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a b s t r a c t

In this paper we model the neutralization of an acid solution in which the hydrogen
ions are transported according to Cattaneo’s diffusion. The latter is a modification
of classical Fickian diffusion in which the flux adjusts to the gradient with a positive
relaxation time. Accordingly the evolution of the ions concentration is governed by
the hyperbolic telegraph equation instead of the classical heat equation. We focus
on the specific case of a marble slab reacting with a sulphuric acid solution and
we consider a one-dimensional geometry. We show that the problem is multi-scale
in time, with a reaction time scale that is larger than the diffusive time scale, so
that the governing equation is reduced to the one-dimensional wave equation. The
mathematical problem turns out to be a hyperbolic free boundary problem where
the consumption of the slab is described by a nonlinear differential equation. Global
well posedness is proved and some numerical simulations are provided.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

When sulphide minerals present in rocks are exposed to air and water, sulphuric acid is produced as a
consequence of a chemical reaction. The acidic water flow is known as Acid Rock Drainage (ARD). Though
this is a natural process, it is highly enhanced by mining activities and it is then known as Acid Mine
Drainage (AMD). AMD can cause serious damage in biodiversity and human health, especially after a mine
plant has ended its activity. So treatment of acid water becomes a challenge in order to avoid long term
environmental damage. A survey on remediation options for AMD can be found in [1]. The main techniques
are based on chemical reactions neutralizing the acid water. A typical approach is the so-called limestone
neutralization, which consists in the addition of a calcium carbonate base to the acidic water in order to
reduce the acidity of the solution. In the last few years several models have been developed to describe the
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evolution of this sort of neutralizing systems [2–5]. Although these models were proposed taking into account
different aspects of the diffusive–reactive process, all of them are based on Fick’s law (classical diffusion).
When using Fick’s law, it is tacitly assumed that local disturbances are spread infinitely fast throughout the
solution. This is a clear idealization and it is physically unrealistic, giving rise to the pathological feature
of infinitely fast spreading of perturbations in the diffusion equation. For this reason, Cattaneo and others
have proposed to modify Fick’s law in a way such that the flux may adjust to the gradient with a small but
nonzero relaxation time, see [6].

In this article we study the evolution of a neutralization process for an acid solution in which transport
is driven by Cattaneo’s law (anomalous diffusion). Following [5], we consider the reaction occurring between
a sulphuric acid solution (H2SO4) and a slab of marble, which is mainly formed by calcium carbonate
(CaCO3):

CaCO3 + 2H+ + SO2−
4 ⇌ Ca2+ + SO2−

4 + H2O + CO2. (1)

The H2SO4 dissolved in the aqueous solution is dissociated in ions SO2−
4 and 2H+, where the concentration

of the latter is commonly measured through the so-called pH. The acid reacts with CaCO3 liberating Ca2+

ions in the solution. As the reaction takes place, the CaCO3 is consumed and the concentration of H+ ions
decreases (the pH is hence raised). When the pH reaches a value around 7 the solution is said to be neutral
and the reaction ceases. The reaction between H2SO4 and CaCO3 takes place on the contact surface that
separates the solid and the solution. From (1) we see that the stoichiometric ratio in the reaction between
H+ ions and CaCO3 is 2:1, which means that two moles of H+ are neutralized by one mole of CaCO3.
Moreover the reaction is of first order, so that the exponents of the concentrations appearing in the rate
equation are equal to 1. When other reactants and/or acid solutions are used, different ratios and different
reaction orders may occur. Here, differently from [5], we do not consider the phenomenon of “armoring”,
that consists in the formation of a thin coat of material on the reacting surface which partially or completely
inhibits the reaction.

In this paper we model a system consisting in a rectangular container filled with sulphuric acid where
a slab of marble has been placed on the bottom. This slab is assumed to occupy less than the half of the
container height at the beginning. We also assume that the container is large enough, so that the system
can be described in a one dimensional geometry1 [0, L∗] where the solid occupies a region [0, s∗], the liquid
fills the region [s∗, L∗], with s∗ evolving with time.

We study the system for the evolution of both the H+ concentration and the reacting surface s∗. We
assume that no acid is added or removed during the process and we notice that our system is physically
consistent only if ṡ∗ < 0 (the solid slab can only be consumed). The transport of H+ in the solution
is governed by Cattaneo’s diffusion and the nature of the mathematical problem is therefore hyperbolic.
The system is multi-scale in time with three characteristic times: (i) the characteristic diffusive time; (ii) the
relaxation time; (iii) the reaction time. Depending on the order of magnitude of these times different problems
may arise. In particular, following [7] we show that the reaction scale is larger than the diffusion time scale,
so that the consumption of the marble slab is slower than the diffusive transport of H+ ions. Assuming
that the relaxation time is sufficiently large we prove that the mathematical problem can be simplified
to one in which the governing equation is the one dimensional wave equation. Following [8] we determine
representation formulas for the solution that allow to write the evolution of the free boundary s∗ as an implicit
nonlinear differential equation. Global existence and uniqueness are proved. Finally numerical simulations
that illustrate the behavior of the solution s∗ and the dependence on the physical parameters of the problem
are provided.

1 Throughout the paper the starred quantities denote dimensional quantities.
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2. Derivation of the model

In this Section we derive the general model for the neutralization process described above. We consider a
one-dimensional domain [0, L∗] where [0, s∗] is the region occupied by the reacting solid (CaCO3), [s∗, L∗] is
the region occupied by the acid solution (2H+ + SO2−

4 ) and s∗ = s∗(t∗) is the free surface separating them.
The H+ ions concentration in the solution will be denoted with c∗ = c∗(x∗, t∗) ([c∗] = mol/length3).

Remark 2.1. The quantity c∗ provides a measure of the acidity of the solution. Alternatively one can use
the so-called pH expressed as

pH = −log10

(
c∗

1 mol/lt

)
.

The solution is said to be neutral when pH = 7 so that, in terms of c∗, we have that the solution is neutral
when c∗ = 10−7 mol/lt.

During the neutralization process the H+ ions diffuse in the liquid region [s∗, L∗]. We assume that diffusion
is governed by Cattaneo’s law

J∗ + τ∗ ∂J∗

∂t∗ = −D∗ ∂c∗

∂x∗ , (2)

where J∗ is the ions flux, τ∗ > 0 is a relaxation time and D∗ is the diffusivity coefficient ([D∗] =
length2/time), which is assumed to be constant.

Remark 2.2. When τ∗ → 0+, the process becomes purely diffusive and (2) reduces to Fick’s law

J∗ = −D∗ ∂c∗

∂x∗ .

In Cattaneo’s law the flux is allowed to adjust to the gradient of concentration according to a relaxation
time τ∗. In fact, it can be seen as an approximation of the constitutive equation

J∗(x∗, t∗ + τ∗) = −D∗ ∂c∗

∂x∗ (x∗, t∗). (3)

Moreover the flux is mainly influenced by what has happened close in time to present. In effect, the flux J∗

can be explicitly written as

J∗(x∗, t∗) = −D∗
∫ t∗

−∞
K∗(t∗ − t̃∗) ∂c∗

∂x∗ (x∗, t̃∗)dt̃∗, (4)

where K∗ is the short-tail kernel given by

K∗(t∗) = 1
τ∗ exp

(
− t∗

τ∗

)
,

which rapidly decays to zero. When other types of kernels are considered, the system may express a different
memory behavior, see for example [9], where long-tail kernels are used in the context of fractional diffusion,
or [10] where more general kernels are considered.

It is easy to show that the continuity equation

∂c∗

∂t∗ = −∂J∗

∂x∗ , (5)
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together with Cattaneo’s law (2), provides the following telegraph equation for c∗:

∂c∗

∂t∗ + τ∗ ∂2c∗

∂t∗2 = D∗ ∂2c∗

∂x∗2 . (6)

Eq. (6) is the governing equation for the evolution of the ions concentration in the solution. Differently
from the case of pure Fickian diffusion in which the governing equation is parabolic, here the nature of the
problem is hyperbolic.

To describe the consumption of the solid part [0, s∗] we consider the rate equation that governs the
chemical reaction occurring on the free boundary s∗. Following [4,5] we write

v∗ = −k∗(c∗ − c∗
0)+, (7)

where v∗ represents the rate of neutralized H+ moles per unit surface, k∗ is the reaction rate and c∗
0 is

the concentration of neutralization.2 The velocity of the reaction is therefore proportional to the excess of
ions on the reacting surface. The positive part is taken to prevent the reaction from occurring when the
concentration is below the neutralization limit.

Assuming that the “molar” density3 of CaCO3 is constant we write

d

dt∗

(∫ s∗

0
ρ∗dx∗

)
= v∗,

from which follows that

ρ∗ṡ∗ = −k∗(c∗ − c∗
0)+. (8)

This condition on the free boundary s∗ implies that ṡ∗ must be negative while c∗ > c∗
0. This is in agreement

with the fact that CaCO3 is consumed when the H+ concentration is greater than c∗
0. Recalling that the

stoichiometric ratio is 2:1, the overall mass balance is given by

2 d

dt∗

(∫ L∗

s∗
c∗dx∗

)
= d

dt∗

(∫ s∗

0
ρ∗dx∗

)
,

yielding

2
∫ L∗

s∗

∂c∗

∂t∗ dx∗ − 2c∗(s∗, t∗)ṡ∗ = ρ∗ṡ∗.

Exploiting (5) we find

2
[
J∗(s∗, t∗) − J∗(L∗, t∗)

]
= ṡ∗ (ρ∗ + 2c∗(s∗, t∗)) .

Since H+ ions are not added or removed at x∗ = L∗, it is reasonable to impose the boundary condition
J∗(L∗, t∗) = 0 so that

2J∗(s∗, t∗) = ṡ∗ (ρ∗ + 2c∗(s∗, t∗)) . (9)

2 The dimensions of the quantities in (7) are: [v∗] = mol/(length2 · time); [k∗] = length/time; [c∗
0 ] = mol/length3.

3 To avoid dimensional inconsistencies we assume that the marble density ρ∗ is the molar density, i.e. classical density divided
by the molecular weight.
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Differentiating the last expression with respect to time we find

2ṡ∗ ∂J∗

∂x∗ (s∗, t∗) + 2∂J∗

∂t∗ (s∗, t∗) = 2ṡ∗
(

ṡ∗ ∂c∗

∂x∗ (s∗, t∗) + ∂c∗

∂t∗ (s∗, t∗)
)

+ s̈∗ (ρ∗ + 2c∗(s∗, t∗)) .

Hence, recalling (2), (5), we get

−2ṡ∗ ∂c∗

∂t∗ (s∗, t∗) − 2
τ∗

(
D∗ ∂c∗

∂x∗ (s∗, t∗) + J∗(s∗, t∗)
)

=

2ṡ∗
(

ṡ∗ ∂c∗

∂x∗ (s∗, t∗) + ∂c∗

∂t∗ (s∗, t∗)
)

+ s̈∗ (ρ∗ + 2c∗(s∗, t∗)) .

Finally, taking into account (9) we find

− 2D∗ ∂c∗

∂x∗ (s∗, t∗) = ṡ∗ (ρ∗ + 2c∗(s∗, t∗))

+ τ∗
[
s̈∗ (ρ∗ + 2c∗(s∗, t∗)) + 2ṡ∗2 ∂c∗

∂x∗ (s∗, t∗) + 4ṡ∗ ∂c∗

∂t∗ (s∗, t∗)
]

. (10)

The mathematical formulation of our model is therefore a hyperbolic free boundary problem consisting
of the telegraph Eq. (6) on [s∗, L∗], and the conditions (8), (10) to which we must add the initial data

c∗(x∗, 0) = c∗
in0(x∗), ∂c∗

∂t∗ (x∗, 0) = c∗
in1(x∗) s∗

0 ≤ x∗ ≤ L∗, (11)

s∗(0) = s∗
0, ṡ∗(0) = ṡ∗

0, (12)

where 0 < s∗
0 ≤ L∗/2, and the zero-flux boundary condition:

∂c∗

∂x∗ (L∗, t∗) = 0 0 < t∗. (13)

Such a problem will be referred to as (P∗
c).

3. The non-dimensional formulation

To investigate the multi-scale nature of problem (P∗
c) it is convenient to rewrite it in a non-dimensional

form. For this purpose, we introduce the characteristic times

t∗
D = L∗2

D∗ , t∗
R = L∗

k∗ ,

representing the diffusion characteristic time and the reaction characteristic time, respectively. We also
introduce the reference concentration c∗

A = max[s∗
0,L∗]c

∗
in0(x∗) and the non-dimensional parameters

λ = ρ∗

2c∗
A

, δ = c∗
0

c∗
A

.

Then we rescale the main variables as follows

c = c∗

c∗
A

, t = t∗

t∗
ref

, x = x∗

L∗ , s = s∗

L∗ ,
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where t∗
ref is a reference time to be selected. The non-dimensional version of problem (P∗

c) becomes

(Pc) :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
t∗
D

t∗
ref

)
ct +

(
t∗
Dτ∗

t∗
ref

2

)
ctt = cxx s < x < 1, 0 < t

c(x, 0) = cin0(x) s0 < x < 1
ct(x, 0) = cin1(x) s0 < x < 1
cx(1, t) = 0 0 < t

2λṡ = −
(

t∗
ref

t∗
R

)
(c(s, t) − δ)+ 0 < t

−cx(s, t) =
(

t∗
D

t∗
ref

)
ṡ (c(s, t) + λ)

+
(

t∗
Dτ∗

t∗
ref

2

)(
s̈ (c(s, t) + λ) + ṡ2cx(s, t) + 2ṡct(s, t)

)
0 < t

s(0) = s0
ṡ(0) = ṡ0,

(14)

where

cin0 =
c∗

in0

c∗
A

, cin1 =
t∗
ref

c∗
A

c∗
in1 , s0 = s∗

0
L∗ , ṡ0 =

t∗
ref

L∗ ṡ∗
0,

and 0 < s0 ≤ 1/2.
We notice that there are three characteristic times in problem (Pc). One given by the characteristic time

of diffusion t∗
D, another given by the characteristic time of the chemical reaction t∗

R, and one more given by
the relaxation time τ∗.

Remark 3.1. When τ∗ → 0+ Eq. (14)1 becomes the diffusion equation and condition (14)6 reduce to that
formulated in [5], where the pure diffusive case was studied.

When considering CaCO3 in an acid solution H2SO4, typical values are:

ρ∗ = 2.7 · 10−2 mol/lt, c∗
0 ∼ 10−7 mol/lt, c∗

A = 10−2 mol/lt.

Hence

λ ≃ 1.3, δ ∼ 10−5.

4. Fast diffusion and slow relaxation

Following [7,11] we consider the typical values

D∗ = 5 · 10−5 cm2/s, L∗ = 10 cm, k∗ = 10−7 cm/s,

so that
t∗
D

t∗
R

= 0.02 = O(10−2).

Therefore, on one hand, we have from the above that the diffusion is faster than reaction. On the other hand,
Cattaneo’s law is relevant only when τ∗ is “large enough” to makes Fick’s law unsuitable for representing
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the H+ ions flux. Unfortunately measures of it are almost missing in the literature, but to have an idea of
the order of magnitude of the relaxation time we observe that the ions migration velocity is given by

c∗
I =

√
D∗

τ∗ .

Although we do not have data for H2SO4 solutions, we observe that the order of magnitude of c∗
I in capillary

electrophoresis is O(10−7 mm/s) [12]. Therefore if we assume this order of magnitude for cI we find that
τ∗ = O(109 s) and

t∗
R

τ∗ = O(10−2).

In particular, this allows us to write
t∗
D

t∗
R

≪ 1,
t∗
Dτ∗

t∗
R

2 = O(1), (15)

which clearly implies

t∗
D ≪ t∗

R ≪ τ∗.

In conclusion we have that the diffusive scale is faster than the reaction scale which, in turn, is faster than the
relaxation scale. Then, choosing the reference time as the reaction time, i.e. t∗

ref = t∗
R, the terms containing

(t∗
D/t∗

ref ) in (14)1, (14)6 can be safely neglected when (15) holds. Thus, the problem (Pc) reduces to

(P̃c) :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ctt = α2 cxx s < x < 1, 0 < t
c(x, 0) = cin0(x) s0 < x < 1
ct(x, 0) = cin1(x) s0 < x < 1
cx(1, t) = 0 0 < t
2λṡ = −(c(s, t) − δ)+ 0 < t
−α2 cx(s, t) = s̈ (c(s, t) + λ) + ṡ2cx(s, t) + 2ṡct(s, t) 0 < t
s(0) = s0
ṡ(0) = ṡ0,

(16)

where we have set

α2 = t∗
R

2

t∗
Dτ∗ = O(1).

In this peculiar situation the governing equation is the one-dimensional wave equation, whose solution
can be expressed by means of D’Alembert formulas.

Remark 4.1. The remainder of this Section is devoted to proving the existence and uniqueness of a solution
(c, s) to problem (P̃c) according to the following definition:

Definition 4.1. The pair (c, s) is said to be a classical solution to problem (P̃c) in the time interval [0, T ]
if:

(i) c, s are defined on DT and [0, T ] respectively;
(ii) c ∈ C2,2(DT ) and s ∈ C2[0, T ];
(iii) c, s satisfy (P̃c);
(iv) ṡ < 0 (the solid can only be consumed by the reaction);

where DT is the liquid domain:

DT =
{

(x, t) ∈ R2 : s(t) < x < 1, 0 < t < T
}

.
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Remark 4.2. From Definition 4.1 it follows that Eq. (16)5 must hold up to time t = 0, so that

ṡ0 = − 1
2λ

(cin0(s0) − δ)+

is a necessary condition that must be fulfilled by any classical solution.

4.1. Representation formulas

Suppose for a moment that problem (16) has a unique solution (c, s) in the sense of Definition 4.1 on
some time interval [0, T ], which is such that −α < ṡ. As it will be shown in the following, the latter is not
only a sufficient but also a necessary condition to have a solution (c, s) to problem (16).

An explicit expression for c in terms of s and of the data of problem (P̃c) can be determined exploiting
D’Alembert fundamental formula. Following [4] we see that it is convenient to transform the problem (P̃c)
into a Stefan-like problem, in order to make the free boundary conditions more manageable. Considering
the transformation

u(x, t) = λ(x − s(t)) +
∫ x

s

c(η, t)dη, (17)

the problem for the new variable u becomes

(P̃u) :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

utt = α2 uxx s < x < 1, 0 < t
u(x, 0) = uin0(x) s0 < x < 1
ut(x, 0) = uin1(x) s0 < x < 1
u(1, t) = µ(t) 0 < t
u(s, t) = 0 0 < t
2λṡ = −(ux(s, t) − λ − δ)+ 0 < t
s(0) = s0,

(18)

where uin0 , uin1 , µ are the functions given by

uin0(x) = λ(x − s0) +
∫ x

s0

cin0(η)dη,

uin1(x) = −ṡ0(λ + cin0(s0)) +
∫ x

s0

cin1(η)dη,

µ(t) = uin1(1)t + uin0(1),

(19)

and ṡ0 is defined by

ṡ0 = − 1
2λ

(
u′

in0(s0) − λ − δ
)

+. (20)

Once (P̃u) is solved we may get the solution of (P̃c) through (17). The main advantage of (P̃u) lies in the
free boundary conditions.

Remark 4.3. The function µ(t) can be obtained in the following way. Observe that uxx = cx = α−2utt

everywhere in DT . As a consequence cx(1, t) = α−2utt(1, t) = 0 and ut(1, t) = const. Imposing the
compatibility conditions on x = 1 we find that ut(1, t) = ut(1, 0) = uin1(1) and, integrating in t, we
finally find

u(1, t) = uin1(1)t + uin0(1) = µ(t).
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Let (u, s) be the classical solution of (P̃u) related to (c, s) according to (17). In order to use D’Alembert
representation formulas for u, we split the liquid domain DT as (Fig. 1)

D
(I)
T = {(x, t) ∈ DT : s0 + αt < x < 1, 0 < t < T} ,

D
(II)
T = {(x, t) ∈ DT : s(t) < x < s0 + αt, 0 < t < T} .

Recalling that s0 ≤ 1/2, the characteristics curves emerging from (s0, 0) meet the external boundaries x = 0,
x = 1 in

Tl = s0

α
, Tr = 1 − s0

α
,

respectively, with Tl ≤ Tr. Looking at Fig. 1 we notice that it is natural to seek a solution in the time
interval [0, T ] with

0 < T ≤ Tr = 1 − s0

α
, (21)

and to consider a suitable extension of data to the interval [−(1 − s0), 2 − s0]. Thus, we will set

Uj(x) =

⎧⎨⎩
uinj

(x) if s0 ≤ x ≤ 1
ũj(x) if 1 < x ≤ 2 − s0
ûj(x) if −(1 − s0) ≤ x < s0

j = 0, 1,

where ũj , ûj are functions that must be determined. Then D’Alembert formula states that

u(x, t) = U0(x + αt) + U0(x − αt)
2 + 1

2α

∫ x+αt

x−αt

U1(η)dη. (22)

Remark 4.4. It is worth to observe here that we are assuming one of the following situations (see Fig. 1):

(a) there exists Tfin such that s(Tfin) = 0,
(b) s(t) > 0, for all t > 0.

As it will be discussed in Section 4.3, this is the only case relevant to be analyzed from both the
mathematical as the physical points of view.
Representation formula in D

(I)
T .

In this first case, data uin0 , uin1 only need to be extended to the right of x = 1 (Fig. 2). Then only the
functions ũj must be determined. We will define them in a way such that the boundary condition (18)4
holds.

On one hand, if x + αt ≤ 1 formula (22) reduces to

u(x, t) = uin0(x + αt) + uin0(x − αt)
2 + 1

2α

∫ x+αt

x−αt

uin1(η)dη. (23)

On the other hand, when x + αt > 1, (22) can be written as

u(x, t) = ũ0(x + αt) + uin0(x − αt)
2 + 1

2α

∫ x+αt

x−αt

U1(η)dη. (24)

Let (1, t̃) be the point in which the characteristic curve joining the points (x, t), (x + αt, 0) meets the line
x = 1 (Fig. 2). From condition (18)4 and formula (24), we obtain

µ(t̃) = ũ0(1 + αt̃) + uin0(1 − αt̃)
2 + 1

2α

∫ 1+αt̃

1−αt̃

U1(η)dη. (25)
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Fig. 1. Schematic representation of the liquid domain DT split into D
(I)
T

and D
(II)
T

when −α < ṡ < 0.

Noting that x + αt = 1 + αt̃, it follows that

t̃ = x + αt − 1
α

.

Combining this with (25) we find

ũ0(x + αt)
2 = µ

(
x + αt − 1

α

)
−

uin0(2 − x − αt)
2 − 1

2α

∫ x+αt

2−x−αt

U1(η)dη. (26)

Replacing (26) in (22), we obtain

u(x, t) = µ

(
x + αt − 1

α

)
+ uin0(x − αt) − uin0(2 − x − αt)

2 + 1
2α

∫ 2−x−αt

x−αt

uin1(η)dη.

Therefore, the representation formula for u in D
(I)
T is

u(x, t) = w(x, t) + u0(x − αt) + u0(x + αt)
2 + 1

2α

∫ x+αt

x−αt

u1(η)dη, (27)

where we have set

w(x, t) =

⎧⎨⎩µ

(
x + αt − 1

α

)
if x + αt ≥ 1

0 if x + αt < 1,
(28)

and

uj(x) =
{

uinj
(x) if s0 ≤ x ≤ 1

−uinj
(2 − x) if 1 < x ≤ 2 − s0

j = 0, 1. (29)

Remark 4.5. Notice that, even though the functions w, u0, u1 may be discontinuous at x = 1 (this is true
unless uinj

(1) = 0), the function u(x, t) is continuous across the characteristic x + αt = 1. To prove this, it
is sufficient to check from (27) that

lim
x+αt→1+

u(x, t) = lim
x+αt→1−

u(x, t).

Representation formula in D
(II)
T
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Fig. 2. Characteristics lines for (x, t) ∈ D
(I)
T

.

In this second case, data uin0 , uin1 need to be extended to the right of x = 1 as well as to the left of x = s0
(Fig. 3). Therefore, functions ûj will be also involved in D’Alembert formula. Similarly as before, we will
define them in a consistent way with the condition (18)5.

When x + αt ≤ 1, formula (22) becomes

u(x, t) = uin0(x + αt) + û0(x − αt)
2 + 1

2α

∫ x+αt

x−αt

U1(η)dη. (30)

Let
(
s(t̂), t̂

)
be the point in which the characteristic line joining (x, t), (x − αt, 0) meets the free boundary

s (Fig. 3). This point is uniquely defined because |ṡ| < α. Moreover t̂ = t̂(x, t) is the unique solution to the
equation

ŝ − αt̂ = x − αt, (31)

where we have set ŝ = s(t̂).
From condition (18)5 and formula (30), we find

uin0(ŝ + αt̂) + û0(ŝ − αt̂)
2 + 1

2α

∫ ŝ+αt̂

ŝ−αt̂

U1(η)dη = 0.

Combining this with (31), we obtain

û0(x − αt)
2 = −

uin0(ŝ + αt̂)
2 − 1

2α

∫ ŝ+αt̂

x−αt

U1(η)dη. (32)

Replacing (32) in (30), we find

u(x, t) = uin0(x + αt) − uin0(ŝ + αt̂)
2 + 1

2α

∫ x+αt

ŝ+αt̂

uin1(η)dη. (33)

Finally, when x + αt > 1 formula (22) becomes

u(x, t) = û0(x − αt) + ũ0(x + αt)
2 + 1

2α

∫ x+αt

x−αt

U1(η)dη. (34)

Replacing (26) and (32) in (34) we find

u(x, t) = µ

(
x + αt − 1

α

)
−

uin0(ŝ + αt̂) + uin0(2 − x − αt)
2 + 1

2α

∫ 2−x−αt

ŝ+αt̂

uin1(η)dη. (35)
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Fig. 3. Characteristics lines for (x, t) ∈ D
(II)
T

.

Therefore, u is given in D
(II)
T by the formula

u(x, t) = w(x, t) + u0(x + αt) − u0(ŝ + αt̂)
2 + 1

2α

∫ x+αt

ŝ+αt̂

uin1(η)dη, (36)

where w, u0, u1 are the functions defined by (28), (29).

Remark 4.6. Proceeding as in Remark 4.5 it is easy to show that also the function u defined by (36) is
continuous across the characteristic x + αt = 1.

Remark 4.7. We notice that in order to obtain the representation formulas (27), (36) it was only necessary
to extend data uin0 , uin1 as odd functions with respect to x = 1 (see (29)).

4.2. Existence and uniqueness of local solution to problem (P̃c)

Assume for a moment that s ∈ C2[0, T ], −α < ṡ < 0 and let u be the function given by

u(x, t) =

⎧⎪⎪⎨⎪⎪⎩
w(x, t) + u0(x − αt) + u0(x + αt)

2 + 1
2α

∫ x+αt

x−αt

u1(η)dη in D
(I)
T

w(x, t) + u0(x + αt) − u0(ŝ + αt̂)
2 + 1

2α

∫ x+αt

ŝ+αt̂

u1(η)dη in D
(II)
T ,

(37)

where w is defined by (28), u0, u1 are given by (29) and t̂ is the unique solution to Eq. (31). A necessary
condition on u to be (u, s) a solution to (P̃u) on DT is u ∈ C2,2 (DT

)
. To obtain this regularity in D

(I)
T and

D
(II)
T we require

(H1) uin0 ∈ C2[s0, 1], uin1 ∈ C1[s0, 1].

We will also require on data the compatibility conditions

(H2) uin0(s0) = 0, u′′
in0(1) = 0,

which assure the function u is continuous on the corner (s0, 0) (first condition) and the equation utt = α2uxx

is satisfied in the corner (1, 0) (second condition).
We will look now for conditions that ensure the continuity of u and of its partial derivatives on the

characteristic curve Σ given by

Σ : x − αt = s0, 0 < t < T.
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The continuity of u across Σ can be easily proved from (37) by checking that

lim
x−αt→s+

0

u(x, t) = lim
x−αt→s−

0

u(x, t).

Taking into account that (31) implies

∂t̂

∂t
= −α

∂t̂

∂x
= − α

ṡ(t̂) − α
,

that (28), (29) yield

αwx = wt =

⎧⎨⎩µ′
(

x + αt − 1
α

)
= uin1(1) if x + αt > 1

0 if x + αt < 1,

u′
j(x) =

{
u′

inj
(x) if s0 ≤ x ≤ 1

u′
inj

(2 − x) if 1 < x ≤ 2 − s0
j = 0, 1,

and wxx = wtt = 0 since µ is a linear function of its argument, the following partial derivatives of u can be
obtained from (37):

ut =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

wt(x, t) − α

2 (u′
0(x − αt) − u′

0(x + αt)) +
1
2 (u1(x + αt) + u1(x − αt)) in D

(I)
T

wt(x, t) + α

2

(
u′

0(x + αt) + u′
0(ŝ + αt̂)

(ˆ̇s + αˆ̇s − α

))

+ 1
2

(
u1(x + αt) + u1(ŝ + αt̂)

(ˆ̇s + αˆ̇s − α

))
in D

(II)
T

(38)

ux =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

wx(x, t) + 1
2 (u′

0(x − αt) + u′
0(x + αt)) +

1
2α

(u1(x + αt) − u1(x − αt)) in D
(I)
T

wx(x, t) + 1
2

(
u′

0(x + αt) − u′
0(ŝ + αt̂)

(ˆ̇s + αˆ̇s − α

))

+ 1
2α

(
u1(x + αt) − u1(ŝ + αt̂)

(ˆ̇s + αˆ̇s − α

))
in D

(II)
T

(39)

utt =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

α2

2 (u′′
0(x − αt) + u′′

0(x + αt)) +
α

2 (u′
1(x + αt) − u′

1(x − αt)) in D
(I)
T

α2

2

⎛⎝u′′
0(x + αt) − u′′

0(ŝ + αt̂)
(ˆ̇s + αˆ̇s − α

)2

+

2αˆ̈su′
0(ŝ + αt̂)

(ˆ̇s − α)3

)

+ α

2

⎛⎝u′
1(x + αt) − u′

1(ŝ + αt̂)
(ˆ̇s + αˆ̇s − α

)2

+

2αˆ̈su1(ŝ + αt̂)
(ˆ̇s − α)3

)
in D

(II)
T

(40)
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uxx =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
2 (u′′

0(x − αt) + u′′
0(x + αt)) +

1
2α

(u′
1(x + αt) − u′

1(x − αt)) in D
(I)
T

1
2

⎛⎝u′′
0(x + αt) − u′′

0(ŝ + αt̂)
(ˆ̇s + αˆ̇s − α

)2

+

2αˆ̈su′
0(ŝ + αt̂)

(ˆ̇s(t) − α)3

)

+ 1
2α

⎛⎝u′
1(x + αt) − u′

1(ŝ + αt̂)
(ˆ̇s + αˆ̇s − α

)2

+

2αˆ̈su1(ŝ + αt̂)
(ˆ̇s − α)3

)
in D

(II)
T

(41)

where we have set ˆ̇s = ṡ(t̂) and ˆ̈s = s̈(t̂).

Remark 4.8. We observe that the first and second derivatives of u(x, t) are continuous across the
characteristic x + αt = 1.

Since u is continuous, to have the continuity of ux across Σ it is enough that

lim
x−αt→s−

0

ux(x, t) = lim
x−αt→s+

0

ux(x, t).

Making regular algebraic computations, it follows from (39) that the above holds if and only if

(A) ṡ0u′
in0(s0) + uin1(s0) = 0.

This condition also assures the continuity of ut across Σ , since ut = αux (see (38). Similarly, from (40), (41)
we find that the continuity of utt and uxx across Σ is accomplished if and only if

(B) (ṡ0 − α)
[
(ṡ2

0 + α2)u′′
in0(s0) + 2ṡ0u′

in1(s0)
]

− s̈0
[
αu′

in0(s0) + uin1(s0)
]

= 0,

where s̈0 = s̈(0).
Thus, if (H1), (H2), (A), (B) hold, s ∈ C2[0, T ] with −α < ṡ < 0, and u is defined by (37) then (u, s)

satisfies the first five conditions of (P̃u) on the time interval [0, T ]. In the following we will focus on the last
two conditions of problem (P̃u).

Evaluating (39) in (s, t) and noting that t̂(s, t) = t, we find

ux(s, t) = αu′
0(s + αt) + u1(s + αt)

α − ṡ
. (42)

Since −α < ṡ < 0 implies s0 ≤ s + αt ≤ 1, the functions u′
0, u1 in (42) are equal to u′

in0 , uin1 . The free
boundary s must hence solve the Cauchy problem

(Ps) :

⎧⎨⎩−ṡ =
(

g(s + αt)
α − ṡ

− β

)
+

0 < t < T

s(0) = s0,

(43)

where we have set

β = λ + δ

2λ
, 2λg(x) = αu′

in0(x) + uin1(x) s0 ≤ x ≤ 1.
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Then, condition −α < ṡ < 0 is equivalent to

0 <
g(s + αt)

α − ṡ
− β < α i.e. β <

g(s + αt)
α − ṡ

< α + β.

Therefore we require

β < inf
[0,T ]

{
g(s + αt)

α − ṡ

}
≤ sup

[0,T ]

{
g(s + αt)

α − ṡ

}
< α + β,

yielding

β <
inf [s0,1] g(x)

2α
≤

sup[s0,1] g(x)
α

< α + β. (44)

Then we get the following condition

(H3) 2αβ < inf [s0,1]g(x), sup[s0,1]g(x) < αβ + α2,

which is consistent only if

(H4) α > β.

In conclusion, if (H3), (H4) are satisfied then −α < ṡ < 0 and Eq. (43)1 can be rewritten as

ṡ2 − (α + β)ṡ − [g(s + αt) − αβ] = 0. (45)

It is easy to see that Eq. (45) is an algebraic second order equation in ṡ with two distinct real roots, with
only one of them negative given by

ṡ =
(

α + β

2

)
−

√(
α + β

2

)2
+
[
g(s + αt) − αβ

]
. (46)

On one hand, recalling (A) and (43),4⎧⎪⎪⎨⎪⎪⎩
−ṡ0 =

(
1

2λ

αu′
in0 + uin1

α − ṡ0
− β

)
ṡ0 = −

uin1

u′
in0

.
(47)

On eliminating ṡ0 from (47) we find

(H5) uin1 = u′
in0

(
u′

in0
2λ − β

)
,

which provides the condition that guarantees the continuity of the first derivatives of u across Σ .
On the other hand, from (A) we see that uin1 = −ṡ0u′

in0 . Replacing this in (B) we find

(ṡ0 − α)
[
(ṡ2

0 + α2)u′′
in0 + 2ṡ0u′

in1

]
= s̈0u′

in0(α − ṡ0), (48)

which simplifies to

−
[
(ṡ2

0 + α2)u′′
in0 + 2ṡ0u′

in1

]
= s̈0u′

in0 .

Replacing (47)2 in the above, after some algebra, we find

s̈0 = − 1
(u′

in0
)3

[
u

′′
in0(u2

in1 + u′2
in0α2) − 2uin1u′

in1u′
in0

]
. (49)

4 To avoid a too heavy notation here uin0 , uin1 and their derivatives represent the value of these functions evaluated in s0.
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Now let us go back to Eq. (46). Differentiating with respect to time we get

s̈ = − g′(s + αt)(ṡ + α)√
(α + β)2 + 4

[
g(s + αt) − αβ

] ,

or equivalently

s̈ = g′(s + αt)(ṡ + α)
2ṡ − (α + β) .

Therefore, recalling (47)2 and the definition of g, we find

s̈0 = g′(s0)(ṡ0 + α)
2ṡ0 − (α + β) =

(αu′′
in0 + u′

in1)(uin1 − αu′
in0)

2λ(2uin1 + (α + β)u′
in0

) . (50)

Eliminating s̈0 between (49) and (50) we find

(H6)
2uin1 u′

in1
u′

in0
−u

′′
in0

(u2
in1

+u
′2
in0

α2)
(u′

in0
)3 =

(αu′′
in0

+u′
in1

)(uin1 −αu′
in0

)
2λ(2uin1 +(α+β)u′

in0
) ,

which provides the condition that guarantees the continuity of the second derivatives of u across Σ .
We finally observe that if s satisfies (46) then conditions (H1), (H3) imply s ∈ C2[0, T ]. Therefore, we

can establish the following result on solutions to problem (P̃u):

Lemma 4.1. If T satisfies (21) and (H1)–(H6) hold, s is a solution to the initial value problem (43), and
u is defined by (37) then (u, s) is a classical solution to problem ( P̃u) in the time interval [0, T ]. Moreover,
s ∈ C2[0, T ], −α < ṡ < 0 and ṡ(0) = ṡ0 with ṡ0 defined by (20).

Classical results on ordinary differential equations together with conditions (H1), (H3) assure that problem
(Ps) has a unique solution s in the interval [0, T ]. Then, Lemma 4.1 gives the existence of local solutions
to (P̃u). Moreover, it enables us to assure that any solution to problem (P̃u) is given by a couple (u, s) as
in Lemma 4.1, provided T satisfies (21) and (H1)–(H6) hold. Finally, since this characterization of u and s

only involves data in problem (P̃u), uniqueness of solution to (Ps) implies uniqueness of the local solution
to (P̃u) in the time interval [0, T ]. Thus, we have the following

Theorem 4.1. If T satisfies (21) and (H1)–(H6) hold, then problem ( P̃c) has a unique local solution (c, s)
in the time interval [0, T ]. Moreover, c is given by (17) with u defined by (37), and s is the unique solution
to the Cauchy problem (Ps).

Observe that it follows from the above arguments that, under hypothesis of Theorem 4.1, any solution
(c, s) to problem (P̃c) is such that −α < ṡ.

4.3. Continuation of the solution: existence and uniqueness in the large

Let us set

T0 = 1 − s
(0)
0

α
, s

(0)
0 = s0, s(0)(t) = s(t),

where s is the free boundary in the time interval [0, T0]. Since s0 > 0, there are two possible situations:

(a1) s
(0)
0 (t) = 0 for some time t < T0,

(a2) s
(0)
0 (t) > 0 for all times t ∈ [0, T0].
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If (a1) holds the solid part is completely consumed in a finite time Tfin. From time Tfin on, our model is no
longer a free boundary problem and the evolution of u is described by the wave equation in the strip [0, 1].
If (a2) holds, then the solution can be extended to the interval [T0, T1] with

T1 = T0 + 1 − s
(1)
0

α
, s

(1)
0 = s(0)(T0) < s

(0)
0 .

The formal expression for u is obtained again through the D’Alembert formula extending the initial data in
the same odd fashion for x > 2 − s0 (see Remark 4.7). The equation for s thus remains the same for t > T0.
We denote the free boundary in the time interval [T0, T1] by s(1)(t). Again we distinguish between the case
in which s(1)(t) = 0 for some t ∈ (T0, T1] and the case in which s(1)(t) > 0 for all t ∈ (T0, T1]. Proceeding in
this way we can build the sequence

0 < Tj+1 = Tj + 1 − s
(j+1)
0

α
, s

(j+1)
0 < s

(j)
0 ,

which of course makes sense if s(j)(t) > 0 for all j (otherwise the solid part is totally consumed in a finite
time Tfin < T0). We have that

lim
j→+∞

Tj = +∞.

Indeed,

lim
j→+∞

Tj = lim
j→+∞

(
T0 +

j∑
k=0

(Tk+1 − Tk)
)

= T0 +
∞∑

k=0

1 − s
(k)
0

α
,

with
∞∑

k=0

1 − s
(k)
0

α
= +∞ since lim

k→∞

1 − s
(k)
0

α
≥ 1 − s0

α
> 0.

Therefore our model predicts one of the following situations:

(i) the marble is never completely consumed, being the evolution of its surface described by s and the
concentration of H+ ions described by c, with (c, s) the unique global solution to problem (P̃c),

(ii) the marble is completely consumed in a finite time Tfin > 0, being the system described by:

(a) the unique solution (c, s) to problem (P̃c) in the time interval [0, Tfin],
(b) the solution c of an initial–boundary value problem for the wave equation (P̃c)1 in the strip [0, 1]

and the time interval (Tfin, +∞) (s ≡ 0 from Tfin on).

We notice that in the second case (ii), only the first option (a) is physically relevant.

5. Simulations

In this section we simulate the behavior of the free boundary by solving numerically problem (Ps). We
begin by a simple case in which the solution can be determined analytically.

5.1. The simple case g = const

Suppose

uin0 = A(x − s0), uin1 = A

(
A

2λ
− β

)
,
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Fig. 4. Free boundary x = s(t) for g = const.

with A a positive constant. In this case g is constant and hence the free boundary x = s(t) is a line. It is
easy to show that conditions (H1), (H2) are automatically fulfilled. Taking the values

A = 4, λ = 1, α = 3, δ = 10−5, s0 = 0.25,

we find that also conditions (H3)–(H6) hold and the free boundary is

s(t) = s0 + ṡ0t,

with

ṡ0 = − 1
2λ

(A − λ − δ)+.

The plot of the free boundary x = s(t) and of the characteristic curve x + αt = s0 are shown in Fig. 4.
In this case the solid part of the domain vanishes in a finite time given by

Tfin = −s0

ṡ0
≈ 0.166 <

(1 − s0)
α

= 0.25.

5.2. The case of a non constant g

Assume that

uin0 = A(x − s0)(1 − x)3, uin1 = B(1 − x)3/2,

so that

u′
in0 = −A(1 − x)2(4x − 3s0 − 1), u′′

in0 = 6A(1 − x)(2x − s0 − 1).

Notice that hypothesis (H1), (H2) are satisfied. In this case (H5), (H6) are not fulfilled so that the function
u is continuous up to the second derivatives everywhere except on the characteristic Σ where the derivatives
of u experience a jump discontinuity.
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Fig. 5. Free boundary x = s(t) for non constant g.

Taking the values

A = 1, B = 3, λ = 1, α = 0.5, δ = 10−5, s0 = 0.4,

and solving the problem (Ps) we get the solution of Fig. 5. We notice that this solution satisfies −α < ṡ < 0,
in spite (H3), (H4) are not fulfilled.

In this case we observe that ṡ = 0 for t ⩾ 1.08, which means that the reaction ceases at time t = 1.08
and that the initial data are such that the solid slab is not completely worn away by the acid solution.

If we increase the value of A (which corresponds to increase the initial concentration of H+ ions), the
“asymptotic value” of s – i.e. the thickness of the slab when ṡ vanishes – becomes smaller, as shown in Fig. 6.
This is physically consistent since a more acid solution is expected to erode a larger part of the slab.

6. Conclusion

In this paper we present a mathematical model for the diffusive–reactive process between calcium
carbonate (CaCO3) and an aqueous solution containing sulphuric acid (H2SO4). We model the case of
a marble slab immersed in an acid solution with the reaction taking place on the contact surface between
the slab and the liquid. The system is described by the evolution of both the H+ ions concentration in
the liquid and the free boundary s where the reaction occurs. We assume the H+ ions diffuse according to
Cattaneo’s law and formulate the mathematical problem in a one dimensional geometry writing the molar
mass balance, the reaction kinetics and the net flux of H+ ions on the reacting surface. The problem turns
out to be a hyperbolic moving boundary problem for the telegraph equation in which the free boundary
represents the thickness of the slab that is consumed because of the reaction. Using typical values taken
from the literature, we show that the diffusive time scale is smaller than the reaction time scale, so that the
problem can be reduced to a free boundary problem for the wave equation. We also write representation
formulas for the H+ ions concentration and show that the evolution of the free boundary is given by a
nonlinear differential equation involving the initial data of the problem. Under appropriate hypotheses on
the data we prove existence and uniqueness in the large and we determine conditions that guarantee the
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Fig. 6. Free boundary x = s(t) for non constant g and A = 1, 2, 3, 4, 5.

regularity of the solution. Finally we perform some numerical simulations to illustrate the behavior of the
free boundary.
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