptotic behaviour of the quotient u(x, t)/uq(x, t) with the
oscillation limits of \/(7t) V (t)/ho.

Corollary 8. (i) If lim sup,_ + , (\/ (@) V(t)/hy) = 0 (with 0 < 6 < 1) then

lim sup u(x, 9
t— + o0 uo(x t)

(i) If, for some x > 0, lim sup,- + ., (u(x, t)/uo(x, t)) = 0 (with 0 < 6 < 1), then

=0, uniformly in x >0

lim sup — =0

1=+ o0 hoj ./[n (t—1)]

(i11) If lim,, 4 o J V(0)/ /[t —1)]) dt =0, then

u(x, t)

1>+ Ug(X, 1)

=0, wuniformly in x >0

@iv) If for certain x > 0, lim sup,., + o, (u(x, t)/uy(x, t)) = 0, then

lim < (=) V(t)> ~ lim - f VO 4—o

t—+ o 0 t—+ o ho [TC(I—‘L')]

Proof. In order to prove (i) we apply Theorem 7 and Fatou’s Lemma obtaining

t
0 < lim sup ulx, 1) < lim sup f L de
1>+ Uy (X, 1) t-+w  hy Jo [7(t — 1)]

1
= lim sup — p J tV()J) di < f lim sup =iV (40
0

1
di
>+ /[r(1 — )] t->+oo hoJ(nAM[TC 1—A)]
j Q/m«/[n 1—=2]

Copyright © 2000 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci., 23, 1161-1177 (2000)
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(i1) It follows from another application of Theorem 7 along the same lines:

/ 1 t
lim sup () V(t) < 6 < lim sup " f L dr

t—>+ oo I’l() t— + o0 0Jo [7‘[([’ — ‘[):l

) Jl lim sup i =iV (40 dA
S )0 e ho ) JIn(l — 2]

! dz
=4 j =0
0o /(mi)/[n(1 —A)]

(ii1) It easily follows from Theorem 7 if we realize that, due to the monotonicity of
t— ﬁ) (V(r)// [t — 7)]) cﬁ, the oscillation limit lim sup,-, 4, ﬁ) (V(v)//[n(t —7)])dt
can be replaced by an ordinary one. In fact, we have
ulx, ) < lim su u(x, 1

0 < lim inf <
t—-+w Uy (X, t)

t—+ow Ugl(X, [)

t
< lim ij LT)&':O, x>0
i=+w ho Jo /[n(t —1)]

In a similar way, we deduce

t—+ o 0 t—+w 0 t— + Mo(x,l)

0 <t inf ¥ 0 V(t) < lim sup \/h(?t) V(1) < tim sup 00 _

so providing (iv). O

It should be observed that a necessary and sufficient condition that implies
lim, 4 o, (u(x, £)/uo(x, t)) = 0, uniformly in x e R*, is that

lim f&drzo
t=+w Jo /[#(t —1)]

thanks to Corollary 8. In the following lemma, we shall prove that the left and right
bounds provided by Theorem 7 for the quotient u(x, t)/uo(x, t), actually are its limit
values when x - 0% and x — + oo respectively.

Lemma 9. Let t > 0 be given; then we have
(1)
u(x,t) (mt)

x—0" Ug (x, t) N h()

(i)

Vi), t>0

x—+ow Ug (X, t) h()

L J V(2)

ho Jo /it — )]

Copyright © 2000 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci., 23, 1161-1177 (2000)
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Proof. Taking into account Lemma 6, expression (17) and the fact that the real
function

- < ! >F(V(r))
t—1

belongs to L (0, t) because

Jt \/@ F(V (1)) dt = hy — /(at)V(t), t>0

an application of the dominated convergence theorem provides

u(x, t) =l—i ! im <erfx/2,/ )> Vo) de

x—+ uo(x,t) ho 0 x>+t erf(x/z\/;

=1 —hifF(V(r))dr, t>0

0Jo

from which (ii) is immediate. We proceed analogously to derive (i). Indeed we have

u(x, t) 1 . erf(x/2ﬂ/(t—r))>
—1—_— 1 1 d
J xlfg*< erf(x/2./1) s

xotolig(x, ) hg

_1_if <LT> F(V(r))dr = (m)V(t), t>0 0

ho Jo N \4

0

The proof of Lemma 9 can also be carried out by using the L’Hospital rule. For
instance, to derive (i) we set

u(x,t) — lim uy(x,t) lim V(ru(x, 1) /(m) V()

i = =
x=20" Ug(X, 1) x-0" Uox(X, 1) x—0" hoexp( — x?/4t) ho

The inequalities in Theorem 7 can be used, in certain cases, to estimate the order of the
convergence of the quotient u(x, t)/uq (x, t) to zero. To show this use, now we prove
the following lemma.

Lemma 10. Let Cy, C,, o be three positive constants such that

then, we have

u(x, t)
uo (x, 1)

=0(t"%, ast— + o©
provided that o < 1/2.

Copyright © 2000 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci., 23, 1161-1177 (2000)
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Proof. From Theorem 7 and the hypothesis, we realize that it is enough to prove that

1 (! V(1) _
— | ———dt=0@"" -
™ L el =] T t™™, ast—> +

Now, for t > 0 we have

1f Ve 1 LVt W

—dr=— )
ho Jo /[n(t —1)] ho Jo /[m(1 — )]
C [ di _CBG—a d)
= t* o /1“+ 1/2 (1 . /1)1/2 - t*

where B denotes the beta function. Hence, we obtain

_ u(x,t) C, 1 1\ _
C;t7*< <—=Bl=—a=|t7% t>0
! Ug(x,t) m <2 OC2 =

which completes the proof. O

Generally speaking, the quotient u(x, t)/uq(x, t) does not need to converge to zero
for a given control function F that only satisfies conditions (A) and (B) from the
introduction. This can be easily realized for the general problem (1) when the initial
temperature h is non-constant on R*. Take, for instance, the following data h(x) = x,
F(&) = &(¢ — 1)% in problem (1); thus, we obtain

ulx, t) =uog(x,t)=x, x>0,t>0
V=1, t>0

whence

=1, x>0,t>0

The same fact is less obvious for the simplified problem under consideration. Indeed,
the following example shows that the quotient u(x, t)/uo (x, t) may not tend to zero if
a general control function F is prescribed in problem (2). Let us consider a real
function F which verifies conditions (A) and (B), and the following ones:

e F is non-decreasing;
o [, * ETF(§)dE =y for certain 0 <y < 7/hy.

An example of a function satisfying all these conditions with y = 1 is given by

_[ereres, |

F(&) ¢
¢, E

Copyright © 2000 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci., 23, 1161-1177 (2000)
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Taking into account that the solution of the integral equation (15) verifies inequality
(19) we can write

+ oo + o h h2 +aoF ,‘hZ
J F(V(r))dr<f F( 9 >dr=0 (n)dnz/ 0
s

0 0 (m7) T Jo ?

where y < w/hy. In this case, Lemma 5 shows that the quotient u(x, t)/u, (x, t) cannot
converge to zero when ¢t goes to infinity. Therefore, the necessity of imposing addi-
tional restrictions on the control F arise in order that the quotient u(x, t)/uq (x, t)
should tend to zero when t goes to infinity. As a clarifying example where this
situation occurs, we shall discuss in the next section the case of linear controls: i.e.,

F)=/v, (A>0) (20)

< hy

4. An example and a general result

For the case of a linear control explicited by (20) and in order to obtain the explicit
solutions u and V of problems (2) and (15), respectively, we define the real function

Q(x) = /mxexp(x?) erfe(x), x>0
which satisfies the following properties:
00)=0, O(+xo)=1, Q(x)>0, x>0

The most important facts on the behaviour of the solution V() to equation (15)
corresponding to a linear control (20) are collected in the following result.

Lemma 11. If F is given by (20), we have

0<V(t)=—2=[1—0(Jt)] < ——= 1)
N Vi N
Jt V(r)dt = % [1 — exp(A?t) erfe(Z./1)] (22)
1 —hi f F(V (x)dt = exp(2%0) erfc (A (/1) (23)
0Jo

for all t > 0 and

u(x, t)
t—>+w Ug(X, 1)

=0, uniformly in x >0

Furthermore, we have the estimates

1 < u(x, t) < 1 (24)

Tt u(x, ) /(nt)

ast— +0o0.

Copyright © 2000 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci., 23, 1161-1177 (2000)
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Proof. The integral equation for V(t) can be transformed into the following initial
value problem for a first-order ordinary differential equation

U(t)= he Jho +22U(1), t>0

J/(mt)

U(t) = Jt V()dr, t>0 (25)

The solution U(t) of (25) is given by (22) and so, simple calculations show that V' (t) is
given by (21). Moreover, we have

1 —i Jt F(V(T))df =1 —iU(I) = exp()LZt) erfC(/l\/;)
7o ), i

that is (23). To derive inequalities (24) we need the following (see [1]):

2 2 2 1 2
—<7<\/&exp(zz) etfc(z) S ———m——<—-, z> [
32 24+ (22 +2) z+./(Z2+4/n) =z 3

from which we derive

?<1—Q(2)<?, 2> /3

Therefore, the following inequalities:

1 (t) 1
< Vi) <
Tf)uzt h() ( ) 2}.2t

2 1 1
— = <1l-—— | F(V(a)dr <
3L/(m)< ho L Ve T<z (nt)

hold for t > + co. Inequality (24) follows from inequalities (16) of Theorem 7. This
completes the proof. O

Now, by means of the explicit expression of the solution u(x, t) to the problem with
linear control given by (20), the asymptotic behaviour of the quotient u(x, t)/u(x, t) is
established in our next result.

Theorem 12. If F(v) = Av (with /. > 0) and h(x) = hy > 0, the solution to problem (2) can
be written in the form

u(x, t) = hgexp (A%t) |:erfc (A \ﬁ) — exp(4x) erfc <)L \/E + ﬁ)} (26)
t

Copyright © 2000 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci., 23, 1161-1177 (2000)
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Furthermore,

u(x, t)
Uo (x, t)

when t - + oo, uniformly in x > 0.

~ 1/2t%) 27)

Proof. Let I = I(x, t) be the function defined by

I(X, t) = J‘:) erf <ﬁ> V(’L') dr

By using the Laplace transformation in the variable ¢, we deduce

. 1 exp( —x\ﬁ)}
= hy -
1x.3) L(H\/E) s(2+/s)

whence, using tables of Laplace transformation (see, for example, [1]), an exact
expression for I is obtained as follows:

I(x, 1) = ho <erf< \/i> + exp (A%t + Ax) erfc </1 fﬂ)

— exp (4%t erfc ( (it))) (28)

Now, taking into account that

u(x, t) = hoerf <2i\/¥> — (%, 1)

we deduce the expression (26) for u. On the other hand, for the quotient u(x, t)/u(x, t)
we get

u(x,t)  exp(22t)erfe(2/t) — exp (A2t + Ax) erfe((A /1) + (x/2/1))

uo(x, 1) erf(x/24/t)

whence, in view of the estimation erf(z) ~ 2z/ﬁ when z — 0, we deduce the estimate
u(x, t) 1 1
w20 +xy) 2w T

as expression (27) states. O

In the next theorem we extend the above study of linear control functions to a large
class of functions F.
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Theorem 13. Let F be a continuous real function verifying conditions (A) and (B) of the
introduction. Furthermore, we assume that

(C) F is convex on (0, + o0),
(D) FF(0")=2>0.

Then the solution to problem (2) with h(x) = hy, x > 0, satisfies the following asymp-
totic behaviour:

u(x,t)
t—+w Ug (x, t) N

Proof. From conditions (A), (C) and (D) we can write F(&) = A + @(&), & >0,
where ¢ is a non-negative function defined on (0, + oo ) such that ¢(0) =0 and
lim;, + ., ¢(&)/& = 0. Moreover, since

0< @) = ¢((1 =)0 + &) < (1 = £)9(0) + £9(8) = ep(&) < @(&), €[0,1]

@ 1s an increasing convex function. If V' denotes the solution to integral equation (15),
then we can write

lim ./t (V(t) =0,

t— + o t—+ o

lim fq’(v(t))dr:o

0+/(t—1)

Since that 0 < V (t) < hy/+/(mt), t > 0, from the monotonicity of ¢ we obtain
. . ho ho 1. (9
0< lim Jto(V(@) < lim Jto < > = lim (— =0
t+-m J to+w \/7 V/ (mh) ) eon \ <

ie., lim,, ; \/E(p (V(¢)) =0 and lim,, 4+, V(t) = 0. From this and from the Fatou’s
lemma we get

0 < lim inf f e (V@) dr < limsup Jt V@) de
0./(t—1)

t—+ / t>+w Jo ([_-L-)

limsup f NG J limsup,.. .. ED V(@) 4. _
NETE : [E(1— 2]

Now, from integral equation (15) we obtain

t=>+

' V(z) LI ho "oV (D)
—_— dt=- | — — — | ——=d
L [m(t —1)] f A |: (mt) "y Jo (it —1)] T:|

whence

t
limJ O 4e—0

t->+w Jo (t—T)

Finally, the results follows from the last equation and from the observation immedi-
ately below Corollary 8. |
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We finish this section, and the paper, with a generalization of the previous result to
the case of bounded initial temperatures.

Theorem 14. Let u be the solution to problem (2) with h(x), x > 0, being a non-negative,
continuous and upper and below bounded function in the sense that 0 < C; < h(x) < C,,
x > 0, for certain positive constants Cy and C,. If the control function F verifies
conditions (A), (B) from the introduction and (C), (D) from Theorem 13, then we have

u(x, 1)
t=>+ o l'lo(x, t) N

0

Proof. A simple application of the maximum principle of problem (2) shows that
OguCl(x’t)gu(xwl)SuCz(x9t)9 x>0a [>0

where u¢ is the solution of (2) for the same control function F and initial constant
temperature C. From this inequality we deduce

Cy uc, (x,0) u(x, t) uc,(x,t)
N < < >
C, uge, (X, 1) " up(x, 1)~ ugc,(x, 1)

x>0 t>0

where ugyc is the solution to (2) for null control function F and initial constant
temperature C. Since lim,., ; ., (uc(x, t)/uoc(x, t)) = 0, for any positive constant C, by
Theorem 13, the result is immediately derived from the last inequalities. O
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