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A B S T R A C T

Different one-phase Stefan problems for a semi-infinite slab are considered, involving a moving phase change
material as well as temperature dependent thermal coefficients. Existence of at least one similarity solution is
proved imposing a Dirichlet, Neumann, Robin or radiative–convective boundary condition at the fixed face.
The velocity that arises in the convective term of the diffusion–convection equation is assumed to depend on
temperature and time. In each case, an equivalent ordinary differential problem is obtained giving rise to a
system of an integral equation coupled with a condition for the parameter that characterizes the free boundary,
which is solved through a double-fixed point analysis. Some solutions for particular thermal coefficients are
provided.
. Introduction

Stefan problems constitute a broad field of study since they arise in
ifferent areas of engineering, biology, geoscience and industry [1–4].
he classical one-phase Stefan problem models a phase-change thermal
rocess that aims to describe the temperature of the material as well as
he location of the interface that separate both phases. Mathematically
t consists on finding a solution to the heat-conduction equation in an
nknown region which has also to be determined, imposing an initial
ondition, boundary conditions, and the Stefan condition at the moving
nterface.

In many physical processes, the phase change material is allowed
o move when the phase change occurs. Recently, in [5] a Stefan
roblem which models the undergoing phase transition of a moving
aterial where the phase change and heat distribution in the medium

re affected from both the conduction and convection of heat was
onsidered.

The diffusion–convection equation has multiple applications, for
xample, to ground water hydrology, oil reservoir engineering and drug
ropagation in the arterial tissues. In [6] a one-phase Stefan problem
or the diffusion–convection equation with a particular temperature-
ependent thermal conductivity and a particular unidirectional speed
as studied. More articles where a convective term is involved in the
arabolic equation are [7–10].

In particular, in [10] a Stefan problem with variable thermal coef-
icients and moving phase change material was studied. It was consid-
red a thermal conductivity and a specific heat whose dependence on
he temperature was assumed to be linear.

∗ Corresponding author.
E-mail address: abriozzo@austral.edu.ar (A.C. Briozzo).

Motivated by [5,10], in this paper we consider a free boundary
problem in a semi-infinite domain 𝑥 > 0 for the nonlinear diffusion–
convection equation with a convective term that involves temperature-
dependent thermal coefficients.

The problem consists in finding the temperature 𝑇 = 𝑇 (𝑥, 𝑡) in the
liquid region and the free boundary 𝑥 = 𝑠(𝑡) such that:

𝜌(𝑇 )𝑐(𝑇 ) 𝜕𝑇
𝜕𝑡

= 𝜕
𝜕𝑥

(

𝑘(𝑇 ) 𝜕𝑇
𝜕𝑥

)

− 𝑣(𝑇 ) 𝜕𝑇
𝜕𝑥

, 0 < 𝑥 < 𝑠(𝑡), 𝑡 > 0, (1.1a)

𝑇 (0, 𝑡) = 𝑇 ∗, 𝑡 > 0, (1.1b)

𝑇 (𝑠(𝑡), 𝑡) = 𝑇𝑚, 𝑡 > 0, (1.1c)

𝑘 (𝑇 (𝑠(𝑡), 𝑡)) 𝜕𝑇
𝜕𝑥

(𝑠(𝑡), 𝑡) = −𝜌0𝓁𝑠̇(𝑡), 𝑡 > 0, (1.1d)

𝑠(0) = 0, (1.1e)

where 𝜌(𝑇 ), 𝑐(𝑇 ) and 𝑘(𝑇 ) are the mass density, the specific heat and
the thermal conductivity of the body, respectively defined as

𝜌(𝑇 )(𝑥, 𝑡) = 𝜌(𝑇 (𝑥, 𝑡)), 𝑐(𝑇 )(𝑥, 𝑡) = 𝑐(𝑇 (𝑥, 𝑡)), 𝑘(𝑇 )(𝑥, 𝑡) = 𝑘(𝑇 (𝑥, 𝑡)).

(1.2)

Some models involving temperature-dependent thermal coefficients
can be found in [11–17].

The presence of a convection term in Eq. (1.1a) represents the fact
that the phase change material is allowed to move with an unidirection-
ally speed 𝑣 = 𝑣(𝑇 ). Throughout this paper the unidirectional speed 𝑣
ttps://doi.org/10.1016/j.ijnonlinmec.2021.103732
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is given by

𝑣(𝑇 ) =
𝜇(𝑇 )
√

𝑡
(1.3)

with 𝜇(𝑇 )(𝑥, 𝑡) = 𝜇(𝑇 (𝑥, 𝑡)).
It should be noticed that in [6] it was considered that 𝑘(𝑇 , 𝑥) =

𝜌𝑐(1+𝑑𝑥)
(𝑎+𝑏𝑇 )2 and 𝑣(𝑇 ) = 𝜌𝑐𝑑

2(𝑎+𝑏𝑇 )2 , where 𝑐 is the specific heat and 𝑎, 𝑏, 𝑑
are positive constants. Due to this particular assumptions a parametric
representation of the solution of the similarity type was obtained.

We assume that 𝑇𝑚 is the phase change temperature and 𝑇 ∗ > 𝑇𝑚
is the temperature imposed at the fixed face 𝑥 = 0. Condition (1.1d)
represents the Stefan condition where 𝜌0 > 0 is a constant mass density
and 𝓁 > 0 is the latent heat of fusion per unit mass.

We will consider three more problems that arise replacing the
Dirichlet condition at the fixed face by other type of conditions.

On one hand we stablish the problem with a Neumann condition at
the fixed face, replacing (1.1b) by

𝑘(𝑇 (0, 𝑡)) 𝜕𝑇
𝜕𝑥

(0, 𝑡) = −
𝑞
√

𝑡
, 𝑡 > 0, (1.1b⋆)

where 𝑞 > 0 is a given constant and − 𝑞
√

𝑡
represents the prescribed flux

at 𝑥 = 0. Some bibliography imposing this kind of condition can be
found in [18–22]

On the other hand, we consider a problem governed by (1.1a) and
(1.1c)–(1.1e) where a Robin condition is imposed:

𝑘(𝑇 (0, 𝑡)) 𝜕𝑇
𝜕𝑥

(0, 𝑡) = ℎ
√

𝑡

[

𝑇 (0, 𝑡) − 𝑇 ∗] , 𝑡 > 0, (1.1b†)

being ℎ the coefficient that characterizes the heat transfer at the fixed
face and 𝑇 ∗ the bulk temperature applied at a neighbourhood of 𝑥 = 0
with 𝑇 ∗ > 𝑇 (0, 𝑡) > 𝑇𝑚 [23–27].

Finally we define the problem that arises replacing the Dirichlet
condition (1.1b) by a radiative and convective condition

𝑘(𝑇 (0, 𝑡)) 𝜕𝑇
𝜕𝑥

(0, 𝑡) = ℎ
√

𝑡

[

𝑇 (0, 𝑡) − 𝑇 ∗] + 𝜎𝜖
√

𝑡

[

𝑇 4(0, 𝑡) − 𝑇 ∗4
]

, 𝑡 > 0,

(1.1b††)

where 𝜎 is the Stefan–Boltzmann constant and 𝜖 > 0 is the coefficient
that characterizes the radiation shape factor, assuming 𝑇 ∗ > 𝑇 (0, 𝑡)
> 𝑇𝑚. Notice that the first term of the r.h.s of condition (1.1b††)
coincides to the r.h.s of the Robin condition (1.1b†). This kind of
boundary condition also appears in [28–31]

The aim of this paper is to provide, following the methodology
of [13,19,24], sufficient conditions on data in order to guarantee
existence of at least one solution of a similarity type to four different
problems that differ from each other in the boundary condition imposed
at the fixed face: temperature, flux, convective or radiative–convective
condition.

The manuscript is organized as follows. In Section 2 we analyse the
existence of at least one similarity solution to the problem governed by
(1.1a)–(1.1e) where a constant temperature is imposed at the fixed face.
Introducing the similarity variable, an equivalent ordinary differential
problem is obtained, giving rise to nonlinear integral equation coupled
with a condition for the parameter that characterizes the free boundary.
This system is solved by a double fixed point analysis. In a similar
way, in Section 3 we stablish the existence of solution to the Stefan
problem that arises when we replace the Dirichlet condition (1.1b) by
a Neumann one (1.1b⋆). Section 4 is devoted to the study the problem
where a Robin condition (1.1b†) is imposed at 𝑥 = 0. Moreover, we
analyse the convergence of the solution when ℎ → +∞, and recover for
𝑣 = 0 a result given in [24]. Finally, in Section 5 we generalize Section 4
by showing that there exists at least one solution to the problem that
arises when considering a radiative–convective condition (1.1b††) at
the fixed face.
2

In the last section we present different solutions obtained for some
particular cases. On one hand, we consider constant thermal coeffi-
cients and a velocity given by 𝑣(𝑇 ) = 𝜇(𝑇 )

√

𝑡
with

(𝑇 ) = 𝜌0𝑐0
√

𝛼0 Pe, (1.4)

here Pe denotes the Peclet number. The solutions given by [5] for
irichlet and Neumann condition at fixed face are recovered. On the
ther hand, we analyse the particular case when the thermal coeffi-
ients involved are linear functions of the temperature as in [10].

. Dirichlet Condition

The following section is devoted to the analysis of the Stefan prob-
em given by (1.1a)–(1.1e).

Let us define 𝒞 = 𝐶0(R+
0 ×R+) ∩𝐿∞(R+

0 ×R+). We denote the norm
of 𝑇 ∈  by

‖𝑇 ‖ = max
(𝑥,𝑡)∈R+

0 ×R
+
|𝑇 (𝑥, 𝑡)|.

We will assume:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

(a) There exists 𝑘𝑚 > 0 and 𝑘𝑀 > 0 such that
𝑘𝑚 ≤ 𝑘(𝑇 (𝑥, 𝑡)) ≤ 𝑘𝑀 , ∀ 𝑇 ∈ 𝒞 , ∀(𝑥, 𝑡) ∈ R+

0 × R+.
(b) There exists 𝑘̃ > 0 such that

|𝑘(𝑇1(𝑥, 𝑡)) − 𝑘(𝑇2(𝑥, 𝑡))| ≤ 𝑘̃ ‖𝑇1 − 𝑇2‖,
∀ 𝑇1, 𝑇2 ∈ 𝒞 , ∀(𝑥, 𝑡) ∈ R+

0 × R+.

(2.1)

⎧

⎪

⎪

⎨

⎪

⎪

⎩

(a) There exists 𝛾𝑚 > 0 and 𝛾𝑀 > 0 such that
𝛾𝑚 ≤ 𝜌(𝑇 (𝑥, 𝑡))𝑐(𝑇 (𝑥, 𝑡)) ≤ 𝛾𝑀 , ∀ 𝑇 ∈ 𝒞 , ∀(𝑥, 𝑡) ∈ R+

0 × R+.
(b) There exists 𝛾̃ > 0 such that

|𝜌(𝑇1(𝑥, 𝑡))𝑐(𝑇1(𝑥, 𝑡)) − 𝜌(𝑇2(𝑥, 𝑡))𝑐(𝑇2(𝑥, 𝑡))| ≤ 𝛾̃‖𝑇1 − 𝑇2‖,
∀ 𝑇1, 𝑇2 ∈ 𝒞 , ∀(𝑥, 𝑡) ∈ R+

0 × R+.

(2.2)

⎧

⎪

⎪

⎨

⎪

⎪

⎩

(a) There exists 𝜈𝑚 > 0 and 𝜈𝑀 > 0 such that
𝜈𝑚 ≤ 𝜇(𝑇 (𝑥, 𝑡)) ≤ 𝜈𝑀 , ∀ 𝑇 ∈ 𝒞 , ∀(𝑥, 𝑡) ∈ R+

0 × R+.
(b) There exists 𝜈 > 0 such that

|𝜇(𝑇1(𝑥, 𝑡)) − 𝜇(𝑇2(𝑥, 𝑡))| ≤ 𝜈 ‖𝑇1 − 𝑇2‖,
∀ 𝑇1, 𝑇2 ∈ 𝒞 , ∀(𝑥, 𝑡) ∈ R+

0 × R+.

(2.3)

If we introduce the following change of variables:

𝜃 = 𝑇 − 𝑇 ∗

𝑇𝑚 − 𝑇 ∗ > 0, (2.4)

e have
𝜕𝑇
𝜕𝑡

= (𝑇𝑚 − 𝑇 ∗) 𝜕𝜃
𝜕𝑡

, 𝜕𝑇
𝜕𝑥

= (𝑇𝑚 − 𝑇 ∗) 𝜕𝜃
𝜕𝑥

,

𝜕2𝑇
𝜕𝑥2

= (𝑇𝑚 − 𝑇 ∗) 𝜕
2𝜃

𝜕𝑥2
.

Taking into account that 𝑇 = 𝑇 (𝜃) = (𝑇𝑚 − 𝑇 ∗)𝜃 + 𝑇 ∗ we can define the
following functions:

𝐿(𝜃) = 𝐿(𝑇 (𝜃)), 𝑁(𝜃) = 𝑁(𝑇 (𝜃)), 𝑣(𝜃) =
𝑣(𝑇 (𝜃))
𝜌0𝑐0

(2.5)

here

(𝑇 ) =
𝑘(𝑇 )
𝑘0

, 𝑁(𝑇 ) =
𝜌(𝑇 )𝑐(𝑇 )
𝜌0𝑐0

(2.6)

and 𝑘0, 𝜌0, 𝑐0 and 𝛼0 =
𝑘0
𝜌0𝑐0

are the reference thermal conductivity,
mass density, specific heat and thermal diffusivity, respectively.
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Therefore, the problem (1.1a)–(1.1e) becomes:

𝑁(𝜃) 𝜕𝜃
𝜕𝑡

= 𝛼0
𝜕
𝜕𝑥

(

𝐿(𝜃) 𝜕𝜃
𝜕𝑥

)

− 𝑣(𝜃) 𝜕𝜃
𝜕𝑥

, 0 < 𝑥 < 𝑠(𝑡), 𝑡 > 0, (2.7a)

𝜃(0, 𝑡) = 0, 𝑡 > 0, (2.7b)

𝜃(𝑠(𝑡), 𝑡) = 1, 𝑡 > 0, (2.7c)

𝐿(𝜃(𝑠(𝑡), 𝑡)) 𝜕𝜃
𝜕𝑥

(𝑠(𝑡), 𝑡) =
𝑠̇(𝑡)
𝛼0Ste , 𝑡 > 0, (2.7d)

𝑠(0) = 0, (2.7e)

where Ste =
(𝑇 ∗ − 𝑇𝑚)𝑐0

𝓁
> 0 is the Stefan number.

If we introduce the similarity variable 𝜉 = 𝑥
2
√

𝛼0𝑡
and assume a

similarity type solution

𝜃(𝑥, 𝑡) = 𝑓 (𝜉), (2.8)

then conditions (2.7c)–(2.7d) yield a free boundary given by

𝑠(𝑡) = 2𝜆
√

𝛼0𝑡. (2.9)

where 𝜆 > 0 is a constant to be determined.
Let us define

𝐿∗(𝑓 ) = 𝐿(𝜃), 𝑁∗(𝑓 ) = 𝑁(𝜃), 𝑣∗(𝑓 ) = 𝑣(𝜃). (2.10)

Then, (1.1a) turns into the following ordinary differential equation

(

𝐿∗(𝑓 )𝑓 ′(𝜉)
)′

+ 2𝑁∗(𝑓 ) 𝜉 𝑓 ′(𝜉) −
2
√

𝑡
√

𝛼0
𝑣∗(𝑓 ) 𝑓 ′(𝜉) = 0, 0 < 𝜉 < 𝜆.

(2.11)

Taking into account that the unidirectional speed 𝑣 is given by (1.3),
and from (2.5) and (2.10), we define

𝜇∗(𝑓 ) =
𝑣∗(𝑓 )

√

𝑡
√

𝛼0
=

𝜇(𝑇 )
√

𝜌0𝑐0𝑘0
. (2.12)

Therefore we reduce the problem (2.7a)–(2.7e) into an ordinary differ-
ential problem defined by:
(

𝐿∗(𝑓 )𝑓 ′(𝜉)
)′

+ 2𝑓 ′(𝜉)
(

𝑁∗(𝑓 )𝜉 − 𝜇∗(𝑓 )
)

= 0, 0 < 𝜉 < 𝜆, (2.13a)

𝑓 (0) = 0, (2.13b)

𝑓 (𝜆) = 1, (2.13c)

𝐿∗(𝑓 (𝜆))𝑓 ′(𝜆) = 2𝜆
Ste . (2.13d)

Let us define

(𝜉) = 𝐿∗(𝑓 (𝜉))𝑓 ′(𝜉). (2.14)

Then (2.13a) turns equivalent to

𝑔′(𝜉) + 2𝑔(𝜉)
(

𝜉
𝑁∗(𝑓 )
𝐿∗(𝑓 )

−
𝜇∗(𝑓 )
𝐿∗(𝑓 )

)

= 0,

whose solution is given by

𝑔(𝜉) = 𝐴1𝐸(𝑓 )(𝜉)

here 𝐴1 is a constant and

(𝑓 )(𝑧) =
𝑈 (𝑓 )(𝑧)
𝐼(𝑓 )(𝑧)

, (2.15)

with

𝑈 (𝑓 )(𝑧) = exp
(

2∫

𝑧

0

𝜇∗(𝑓 )(𝜎)
𝐿∗(𝑓 )(𝜎)

d𝜎
)

,

𝐼(𝑓 )(𝑧) = exp
(

2∫

𝑧

0

𝜎𝑁∗(𝑓 )(𝜎)
𝐿∗(𝑓 )(𝜎)

d𝜎
)

.
(2.16)

From (2.14) we obtain that

(𝜉) = 𝐴 𝛷(𝑓 )(𝜉) + 𝐴
1 2

3

where

𝛷(𝑓 )(𝜉) = ∫

𝜉

0

𝐸(𝑓 )(𝑧)
𝐿∗(𝑓 )(𝑧)

d𝑧. (2.17)

From (2.13b)–(2.13c) we get that 𝑓 must satisfy the following
integral equation

𝑓 (𝜉) =
𝛷(𝑓 )(𝜉)
𝛷(𝑓 )(𝜆)

, 0 ≤ 𝜉 ≤ 𝜆. (2.18)

Condition (2.13d) leads to the following condition for 𝜆:

Ste
2

𝐸(𝑓 )(𝜆)
𝛷(𝑓 )(𝜆)

= 𝜆. (2.19)

In order to analyse the existence of solution to the problem (2.18)–
(2.19), let us study in the first instance, the integral equation (2.18)
assuming that 𝜆 > 0 is a fixed given constant.

Consider the space 𝐶0[0, 𝜆] of continuous real-valued functions de-
fined on [0, 𝜆] endowed with the supremum norm

‖𝑓‖ = max
𝜉∈[0,𝜆]

|𝑓 (𝜉)|. (2.20)

et us define the operator  on 𝐶0[0, 𝜆] given by the r.h.s of Eq. (2.18):

(𝑓 )(𝜉) =
𝛷(𝑓 )(𝜉)
𝛷(𝑓 )(𝜆)

. (2.21)

Then, as (𝐶0[0, 𝜆], ‖ ⋅ ‖) is a Banach space we use the fixed point
Banach theorem to prove that for each 𝜆 > 0 there exists a unique 𝑓
such that

(𝑓 )(𝜉) = 𝑓 (𝜉), 0 ≤ 𝜉 ≤ 𝜆 (2.22)

hich is the solution to (2.18).
From the assumptions (2.1), (2.2) and (2.3) we obtain that 𝐿∗, 𝑁∗

nd 𝜇∗ are bounded and Lipschitz continuous. That is to say

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

𝐿∗ is such that:
(a) There exists 𝐿𝑚 = 𝑘𝑚

𝑘0
> 0 and 𝐿𝑀 = 𝑘𝑀

𝑘0
> 0 such that

𝐿𝑚 ≤ 𝐿∗(𝑓 (𝜉)) ≤ 𝐿𝑀 , ∀𝑓 ∈ 𝐶0(R+
0 ) ∩ 𝐿∞(R+

0 ), ∀𝜉 ∈ R+
0 .

(b) There exists 𝐿̃ = 𝑘̃(𝑇 ∗−𝑇𝑚)
𝑘0

> 0 such that
|𝐿∗(𝑓1(𝜉)) − 𝐿∗(𝑓2(𝜉))| ≤ 𝐿̃‖𝑓1 − 𝑓2‖,
∀𝑓1, 𝑓2 ∈ 𝐶0(R+

0 ) ∩ 𝐿∞(R+
0 ) ∀𝜉 ∈ R+

0 .

(2.23)

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝑁∗ is such that:
(a) There exists 𝑁𝑚 = 𝛾𝑚

𝜌0𝑐0
> 0 and 𝑁𝑀 = 𝛾𝑀

𝜌0𝑐0
> 0 such that

𝑁𝑚 ≤ 𝑁∗(𝑓 (𝜉)) ≤ 𝑁𝑀 , ∀𝑓 ∈ 𝐶0(R+
0 ) ∩ 𝐿∞(R+

0 ), 𝜉 ∈ R+
0 .

(b) There exists 𝑁̃ = 𝛾̃(𝑇 ∗−𝑇𝑚)
𝜌0𝑐0

> 0 such that
|𝑁∗(𝑓1(𝜉)) −𝑁∗(𝑓2(𝜉))| ≤ 𝑁̃‖𝑓1 − 𝑓2‖,
∀𝑓1, 𝑓2 ∈ 𝐶0(R+

0 ) ∩ 𝐿∞(R+
0 ), 𝜉 ∈ R+

0 .

(2.24)

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

𝜇∗ is such that:
(a) There exists 𝜇𝑚 = 𝜈𝑚

√

𝜌0𝑐0𝑘0
> 0 and 𝜇𝑀 = 𝜈𝑀

√

𝜌0𝑐0𝑘0
> 0 such that

𝜇𝑚 ≤ 𝜇∗(𝑓 (𝜉)) ≤ 𝜇𝑀 , ∀𝑓 ∈ 𝐶0(R+
0 ) ∩ 𝐿∞(R+

0 ), 𝜉 ∈ R+
0 .

(b) There exists 𝜇 = 𝜈(𝑇 ∗−𝑇𝑚)
√

𝜌0𝑐0𝑘0
> 0 such that

|𝜇∗(𝑓1(𝜉)) − 𝜇∗(𝑓2(𝜉))| ≤ 𝜇 ‖𝑓1 − 𝑓2‖,
∀𝑓1, 𝑓2 ∈ 𝐶0(R+

0 ) ∩ 𝐿∞(R+
0 ), 𝜉 ∈ R+

0 .

(2.25)

Let us present now some preliminary results that will allow us to
rove the existence and uniqueness of solution to Eq. (2.22).
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
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d
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Lemma 2.1. For all 𝑧 ∈ [0, 𝜆] the following bounds hold

exp
(

2
𝜇𝑚
𝐿𝑀

𝑧
)

≤ 𝑈 (𝑓 )(𝑧) ≤ exp
(

2
𝜇𝑀
𝐿𝑚

𝑧
)

, (2.26)

exp
(

𝑁𝑚
𝐿𝑀

𝑧2
)

≤ 𝐼(𝑓 )(𝑧) ≤ exp
(

𝑁𝑀
𝐿𝑚

𝑧2
)

, (2.27)

exp
(

−𝑁𝑀
𝐿𝑚

𝑧2
)

≤
exp

(

2
𝜇𝑚
𝐿𝑀

𝑧
)

exp
(

𝑁𝑀
𝐿𝑚

𝑧2
) ≤ 𝐸(𝑓 )(𝑧) ≤

exp
(

2
𝜇𝑀
𝐿𝑚

𝑧
)

exp
(

𝑁𝑚
𝐿𝑀

𝑧2
) ≤ exp

(

2 𝜇𝑀
𝐿𝑚

𝑧
)

,

(2.28)

𝑧
𝐿𝑀

exp
(

−𝑁𝑀
𝐿𝑚

𝑧2
)

≤
√

𝜋
2

√

𝐿𝑚
𝐿𝑀

√

𝑁𝑀
erf

(√

𝑁𝑀
𝐿𝑚

𝑧
)

≤ 𝛷(𝑓 )(𝑧) ≤ 1
2𝜇𝑀

exp
(

2 𝜇𝑀
𝐿𝑚

𝑧
)

. (2.29)

Proof. The proof follows immediately from the definitions of 𝑈, 𝐼, 𝐸,𝛷
using assumptions (2.23)–(2.25). □

Lemma 2.2. Given 𝜆 > 0, for all 𝑧 ∈ [0, 𝜆] and 𝑓1, 𝑓2 ∈ 𝐶0[0, 𝜆] the
following inequalities hold

|𝑈 (𝑓1)(𝑧) − 𝑈 (𝑓2)(𝑧)| ≤ 𝐷1(𝑧)‖𝑓1 − 𝑓2‖, (2.30)

|𝐼(𝑓1)(𝑧) − 𝐼(𝑓2)(𝑧)| ≤ 𝐷2(𝑧)‖𝑓1 − 𝑓2‖, (2.31)

|𝐸(𝑓1)(𝑧) − 𝐸(𝑓2)(𝑧)| ≤ 𝐷3(𝑧)‖𝑓1 − 𝑓2‖, (2.32)

|𝛷(𝑓1)(𝑧) −𝛷(𝑓2)(𝑧)| ≤ 𝜆 𝐷4(𝜆)‖𝑓1 − 𝑓2‖, (2.33)

where

𝐷1(𝑧) =
2 exp

(

2𝜇𝑀
𝐿𝑚

)

𝐿2
𝑚

𝑧
(

𝜇𝑀 𝐿̃ + 𝐿𝑚𝜇
)

,

𝐷2(𝑧) =
exp

(

𝑁𝑀
𝐿𝑚

𝑧2
)

𝐿2
𝑚

𝑧2
(

𝑁𝑀 𝐿̃ + 𝐿𝑚𝑁̃
)

,

𝐷3(𝑧) = exp
(

𝑁𝑀
𝐿𝑚

𝑧2
)

𝐷1(𝑧) + exp
(

2
𝜇𝑀
𝐿𝑚

𝑧
)

𝐷2(𝑧),

𝐷4(𝜆) =
1
𝐿2
𝑚

(

𝐿̃ exp
(

2𝜆 𝜇𝑀
𝐿𝑚

)

+ 𝐿𝑚𝐷3(𝜆)
)

.

(2.34)

Proof. Applying the mean value theorem and taking into account
assumptions (2.23)–(2.25) we obtain that

|𝑈 (𝑓1)(𝑧) − 𝑈 (𝑓2)(𝑧)| ≤ 2 exp
(

2
𝜇𝑀

𝐿𝑚
𝑧
)

∫

𝑧

0

|

|

|

|

𝜇∗(𝑓1)(𝜎)
𝐿∗(𝑓1)(𝜎)

−
𝜇∗(𝑓2)(𝜎)
𝐿∗(𝑓2)(𝜎)

|

|

|

|

d𝜎

≤ 2 exp
(

2
𝜇𝑀

𝐿𝑚
𝑧
){

∫

𝑧

0

|

|

|

𝜇∗(𝑓1)(𝜎)
𝐿∗(𝑓1)(𝜎)𝐿∗(𝑓2)(𝜎)

|

|

|

|

|

𝐿∗(𝑓2)(𝜎) − 𝐿∗(𝑓1)(𝜎)|| d𝜎

+ ∫

𝑧

0

|

|

|

1
𝐿∗(𝑓2)(𝜎)

|

|

|

|

|

𝜇∗(𝑓2)(𝜎) − 𝜇∗(𝑓1)(𝜎)|| d𝜎
}

≤ 2 exp
(

2
𝜇𝑀

𝐿𝑚
𝑧
)

𝑧

(

𝜇𝑀 𝐿̃
𝐿2

𝑚
‖𝑓1 − 𝑓2‖ +

𝜇
𝐿𝑚

‖𝑓1 − 𝑓2‖

)

≤ 𝐷1(𝑧)‖𝑓1 − 𝑓2‖.

In a similar way, by using the mean value theorem again we get

|𝐼(𝑓1)(𝑧) − 𝐼(𝑓2)(𝑧)| ≤ 2 exp
(

𝑁𝑀

𝐿𝑚
𝑧2
)

∫

𝑧

0
𝜎
|

|

|

|

𝑁∗(𝑓1)(𝜎)
𝐿∗(𝑓1)(𝜎)

−
𝑁∗(𝑓2)(𝜎)
𝐿∗(𝑓2)(𝜎)

|

|

|

|

d𝜎

≤ 2 exp
(

𝑁𝑀

𝐿𝑚
𝑧2
){

∫

𝑧

0
𝜎 |

|

|

𝑁∗(𝑓1)(𝜎)
𝐿∗(𝑓1)(𝜎)𝐿∗(𝑓2)(𝜎)

|

|

|

|

|

𝐿∗(𝑓2)(𝜎) − 𝐿∗(𝑓1)(𝜎)|| d𝜎

+ ∫

𝑧

0
𝜎 |

|

|

1
𝐿∗(𝑓2)(𝜎)

|

|

|

|

|

𝑁∗(𝑓2)(𝜎) −𝑁∗(𝑓1)(𝜎)|| d𝜎
}

≤ 2 exp
(

𝑁𝑀

𝐿𝑚
𝑧2
)

𝑧2

2

(

𝑁𝑀 𝐿̃
𝐿2

𝑚
‖𝑓1 − 𝑓2‖ +

𝑁̃
𝐿𝑚

‖𝑓1 − 𝑓2‖

)

≤ 𝐷2(𝑧)‖𝑓1 − 𝑓2‖.

Taking into account that 𝐸 defined by (2.15) depends on 𝑈 and 𝐼
we use (2.26), (2.27) and the properties (2.30) and (2.31) that we have
just proved in order to get the inequality (2.32).

|𝐸(𝑓1)(𝑧) − 𝐸(𝑓2)(𝑧)| ≤
1

|𝐼(𝑓1)(𝑧)||𝐼(𝑓2)(𝑧)|
|

|

𝑈 (𝑓1)(𝑧)𝐼(𝑓2)(𝑧) − 𝐼(𝑓1)(𝑧)𝑈 (𝑓2)(𝑧)||

≤ exp
(

−2 𝑁𝑚 𝑧2
){

|𝑈 (𝑓 )(𝑧)||𝐼(𝑓 )(𝑧) − 𝐼(𝑓 )(𝑧)|

𝐿𝑀

1 2 1 e

4

+ |𝐼(𝑓1)(𝑧)||𝑈 (𝑓1)(𝑧) − 𝑈 (𝑓2)(𝑧)|
}

≤ exp
(

2 𝜇𝑀
𝐿𝑚

𝑧
)

𝐷2(𝑧)‖𝑓1 − 𝑓2‖

+ exp
(

𝑁𝑀

𝐿𝑚
𝑧2
)

𝐷1(𝑧)‖𝑓1 − 𝑓2‖ ≤ 𝐷3(𝑧)‖𝑓1 − 𝑓2‖.

Finally, by virtue of the definition (2.17) of 𝛷 and inequalities (2.28)
and (2.32) we obtain

|𝛷(𝑓1)(𝑧) −𝛷(𝑓2)(𝑧)| ≤ ∫

𝑧

0

{

|𝐸(𝑓1)(𝜂)|
|𝐿∗(𝑓1)(𝜂)𝐿∗(𝑓2)(𝜂)|

|𝐿∗(𝑓2)(𝜂) − 𝐿∗(𝑓1)(𝜂)|

+ 1
|𝐿∗(𝑓2)(𝜂)|

|𝐸(𝑓1)(𝜂) − 𝐸(𝑓2)(𝜂)|
}

d𝜂

≤ ∫

𝑧

0

⎧

⎪

⎨

⎪

⎩

exp
(

2
𝜇𝑀
𝐿𝑚

𝜂
)

𝐿2
𝑚

𝐿̃‖𝑓1 − 𝑓2‖ +
1
𝐿𝑚

𝐷3(𝜂)‖𝑓1 − 𝑓2‖

⎫

⎪

⎬

⎪

⎭

d𝜂

≤ ∫

𝜆

0

⎧

⎪

⎨

⎪

⎩

exp
(

2
𝜇𝑀
𝐿𝑚

𝜂
)

𝐿2
𝑚

𝐿̃‖𝑓1 − 𝑓2‖ +
1
𝐿𝑚

𝐷3(𝜂)‖𝑓1 − 𝑓2‖

⎫

⎪

⎬

⎪

⎭

d𝑧

≤ 𝜆
⎛

⎜

⎜

⎝

exp
(

2
𝜇𝑀
𝐿𝑚

𝜆
)

𝐿2
𝑚

𝐿̃ + 𝐷3(𝜆)
𝐿𝑚

⎞

⎟

⎟

⎠

‖𝑓1 − 𝑓2‖ = 𝜆 𝐷4(𝜆)‖𝑓1 − 𝑓2‖. □

We are able now to state the following theorem

Theorem 2.3. Suppose that (2.1)–(2.3) hold and

2𝐿𝑀 𝐿̃
𝐿2
𝑚

< 1. (2.35)

If 0 < 𝜆 < 𝜆 where 𝜆 > 0 is defined as the unique solution to (𝑧) = 1 with

(𝑧) ∶= 2𝐷4(𝑧)𝐿𝑀 exp
(

𝑁𝑀
𝐿𝑚

𝑧2
)

, (2.36)

then there exists a unique solution 𝑓 ∈ 𝐶0[0, 𝜆] for the integral equation
2.18), i.e. (2.22).

roof. As Eq. (2.18) is equivalent to (2.22), we will show that  given
y (2.21) is a contracting self-map of 𝐶0[0, 𝜆].

On one hand, notice that for each 𝜆 > 0, taking into account the
efinition of  and the hypothesis on 𝐿∗, 𝑁∗ and 𝜇∗ we can easily
heck that  maps 𝐶0[0, 𝜆] onto itself. On the other hand, let 𝑓1, 𝑓2 ∈
0[0, 𝜆], from (2.29) and (2.33), for each 0 < 𝜉 < 𝜆 we get

(𝑓1)(𝜉) −(𝑓2)(𝜉)| ≤
|𝛷(𝑓1)(𝜉)|

|𝛷(𝑓1)(𝜆)||𝛷(𝑓2)(𝜆)|
|𝛷(𝑓2)(𝜆) −𝛷(𝑓1)(𝜆)|

+ 1
|𝛷(𝑓2)(𝜆)|

|𝛷(𝑓1)(𝜉) −𝛷(𝑓2)(𝜉)|

≤ 1
|𝛷(𝑓2)(𝜆)|

(

|𝛷(𝑓2)(𝜆) −𝛷(𝑓1)(𝜆)| + |𝛷(𝑓2)(𝜉) −𝛷(𝑓1)(𝜉)|
)

≤
𝐿𝑀
𝜆

exp
(

𝑁𝑀
𝐿𝑚

𝜆2
)

2𝜆𝐷4(𝜆)‖𝑓1 − 𝑓2‖.

Therefore we obtain

‖(𝑓1) −(𝑓2)‖ ≤ (𝜆)‖𝑓1 − 𝑓2‖,

ith  defined by (2.36). Notice that  satisfies

(0) =
2𝐿𝑀 𝐿̃
𝐿2
𝑚

, (+∞) = +∞,  ′(𝑧) > 0, ∀𝑧 > 0.

nder the assumption (2.35) we deduce that there exists a unique 𝜆 > 0
such that (𝜆) = 1. Moreover but most significantly we get

(𝑧) < 1, ∀ 0 < 𝑧 < 𝜆 and (𝑧) > 1, ∀ 𝑧 > 𝜆.

In conclusion, if 𝜆 is such that 0 < 𝜆 < 𝜆 then (𝜆) < 1, and so 
ecomes a contraction mapping. By the fixed point Banach theorem we
an say that there exists a unique solution 𝑓 ∈ 𝐶0[0, 𝜆] to the integral
quation (2.22), i.e. to the integral equation (2.18). □
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Remark 2.4. The solution 𝑓 of (2.18) depends implicitly on the
ositive number 𝜆. This means that 𝑓 (𝜉) = 𝑓𝜆(𝜉) = 𝑓 (𝜉, 𝜆), ∀ 0 < 𝜉 < 𝜆.

So far, we have proved, for a fixed 0 < 𝜆 < 𝜆, the existence of a
nique solution to Eq. (2.18), which will be referred as 𝑓𝜆(𝜉) in view
f the dependence outlined in the prior remark.

It remains to analyse the existence of a solution (𝑓𝜆, 𝜆) to the system
2.18)–(2.19). So we will focus now on condition (2.19).

Let us define the function (𝜆) = (𝑓𝜆, 𝜆) as

(𝜆) ∶= Ste
2

𝐸(𝑓𝜆)(𝜆)
𝛷(𝑓𝜆)(𝜆)

, 0 < 𝜆 < 𝜆. (2.37)

Then equation (2.19) is equivalent to

(𝜆) = 𝜆, 0 < 𝜆 < 𝜆. (2.38)

The study of Eq. (2.38) requires the following results:

Lemma 2.5. Assume that (2.1)–(2.3) and (2.35) hold. Then for all
𝜆 ∈ (0, 𝜆) we have that

1(𝜆) ≤ (𝜆) ≤ 2(𝜆) (2.39)

where 1 and 2 are functions defined by

1(𝜆) = Ste 𝜇𝑀 exp
(

−2𝜆 𝜇𝑀
𝐿𝑚

− 2𝜆2 𝑁𝑀
𝐿𝑚

)

, 𝜆 > 0

2(𝜆) =
Ste
√

𝜋

√

𝑁𝑀
√

𝐿𝑚
𝐿𝑀

exp
(

2𝜆 𝜇𝑀
𝐿𝑚

)

erf
(√

𝑁𝑀
𝐿𝑚

𝜆
)
, 𝜆 > 0, (2.40)

that satisfy the following properties

1(0) = Ste, 𝜇𝑀 > 0  ′
1(𝜆) < 0, ∀𝜆 > 0,

2(0) = +∞, 𝑉 ′
2 (𝜆) < 0, ∀𝜆 > 0.

(2.41)

Proof. Inequality (2.39) arises immediately from (2.28) and (2.29).
The properties for 1 and 2 can be easily checked by their own
definitions. □

Lemma 2.6. If

2(𝜆) < 𝜆, (2.42)

then, there exists a unique solution 𝜆1 < 𝜆 to the equation

1(𝜆) = 𝜆, 𝜆 > 0, (2.43)

and there exists a unique solution 𝜆1 < 𝜆2 < 𝜆 to the equation

2(𝜆) = 𝜆, 𝜆 > 0. (2.44)

Proof. The proof is straightforward taking into account the properties
of 1 and 2 presented in Lemma 2.5. □

emark 2.7. Taking into account the definition of 2 and Ste, assump-
ion (2.42) is equivalent to the following inequality for the latent heat

>
𝑐0(𝑇 ∗ − 𝑇𝑚)

√

𝜋

√

𝑁𝑀
√

𝐿𝑚
𝐿𝑀

exp
(

2𝜆 𝜇𝑀
𝐿𝑚

)

erf
(√

𝑁𝑀
𝐿𝑚

𝜆
)

(2.45)

Theorem 2.8. Assume that (2.1)–(2.3), (2.35) and (2.45) hold.
onsider 𝜆1 and 𝜆2 given by (2.43) and (2.44), respectively. Then, there
xists at least one solution 𝜆 ∈ (𝜆1, 𝜆2) to Eq. (2.38).

roof. Under the hypothesis of Lemma 2.5, if (2.45) holds, we have
hat for each 𝜆1 ≤ 𝜆 ≤ 𝜆2 < 𝜆 the inequality (2.39) holds and
(𝜆) < 1. As  is a continuous function we obtain that there exists
t least one solution 𝜆 to the equation (𝜆) = 𝜆 that belongs to the

interval (𝜆 , 𝜆 ). □
1 2 w

5

We have found sufficient conditions that guarantee the existence of
at least one solution (𝑓𝜆, 𝜆) to the problem (2.18)–(2.19). Let us return
he original problem (1.1a)–(1.1e).

From the prior analysis, and taking into account that condition
2.35) can be rewritten as

2𝑘𝑀 𝑘̃(𝑇 ∗ − 𝑇𝑚)
𝑘2𝑚

< 1, (2.46)

we are able to state the main result of this section.

Theorem 2.9. Assume that 𝑘, 𝜌, 𝑐, 𝓁 and 𝑣 are such that (2.1), (2.2),
(2.3), (2.45), Hipotesis-Epsilon-Temp hold. Then, there exists at least one
solution to the Stefan problem (1.1a)–(1.1e), where the free boundary is
given by

𝑠(𝑡) = 2𝜆
√

𝛼0𝑡, 𝑡 > 0, (2.47)

ith 𝜆 defined by Theorem 2.8, and the temperature is given by

(𝑥, 𝑡) = (𝑇𝑚 − 𝑇 ∗)𝑓𝜆(𝜉) + 𝑇 ∗, 0 ≤ 𝜉 ≤ 𝜆 (2.48)

eing 𝜉 = 𝑥
2
√

𝛼0𝑡
the similarity variable and 𝑓𝜆 the unique solution of the

integral equation (2.18) which was established in Theorem 2.3.

3. Neumann Condition

In this section we will study the Stefan problem that arises when we
consider a Neumann condition at the fixed face.

Let us notice that in case we consider the Neumann condition
(1.1b⋆), instead of the Dirichlet condition (1.1b), after the change of
variables

𝜃 =
𝑇 − 𝑇𝑚
𝑇𝑚

(𝑇 (𝜃) = 𝑇𝑚𝜃 + 𝑇𝑚) (3.1)

he problem governed by (1.1a), (1.1b⋆), (1.1c)–(1.1e) becomes

𝑁(𝜃) 𝜕𝜃
𝜕𝑡

= 𝛼0
𝜕
𝜕𝑥

(

𝐿(𝜃) 𝜕𝜃
𝜕𝑥

)

− 𝑣(𝜃) 𝜕𝜃
𝜕𝑥

, 0 < 𝑥 < 𝑠(𝑡), 𝑡 > 0, (3.2a)

𝐿(𝜃(0, 𝑡)) 𝜕𝜃
𝜕𝑥

(0, 𝑡) =
−𝑞

𝑘0𝑇𝑚
√

𝑡
, 𝑡 > 0, (3.2b)

(𝑠(𝑡), 𝑡) = 0, 𝑡 > 0, (3.2c)

𝐿(𝜃(𝑠(𝑡), 𝑡)) 𝜕𝜃
𝜕𝑥

(𝑠(𝑡), 𝑡) =
−𝜌0𝓁
𝑘0𝑇𝑚

𝑠̇(𝑡), 𝑡 > 0, (3.2d)

(0) = 0, (3.2e)

where 𝑁,𝐿 and 𝑣 are given by (2.5) with 𝑇 (𝜃) = 𝑇𝑚𝜃 + 𝑇𝑚.
Then, if we introduce the similarity transformation (2.8), we obtain

he following ordinary differential problem

𝐿∗(𝑓 )𝑓 ′(𝜉)
)′

+ 2𝑓 ′(𝜉)
(

𝑁∗(𝑓 )𝜉 − 𝜇∗(𝑓 )
)

= 0, 0 < 𝜉 < 𝜆 (3.3a)

∗(𝑓 (0))𝑓 ′(0) = −𝑞∗, (3.3b)

(𝜆) = 0, (3.3c)
′(𝜆) = −𝑀𝜆, (3.3d)

here 𝜉 = 𝑥
2
√

𝛼0𝑡
is the similarity variable and 𝐿∗, 𝑁∗ and 𝜇∗ are given

by (2.10) and (2.12), respectively. Moreover, 𝑞∗ and 𝑀 are defined by
𝑞∗ =

2𝑞
√

𝛼0
𝑘0𝑇𝑚

and 𝑀 = 2𝓁𝑘0
𝑇𝑚𝑐0 𝑘(𝑇𝑚)

.
We can deduce that (𝑓, 𝜆) is a solution to the ordinary differen-

ial problem (3.3a)–(3.3d) if and only if (𝑓, 𝜆) satisfies the following
ntegral equation

(𝜉) = 𝑞∗ (𝛷(𝑓 )(𝜆) −𝛷(𝑓 )(𝜉)) , 0 ≤ 𝜉 ≤ 𝜆, (3.4)

together with the condition
′(𝜆) = −𝑀𝜆 (3.5)

here 𝛷(𝑓 ) is defined by (2.17).
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In order to analyse the existence of solution to this problem, let us
study first, for a fixed 𝜆 > 0 the integral equation (3.4) for 𝑓 .

In the same manner as we did in the first section, we consider
the space 𝐶0[0, 𝜆] of continuous real-valued functions defined on [0, 𝜆]
endowed with the supremum norm and we define the operator 𝑞 on
𝐶0[0, 𝜆] given by the r.h.s of Eq. (3.4):

𝑞(𝑓 )(𝜉) = 𝑞∗
(

𝛷(𝑓 )(𝜆) −𝛷(𝑓 )(𝜉)
)

. (3.6)

Then, as (𝐶0[0, 𝜆], ‖ ⋅ ‖) is a Banach space we use the fixed point
Banach theorem to prove that for each 𝜆 > 0 there exists a unique 𝑓
such that

𝑞(𝑓 )(𝜉) = 𝑓 (𝜉), 0 ≤ 𝜉 ≤ 𝜆, (3.7)

which is the solution to (3.4).
If we assume that 𝑘, 𝜌, 𝑐 and 𝑣 satisfy (2.1), (2.2) and (2.3),

respectively then 𝐿∗, 𝑁∗ and 𝜇∗ verify (2.23), (2.24) and (2.25) where
in this case

𝐿̃ = 𝑘̃|𝑇𝑚|
𝑘0

, 𝑁̃ = 𝛾̃|𝑇𝑚|
𝜌0𝑐0

𝜇 = 𝜈|𝑇𝑚|
√

𝜌0𝑐0𝑘0
. (3.8)

Therefore we are able to use the bounds in Lemma 2.1 and the
ipschitz continuities obtained in Lemma 2.2. Hence, we can state the
ollowing theorem

heorem 3.1. Assume that (2.1)–(2.3) hold. If 0 < 𝜆 < 𝜆𝑞 where 𝜆𝑞 > 0
is defined as the unique solution to 𝑞(𝑧) = 1 with

𝑞(𝑧) ∶= 2𝑞∗𝑧𝐷4(𝑧), (3.9)

and 𝐷4 is given by (2.34), then there exists a unique solution 𝑓 ∈ 𝐶0[0, 𝜆]
for the integral equation (3.4), i.e. (3.7).

Proof. As solving equation (3.4) is equivalent to find a fixed point to
the operator 𝑞 given by (3.6), we will show that it is a contracting
self-map of 𝐶0[0, 𝜆].

On one hand, notice that for each 𝜆 > 0, taking into account the
definition of 𝑞 and the hypothesis on 𝐿∗, 𝑁∗ and 𝜇∗ we can easily
check that 𝑞 maps 𝐶0[0, 𝜆] onto itself. On the other hand, let 𝑓1, 𝑓2 ∈
𝐶0[0, 𝜆], from (2.33), for each 0 ≤ 𝜉 ≤ 𝜆 we get

|𝑞(𝑓1)(𝜉) −𝑞(𝑓2)(𝜉)| ≤
|

|

|

|

𝑞∗
(

𝛷(𝑓1)(𝜆) −𝛷(𝑓1)(𝜉)
)

− 𝑞∗
(

𝛷(𝑓2)(𝜆) −𝛷(𝑓2)(𝜉)
)

|

|

|

|

≤ 𝑞∗
(

|𝛷(𝑓1)(𝜆) −𝛷(𝑓2)(𝜆)| + |𝛷(𝑓1)(𝜉) −𝛷(𝑓2)(𝜉)|
)

≤ 2𝑞∗𝜆𝐷4(𝜆)‖𝑓1 − 𝑓2‖.

Therefore it follows that

‖𝑞(𝑓1) −𝑞(𝑓2)‖ ≤ 𝑞(𝜆)‖𝑓1 − 𝑓2‖,

where 𝑞 defined by (3.9), is an increasing function that goes from 0
to +∞ when 𝑧 goes from 0 to +∞. Thus there exists a unique 𝜆𝑞 > 0
such that 𝑞(𝜆𝑞) = 1. Moreover but most significantly we get

𝑞(𝑧) < 1, ∀ 0 < 𝑧 < 𝜆𝑞 and 𝑞(𝑧) > 1, ∀ 𝑧 > 𝜆𝑞 .

Then, if 𝜆 is such that 0 < 𝜆 < 𝜆𝑞 we get that 𝑞(𝜆) < 1 and so the
perator 𝑞 becomes a contraction mapping. By the fixed point Banach
heorem it must exists a unique solution 𝑓 ∈ 𝐶0[0, 𝜆] to the integral
quation (3.7), i.e. to the integral equation (3.4). □

For each 0 < 𝜆 < 𝜆𝑞 fixed, we have a unique solution to Eq. (3.4),
hich will be referred as 𝑓 (𝜉) = 𝑓𝜆(𝜉) to make visible its dependence
n 𝜆. Notice that we have
′
𝜆(𝜉) = −𝑞∗

𝐸(𝑓𝜆)(𝜉)
𝐿∗(𝑓𝜆)(𝜉)

. (3.10)

Then the condition (3.5), which remains to be analysed, becomes
equivalent to

𝑞(𝜆) = 𝜆, (3.11)

where

𝑞(𝜆) = 𝑞(𝑓𝜆, 𝜆) ∶=
𝑞∗

𝑀𝐿∗(𝑓𝜆)(𝜆)
𝐸𝑓𝜆 (𝜆). (3.12)
6

Lemma 3.2. Assume that (2.1)–(2.3) hold. Then for all 𝜆 ∈ (0, 𝜆𝑞) we
have that

𝑞
1 (𝜆) ≤ 𝑞(𝜆) ≤ 𝑞

2 (𝜆) (3.13)

where 𝑞
1 and 𝑞

2 are functions defined by

𝑞
1 (𝜆) =

𝑞∗

𝑀𝐿𝑀
exp

(

−𝜆2 𝑁𝑀
𝐿𝑀

)

, 𝜆 > 0

𝑞
2 (𝜆) =

𝑞∗

𝑀𝐿𝑚
exp

(

2𝜆𝑞
𝜇𝑀
𝐿𝑚

− 𝜆2 𝑁𝑀
𝐿𝑚

)

, 𝜆 > 0,

(3.14)

hat satisfy the following properties:

𝑞
1 (0) =

𝑞∗

𝑀𝐿𝑀
> 0, 𝑞

1 (+∞) = 0, 𝑞
1
′(𝜆) < 0, ∀𝜆 > 0,

𝑞
2 (0) =

𝑞∗

𝑀𝐿𝑚
> 0, 𝑞

2 (+∞) = 0, 𝑞
2
′(𝜆) < 0, ∀𝜆 > 0.

(3.15)

roof. Inequality (3.13) follows directly from the bounds obtained in
2.28). The properties for 𝑞

1 and 𝑞
2 arise straightforwardly from their

efinitions. □

emma 3.3. If
𝑞
2 (𝜆𝑞) < 𝜆𝑞 , (3.16)

then, there exists a unique solution 0 < 𝜆1𝑞 < 𝜆𝑞 to the equation

𝑞
1 (𝜆) = 𝜆, 𝜆 > 0, (3.17)

and there exists a unique solution 𝜆1𝑞 < 𝜆2𝑞 < 𝜆𝑞 to the equation

𝑞
2 (𝜆) = 𝜆, 𝜆 > 0. (3.18)

Proof. It is immediate taking into account the properties of 𝑞
1 and 𝑞

2
shown in Lemma 3.2. □

Remark 3.4. Taking into account the definition of 𝑞
2 and 𝑀 , assump-

ion (3.16) is equivalent to the following inequality for the latent heat

>
𝑐0 𝑘(𝑇𝑚)𝑞

√

𝛼0
𝐿𝑚𝑘20

exp
(

2𝜆𝑞
𝜇𝑀
𝐿𝑚

−𝜆
2
𝑞
𝑁𝑀
𝐿𝑚

)

𝜆𝑞
(3.19)

Theorem 3.5. Assume that (2.1)–(2.3) and (3.19) hold. Then there
exists at least one solution 𝜆𝑞 ∈ (𝜆1𝑞 , 𝜆2𝑞) to Eq. (3.11).

Proof. It is similar to the proof given in Theorem 2.8. □

We have found sufficient conditions that guarantee the existence of
at least one solution (𝑓𝜆, 𝜆) to the problem (3.4)–(3.5). Let us return the
original problem (1.1a), (1.1b⋆), (1.1d)–(1.1e). After the prior analysis
we are able to state the following result.

Theorem 3.6. Assume that 𝑘, 𝜌, 𝑐, 𝓁 and 𝑣 are such that (2.1)–(2.3) and
(3.19) hold. Then, there exists at least one solution to the Stefan problem
(1.1a), (1.1b⋆), (1.1d)–(1.1e), where the free boundary is given by

𝑠(𝑡) = 2𝜆𝑞
√

𝛼0𝑡, 𝑡 > 0, (3.20)

ith 𝜆𝑞 defined by Theorem 3.5, and the temperature is given by

(𝑥, 𝑡) = 𝑇𝑚𝑓𝜆𝑞 (𝜉) + 𝑇𝑚, 0 ≤ 𝜉 ≤ 𝜆𝑞 (3.21)

being 𝜉 = 𝑥
2
√

𝛼0𝑡
the similarity variable and 𝑓𝜆𝑞 the unique solution of the

integral equation (3.4) which was established in Theorem 3.1.
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4. Robin condition

The following section is devoted to the analysis of the Stefan prob-
lem that arises when we consider a Robin condition at the fixed face
𝑥 = 0.

Let us consider the problem (1.1a), (1.1b†), (1.1c)–(1.1e). After
ntroducing the change of variables (2.4) we get

𝑁(𝜃) 𝜕𝜃
𝜕𝑡

= 𝛼0
𝜕
𝜕𝑥

(

𝐿(𝜃) 𝜕𝜃
𝜕𝑥

)

− 𝑣(𝜃) 𝜕𝜃
𝜕𝑥

, 0 < 𝑥 < 𝑠(𝑡), 𝑡 > 0, (4.1a)

𝐿(𝜃(0, 𝑡)) 𝜕𝜃
𝜕𝑥

(0, 𝑡) = ℎ
𝑘0
√

𝑡
𝜃(0, 𝑡), 𝑡 > 0, (4.1b)

𝜃(𝑠(𝑡), 𝑡) = 0, 𝑡 > 0, (4.1c)

𝐿(𝜃(𝑠(𝑡), 𝑡)) 𝜕𝜃
𝜕𝑥

(𝑠(𝑡), 𝑡) =
𝑠̇(𝑡)
𝛼0Ste , 𝑡 > 0, (4.1d)

𝑠(0) = 0, (4.1e)

where 𝑁,𝐿 and 𝑣 are given by (2.5) with 𝑇 (𝜃) = (𝑇𝑚 − 𝑇 ∗)𝜃 + 𝑇 ∗.
The similarity transformation (2.8) yields to an ordinary differential

roblem defined by

𝐿∗(𝑓 )𝑓 ′(𝜉)
)′

+ 2𝑓 ′(𝜉)
(

𝑁∗(𝑓 )𝜉 − 𝜇∗(𝑓 )
)

= 0, 0 < 𝜉 < 𝜆 (4.2a)

𝐿∗(𝑓 (0))𝑓 ′(0) = 2Bi 𝑓 (0), (4.2b)

(𝜆) = 1, (4.2c)
∗(𝑓 (𝜆))𝑓 ′(𝜆) = 2𝜆

Ste , (4.2d)

where 𝜉 = 𝑥
2
√

𝛼0𝑡
is the similarity variable, 𝐿∗, 𝑁∗ and 𝜇∗ are given by

(2.10) and (2.12), respectively and Bi = ℎ
√

𝛼0
𝑘0

is the Biot number.
In addition, this ordinary differential problem is equivalent to find

(𝑓, 𝜆) such that the integral equation:

𝑓 (𝜉) =
1 + 2Bi 𝛷(𝑓 )(𝜉)
1 + 2Bi 𝛷(𝑓 )(𝜆)

, 0 ≤ 𝜉 ≤ 𝜆, (4.3)

together with the condition

𝑓 ′(𝜆) = 2
𝐿∗(𝑓 )(𝜆)Ste𝜆 (4.4)

hold, where 𝛷(𝑓 ) is given by (2.17).
Let us consider a fixed 𝜆 > 0, then we can define the operator ℎ

on 𝐶0[0, 𝜆] as

ℎ(𝑓 )(𝜉) =
1 + 2Bi 𝛷(𝑓 )(𝜉)
1 + 2Bi 𝛷(𝑓 )(𝜆)

. (4.5)

Therefore, the integral equation (4.3) can be rewritten as

ℎ(𝑓 )(𝜉) = 𝑓 (𝜉), 0 ≤ 𝜉 ≤ 𝜆. (4.6)

Let us assume that 𝑘, 𝜌, 𝑐 and 𝑣 satisfy (2.1), (2.2) and (2.3),
respectively then 𝐿∗, 𝑁∗ and 𝜇∗ verify (2.23), (2.24) and (2.25). As
a consequence, we can state the following results.

Theorem 4.1. Suppose that (2.1)–(2.3) and (2.35) hold. If 0 < 𝜆 < 𝜆ℎ
where 𝜆ℎ > 0 is defined as the unique solution to ℎ(𝑧) = 1 with

ℎ(𝑧) ∶= 2𝐿𝑀𝐷4(𝑧) exp
(

𝑧2 𝑁𝑀
𝐿𝑚

)

, (4.7)

and 𝐷4 is given by (2.34), then there exists a unique solution 𝑓 ∈ 𝐶0[0, 𝜆]
for the integral equation (4.3), i.e. (4.6).

Remark 4.2. Notice that ℎ =  where  was defined in Theorem 2.3,
when we studied the problem with a Dirichlet condition at the fixed
face. Hence, we have that 𝜆ℎ = 𝜆.

We have obtained, for each 0 < 𝜆 < 𝜆ℎ fixed, a unique solution
o Eq. (3.4) , 𝑓 (𝜉) = 𝑓𝜆(𝜉). If we compute its derivative, we get

′
𝜆(𝜉) =

2Bi
( )

𝐸(𝑓𝜆)(𝜉)
∗ . (4.8)
1 + 2Bi 𝛷(𝑓𝜆)(𝜆) 𝐿 (𝑓𝜆)(𝜉)
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Then the condition (4.19), which remains to be analysed, becomes
equivalent to

ℎ(𝜆) = 𝜆, (4.9)

where

ℎ(𝜆) = ℎ(𝑓𝜆, 𝜆) ∶=
Ste Bi 𝐸(𝑓𝜆)(𝜆)
1 + 2Bi 𝛷(𝑓𝜆)(𝜆)

. (4.10)

We have the following results

Lemma 4.3. Assume that (2.1)–(2.3),Hipotesis-ExtraContraccion hold.
Then for all 𝜆 ∈ (0, 𝜆ℎ) we have that

0≤ℎ(𝜆)≤2(𝜆), (4.11)

here 2 is given by (2.39).

Proof. The proof follows straightforwardly by taking into account the
bounds given in Lemma 2.1. □

Let us notice that, due to the properties of 2 studied in Lemma 2.6,
we know that if (2.42) holds there exists a unique solution 0 < 𝜆2 < 𝜆ℎ
to the equation

2(𝜆) = 𝜆, 𝜆 > 0. (4.12)

Theorem 4.4. Assume that (2.1)–(2.3), (2.35) and (2.42) hold. Then,
there exists at least one solution 𝜆ℎ ∈ (0, 𝜆2) to Eq. (4.9).

Proof. It is similar to the proof given in Theorem 2.8. □

Let us return the original problem (1.1a), (1.1b†), (1.1d)–(1.1e).
Notice that condition (2.35) can be rewritten as

2𝑘𝑀 𝑘̃(𝑇 ∗ − 𝑇𝑚)
𝑘2𝑚

< 1, (4.13)

and condition (2.42) is equivalent to (2.45). Then, we state the
following main theorem.

Theorem 4.5. Assume that 𝑘, 𝜌, 𝑐, 𝓁 and 𝑣 are such that (2.1)–(2.3),
(2.45),Hipotesis-Extra-krhoc-Convectivo hold. Then, there exists at least one
solution to the Stefan problem (1.1a), (1.1b†), (1.1d)–(1.1e), where the free
boundary is given by

𝑠(𝑡) = 2𝜆ℎ
√

𝛼0𝑡, 𝑡 > 0, (4.14)

ith 𝜆ℎ defined by Theorem 4.4, and the temperature is given by

𝑇 (𝑥, 𝑡) = (𝑇𝑚 − 𝑇 ∗)𝑓𝜆ℎ (𝜉) + 𝑇 ∗, 0 ≤ 𝜉 ≤ 𝜆ℎ (4.15)

eing 𝜉 = 𝑥
2
√

𝛼0𝑡
the similarity variable and 𝑓𝜆ℎ the unique solution of the

integral equation (4.3) which was established in Theorem 4.1.

Remark 4.6. When the coefficient ℎ → +∞, i.e. 𝐵𝑖 → +∞ the
ntegral equation (4.3) becomes (2.18) and Eq. (4.9) becomes (2.19).
hen, the solution given by Theorem 4.1 for the problem with a Robin
ondition at the fixed face converges to the solution to the problem
ith a Dirichlet condition at 𝑥 = 0 given by Theorem 2.3 when ℎ → ∞.

emark 4.7. If we consider that the speed of the convective term in the
eat equation (1.1a) is 𝑣(𝑇 ) ≡ 0, we can recover the solution obtained
n [24] for a null control function which is obtained as a solution to
he following integral equation

(𝜉) =
𝐿∗(𝑓 (0)) + 2Bi 𝛷0(𝑓 )(𝜉)
𝐿∗(𝑓 (0)) + 2Bi 𝛷0(𝑓 )(𝜆)

=
1 + 2Bi 𝛷(𝑓 )(𝜉)
1 + 2Bi 𝛷(𝑓 )(𝜆)

, 0 ≤ 𝜉 ≤ 𝜆,

(4.16)

here

0(𝑓 )(𝜉) = ∫

𝜉

0

𝐿∗(𝑓 (0))
𝐿∗(𝑓 )(𝑧)𝐼(𝑓 )(𝑧)

d𝑧 = 𝐿∗(𝑓 (0))∫

𝜉

0

𝐸(𝑓 )(𝑧)
𝐿∗(𝑓 (𝑧))

d𝑧

∗
= 𝐿 (𝑓 (0))𝛷(𝑓 )(𝜉), (4.17)
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T

and

𝐸(𝑓 )(𝑧) = 1
𝐼(𝑓 )(𝑧)

(4.18)

together with the condition for 𝜆 given by

′(𝜆) = 2
𝐿∗(𝑓 )(𝜆)Ste

𝜆. (4.19)

5. Radiative–convective condition

We will proceed to the analysis of the Stefan problem that arises
when we assume a radiative–convective condition at the fixed face
𝑥 = 0.

If we consider the problem (1.1a), (1.1b††), (1.1c)–(1.1e). After the
change of variables (2.4) and introducing the similarity transformation
(2.8) we obtain the following ordinary differential problem defined by

(

𝐿∗(𝑓 )𝑓 ′(𝜉)
)′

+ 2𝑓 ′(𝜉)
(

𝑁∗(𝑓 )𝜉 − 𝜇∗(𝑓 )
)

= 0, 0 < 𝜉 < 𝜆 (5.1a)

𝐿∗(𝑓 (0))𝑓 ′(0) = 2Bi 𝑓 (0) + 𝑟𝐹 (𝑓 )(0), (5.1b)

𝑓 (𝜆) = 1, (5.1c)

𝐿∗(𝑓 (𝜆))𝑓 ′(𝜆) = 2𝜆
Ste , (5.1d)

where 𝜉 = 𝑥
2
√

𝛼0𝑡
is the similarity variable, 𝐿∗, 𝑁∗ and 𝜇∗ are given

y (2.10) and (2.12), respectively and where 𝑟 =
2𝜎𝜖

√

𝛼0
𝑘0(𝑇 ∗ − 𝑇𝑚)

> 0 and

𝐹 (𝑓 )(0) = 𝑇 ∗4 −
(

(𝑇𝑚 − 𝑇 ∗)𝑓 (0) + 𝑇 ∗
)4

.
It is easy to see that this ordinary differential problem is equivalent

to find (𝑓, 𝜆) such that the integral equation holds:

𝑟(𝑓 )(𝜉) = 𝑓 (𝜉), 0 ≤ 𝜉 ≤ 𝜆, (5.2)

together with the condition

𝑓 ′(𝜆) = 2
𝐿∗(𝑓 (𝜆))Ste𝜆, (5.3)

where the operator 𝑟 on 𝐶0[0, 𝜆] is defined by

𝑟(𝑓 )(𝜉) ∶= 1 − 𝐺(𝑓 )(0)
(

𝛷(𝑓 )(𝜆) −𝛷(𝑓 )(𝜉)
)

. (5.4)

with 𝐺(𝑓 )(0) = 2Bi𝑓 (0) + 𝑟𝐹 (𝑓 )(0) and 𝛷(𝑓 ) is given by (2.17).
In order to solve the fixed point equation (5.2) for a fixed 𝜆 > 0, let

us consider the set 𝑋 given by all non-negative functions bounded by
1, i.e

𝑋 = {𝑓 ∈ 𝐶0[0, 𝜆] ∶ 𝑓 ≥ 0, ‖𝑓‖ ≤ 1}. (5.5)

Notice that 𝑋 is a non-empty closed subset of the Banach space
(

𝐶0[0, 𝜆], ‖ ⋅ ‖
)

.

Theorem 5.1. Suppose that (2.1)–(2.3) hold as well as

2Bi + 𝑟𝑇 ∗4

𝐿𝑚

√

𝑁𝑚
𝐿𝑀

√

𝜋 exp
(

𝜇2𝑀𝐿𝑀

𝐿2
𝑚𝑁𝑚

)

≤ 1, (5.6)

and
2Bi + 𝑟𝐷5

𝜇𝑀
< 1. (5.7)

If 0 < 𝜆 < 𝜆𝑟 where 𝜆𝑟 > 0 is defined as the unique solution to 𝑟(𝑧) = 1
ith

𝑟(𝑧) ∶= 2
(

2Bi + 𝑟𝑇 ∗4
)

𝑧𝐷4(𝑧) + exp
(

2 𝜇𝑀
𝐿𝑚

𝑧
) (2Bi + 𝑟𝐷5)

𝜇𝑀
, (5.8)

where 𝐷4 is given by (2.34) and 𝐷5 = 4(𝑇 ∗ − 𝑇𝑚)|𝑇 ∗
|

3, then there exists a
unique solution 𝑓 ∈ 𝑋 for the integral equation (5.2).
8

Proof. Let us split the proof into two steps. In the first one, we will
see that 𝑟 is a self-map of 𝑋 while in the second step we will see that
it is a contracting mapping.

Let us show that 𝑟(𝑋) ⊂ 𝑋. Consider 𝑓 ∈ 𝑋, then have that
0 < 𝐹 (𝑓 )(0) < 𝑇 ∗4 and so,

0 < 𝐺(𝑓 )(0) ≤ 2Bi + 𝑟𝑇 ∗4

From (2.28) and assumption (5.6), for every 𝜉 ∈ [0, 𝜆] we can check
that

0 ≤ 𝐺(𝑓 )(0)
(

𝛷(𝑓 )(𝜆) −𝛷(𝑓 )(𝜉)
)

<

(

2Bi + 𝑟𝑇 ∗4
)

𝐿𝑚 ∫

𝜆

𝜉
𝐸(𝑓 )(𝑧)d𝑧

≤

(

2Bi + 𝑟𝑇 ∗4
)

𝐿𝑚 ∫

𝜆

𝜉
exp

(

2𝑧 𝜇𝑀
𝐿𝑚

− 𝑧2 𝑁𝑚
𝐿𝑀

)

d𝑧

≤

(

2Bi + 𝑟𝑇 ∗4
)

𝐿𝑚

√

𝜋 exp
(

𝜇2𝑀𝐿𝑀

𝐿2
𝑚𝑁𝑚

)

⎛

⎜

⎜

⎝

erf
⎛

⎜

⎜

⎝

𝜆𝑁𝑚
𝐿𝑀

− 𝜇𝑀
𝐿𝑚

√

𝑁𝑚
𝐿𝑀

⎞

⎟

⎟

⎠

+ erf
⎛

⎜

⎜

⎝

𝜇𝑀
𝐿𝑚

− 𝜉𝑁𝑚
𝐿𝑀

√

𝑁𝑚
𝐿𝑀

⎞

⎟

⎟

⎠

⎞

⎟

⎟

⎠

2
√

𝑁𝑚
𝐿𝑀

≤

(

2Bi + 𝑟𝑇 ∗4
)

𝐿𝑚

√

𝜋 exp
(

𝜇2𝑀𝐿𝑀

𝐿2
𝑚𝑁𝑚

)

√

𝑁𝑚
𝐿𝑀

< 1

Therefore, 0 ≤ 𝑟(𝑓 )(𝜉) ≤ 1. It is clear that 𝑟(𝑓 ) belongs to 𝐶0[0, 𝜆],
hence we get that 𝑟(𝑓 ) ∈ 𝑋 for every 𝑓 ∈ 𝑋.

Now let us proceed to show that 𝑟 is a contracting mapping.
Consider 𝑓1 and 𝑓2 in 𝑋. From the mean value theorem applied to the
function 𝑔(𝑥) =

(

(𝑇𝑚 − 𝑇 ∗)𝑥 + 𝑇 ∗
)4

, for 𝑥1 = 𝑓1(0) and 𝑥2 = 𝑓2(0) we
ave that

𝑔(𝑥1) − 𝑔(𝑥2)| = |𝑔′(𝑥∗)||𝑥1 − 𝑥2| = 4
(

(𝑇𝑚 − 𝑇 ∗)𝑥∗ + 𝑇 ∗
)3

|𝑇𝑚 − 𝑇 ∗
|

× |𝑥1 − 𝑥2|,

here 𝑥∗ is between 𝑥1 and 𝑥2, i.e. 0 ≤ 𝑥∗ ≤ 1. As a consequence it
ollows that

𝐹 (𝑓1)(0) − 𝐹 (𝑓2)(0)| ≤ |𝑔(𝑥1) − 𝑔(𝑥2)| ≤ 4
(

(𝑇𝑚 − 𝑇 ∗)𝑥∗ + 𝑇 ∗
)3

× |𝑇𝑚 − 𝑇 ∗
||𝑓1(0) − 𝑓2(0)|

≤ 4|𝑇 ∗ − 𝑇𝑚| |𝑇
∗
|

3
‖𝑓1 − 𝑓2‖ = 𝐷5‖𝑓1 − 𝑓2‖.

nd so

𝐺(𝑓1)(0) − 𝐺(𝑓2)(0)| ≤
(

2 Bi + 𝑟𝐷5

)

‖𝑓1 − 𝑓2‖.

Then, for each 0 ≤ 𝜉 ≤ 𝜆 we have that

𝑟(𝑓1)(𝜉) −𝑟(𝑓2)(𝜉)| ≤ |𝐺(𝑓1)(0)| |𝛷(𝑓1)(𝜆) −𝛷(𝑓2)(𝜆)|

+ |𝛷(𝑓2)(𝜆)| |𝐺(𝑓1)(0) − 𝐺(𝑓2)(0)|

+ |𝐺(𝑓1)(0)| |𝛷(𝑓1)(𝜉) −𝛷(𝑓2)(𝜉)| + |𝛷(𝑓2)(𝜉)| |𝐺(𝑓1)(0) − 𝐺(𝑓2)(0)|

≤
(

2(2Bi + 𝑟𝑇 ∗4)𝜆𝐷4(𝜆) +
(2Bi+𝑟𝐷5)

𝜇𝑀
exp

(

2 𝜇𝑀
𝐿𝑚

𝜆
))

‖𝑓1 − 𝑓2‖

= 𝑟(𝜆)‖𝑓1 − 𝑓2‖.

Under the assumption (5.7) we have that 𝑟 satisfies the following
properties

0 < 𝑟(0) =
2Bi + 𝑟𝐷5

𝜇𝑀
< 1, 𝑟(+∞) = +∞,

 ′
𝑟 (𝑧) > 0, 𝑧 ≥ 0.

herefore there exists a unique 𝜆𝑟 such that 𝑟(𝜆𝑟) = 1. In addition, we
obtain

𝑟(𝑧) < 1, ∀ 0 < 𝑧 < 𝜆𝑟 and 𝑟(𝑧) > 1, ∀𝑧 > 𝜆𝑟.

From the fixed Banach theorem we can state that for a fixed 𝜆 ∈ (0, 𝜆𝑟)
there exists a unique solution 𝑓 ∈ 𝑋 to the integral equation (5.2). □
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For each given constant 0 < 𝜆 < 𝜆𝑟, the unique solution to Eq. (5.2),
(𝜉) = 𝑓𝜆(𝜉) satisfies

′
𝜆(𝜉) = 𝐺(𝑓 )(0)

𝐸(𝑓𝜆)(𝜉)
𝐿∗(𝑓𝜆)(𝜉)

. (5.9)

Then the condition (5.3) becomes equivalent to solve

𝑟(𝜆) = 𝜆, (5.10)

where

𝑟(𝜆) = 𝑟(𝑓𝜆, 𝜆) ∶=
Ste 𝐺(𝑓 )(0)

2
𝐸(𝑓 )(𝜆). (5.11)

We can now state the following results. The proofs are omitted due
to the fact that they are obtained analogously to the results presented
in the previous sections.

Lemma 5.2. Assume that (2.1)–(2.3) and (5.6)–(5.7) hold. Then for all
𝜆 ∈ (0, 𝜆𝑟) we have that

≤𝑟(𝜆)≤𝑟
2(𝜆) (5.12)

where 𝑟
2 is given by

𝑟
2(𝜆) =

Ste (2Bi + 𝑟𝑇 ∗4)
2

exp
(

2𝜆𝑟
𝜇𝑀
𝐿𝑚

− 𝜆2 𝑁𝑚
𝐿𝑀

)

, 𝜆 > 0. (5.13)

Moreover, if

𝑟
2(𝜆𝑟) < 𝜆𝑟 (5.14)

there exists a unique solution 0 < 𝜆2𝑟 < 𝜆𝑟 to the equation

𝑟
2(𝜆) = 𝜆, 𝜆 > 0. (5.15)

Theorem 5.3. Assume that (2.1)–(2.3), (5.6)–(5.7) and (5.14) hold.
Then, there exists at least one solution 𝜆𝑟 ∈ (0, 𝜆2𝑟) to Eq. (5.10).

We return the original problem (1.1a), (1.1b††), (1.1d)–(1.1e). No-
ice that conditions (5.6) and (5.7) can be rewritten as
(

2Bi+𝑟(𝑇 ∗4−𝑇 4
𝑚)

)

√

𝑘0𝜌0𝑐0𝑘𝑀
𝑘𝑚

√

𝛾𝑚

√

𝜋 exp
(

𝜈2𝑀𝑘𝑀
𝑘2𝑚𝛾𝑚

)

< 1, (2Bi+𝑟𝐷5)
√

𝜌0𝑐0𝑘0
𝜈𝑀

< 1,

(5.16)

nd condition (5.14) is equivalent to the following inequality for the
atent heat

>
(𝑇 ∗ − 𝑇𝑚)𝑐0 (2Bi + 𝑟𝑇 ∗4)

2

exp
(

2𝜆𝑟
𝜇𝑀
𝐿𝑚

−𝜆
2
𝑟
𝑁𝑚
𝐿𝑀

)

𝜆𝑟
(5.17)

Theorem 5.4. Assume that (2.1)–(2.3), (5.16) and (5.17) hold. Then,
there exists at least one solution to the Stefan problem (1.1a), (1.1b††),
(1.1d)–(1.1e), where the free boundary is given by

𝑠(𝑡) = 2𝜆𝑟
√

𝛼0𝑡, 𝑡 > 0, (5.18)

with 𝜆𝑟 defined by Theorem 5.3, and the temperature is given by

𝑇 (𝑥, 𝑡) = (𝑇𝑚 − 𝑇 ∗)𝑓𝜆𝑟 (𝜉) + 𝑇 ∗, 0 ≤ 𝜉 ≤ 𝜆𝑟 (5.19)

being 𝜉 = 𝑥
2
√

𝛼0𝑡
the similarity variable and 𝑓𝜆𝑟 the unique solution of the

ntegral equation (5.2) which was established in Theorem 5.1.

. Particular cases

.1. Constant thermal coefficients

In this section we are going to recover the particular case analysed
n [5] that arises when we consider constant thermal coefficients,

(𝑇 ) = 𝜌 , 𝑐(𝑇 ) = 𝑐 , 𝑘(𝑇 ) = 𝑘 (6.1)
0 0 0

9

nd a velocity given by 𝑣(𝑇 ) = 𝜇(𝑇 )
√

𝑡
with

𝜇(𝑇 ) = 𝜌0𝑐0
√

𝛼0 Pe. (6.2)

here Pe denotes the Peclet number.
Replacing those values in (2.10) and (2.12) we get that 𝐿∗ = 𝑁∗ = 1

and 𝜇∗ = Pe. Then 𝛷, 𝐸, 𝑈 and 𝐼 defined by (2.17), (2.15) and (2.16),
respectively become

𝑈 (𝑓 )(𝑧) = exp(2𝑧Pe), 𝐼(𝑓 )(𝑧) = exp(𝑧2),

𝐸(𝑓 )(𝑧) = exp(2𝑧Pe − 𝑧2) 𝛷(𝑓 )(𝜉) =
√

𝜋 exp(Pe2)
2

(

erf(Pe) − erf(Pe − 𝜉)
)

.

(6.3)

s a consequence we get that the explicit solution to the problem with
Dirichlet condition at the fixed face governed by (1.1a)–(1.1e), is

btain trough the solution to the ordinary differential problem (2.13a)–
2.13d), given by

(𝜉) =
erf(Pe) − erf(Pe − 𝜉)
erf(Pe) − erf(Pe − 𝜆)

, 0 ≤ 𝜉 ≤ 𝜆, (6.4)

where 𝜆 = 𝜆(Pe) is the unique solution to the following equation

Ste =
√

𝜋 𝜆
(

erf(Pe) − erf(Pe − 𝜆)
)

exp
(

(Pe − 𝜆)2
)

. (6.5)

In a similar way we get that the problem with a Neumann condition
governed by (1.1a),(1.1b⋆),(1.1c)–(1.1e) is equivalent to the ordinary
differential problem (3.3a)–(3.3d) whose explicit solution (see [5])
turns out to be

𝑓 (𝜉) = 𝑞∗
√

𝜋 exp
(

Pe2
)

2

(

erf(Pe − 𝜉) − erf(Pe − 𝜆)
)

, 0 ≤ 𝜉 ≤ 𝜆, (6.6)

where 𝜆 is a solution to the following equation
𝑞

𝜌0𝓁
√

𝛼0
= 𝜆 exp

(

𝜆2 − 2𝜆Pe
)

. (6.7)

Notice that for Pe ≤
√

2 it is obtained not only existence but also
uniqueness of solution to Eq. (6.7).

6.2. Linear thermal coefficients

In this subsection we analyse the case where the thermal coefficients
are given by

𝜌(𝑇 ) = 𝜌0, 𝑐(𝑇 ) = 𝑐0
(

1 + 𝛼 𝑇 − 𝑇 ∗

𝑇𝑚 − 𝑇 ∗

)

, 𝑘(𝑇 ) = 𝑘0
(

1 + 𝛽 𝑇 − 𝑇 ∗

𝑇𝑚 − 𝑇 ∗

)

(6.8)

with 𝛼 and 𝛽 given positive constants. In addition, we consider a
velocity given by 𝑣(𝑇 ) = 𝜇(𝑇 )

√

𝑡
with

𝜇(𝑇 ) = 𝜌0𝑐(𝑇 )
√

𝛼0 Pe, (6.9)

where Pe denotes the Peclet number.
This particular case appears in [10], where it is considered the

problem with a convective condition (1.1a),(1.1b†),(1.1c)–(1.1e).
From (2.10) and (2.12) we get that

𝐿∗(𝑓 ) = 1 + 𝛽𝑓 , 𝑁∗(𝑓 ) = 1 + 𝛼𝑓 , 𝜇∗(𝑓 ) = Pe (1 + 𝛼𝑓 ) .

Notice that as 𝑓 ∈ 𝐶0[0, 𝜆] with 0 ≤ 𝑓 ≤ 1, we get that 𝐿∗, 𝑁∗ and 𝜇∗

verify

1 ≤ 𝐿∗(𝑓 ) ≤ 1 + 𝛽, 1 ≤ 𝑁∗(𝑓 ) ≤ 1 + 𝛼, Pe ≤ 𝜇∗(𝑓 ) ≤ Pe(1 + 𝛼)

In addition 𝐿∗, 𝑁∗ and 𝜇∗ satisfy hypothesis (2.23)–(2.25) with 𝐿𝑚 = 1,
𝐿𝑀 = 1+𝛽, 𝐿̃ = 𝛽; 𝑁𝑚 = 1, 𝑁𝑀 = 1+𝛼, 𝑁̃ = 𝛼, 𝜇𝑚 = Pe, 𝜇𝑀 = Pe(1+𝛼)
and 𝜇 = Pe 𝛼.

Moreover the function 𝛷 defined by (2.17) becomes

𝛷(𝑓 )(𝜉) =
𝜉 exp

(

2∫

𝑧

0
(Pe − 𝑧) 1+𝛼𝑓 (𝑧)1+𝛽𝑓 (𝑧)

)

d𝑧. (6.10)
∫0 1 + 𝛽𝑓 (𝑧)
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Taking into account the hypothesis assumed in Theorem 2.9, the coeffi-
cients 𝛼, 𝛽 and the numbers Ste, Pe must satisfy the following condition

2(1 + 𝛽)𝛽 < 1, (6.11)

that is, 0 < 𝛽 <
√

3−1
2 and (𝜆2) < 1 where  is given by

(𝜆) = 2(1 + 𝛽) exp((1 + 𝛼)𝜆2)𝐷4(𝜆) (6.12)

with 𝐷4(𝜆) given by (2.34) and 𝜆2 defined by (2.44).
Those hypothesis are sufficient conditions in order to guarantee the

existence of solution when a Dirichlet or Robin condition are imposed
at the fixed face.

In case we consider Pe = 0 and 𝛼 = 0 we recover the problem studied
in [14] and [24] governed by
(

(1 + 𝛽𝑓 )𝑓 ′(𝜉)
)′

+ 2𝑓 ′(𝜉)𝜉 = 0, 0 < 𝜉 < 𝜆 (6.13)

(1 + 𝛽𝑓 (0))𝑓 ′(0) = 2Bi𝑓 (0), (6.14)

𝑓 (𝜆) = 1, (6.15)

𝑓 ′(𝜆) = 2𝜆
(1 + 𝛽)Ste , (6.16)

where the existence of solution is obtained trough the Generalized
Modified Error Function.

7. Conclusions

We have studied four different one-phase Stefan problems for a
semi-infinite domain, with the special feature of involving a mov-
ing phase change material as well as temperature dependent thermal
coefficients. All the problems that we have analysed were governed
by the diffusion–convection equation, where the uniform speed that
appears in the convective term not only depends on the tempera-
ture but also on time. We have proved existence of at least one
similarity solution imposing Dirichlet, Neumann, Robin or radiative–
convective boundary condition at the fixed face. In each case, we have
obtained an equivalent ordinary differential problem from where it
was formulated an integral equation coupled with a condition for the
parameter that characterizes the free boundary. The system obtained
was solved though a double-fixed point analysis. Moreover, we have
provided the solutions to some particular problems that arise when we
set the thermal coefficients to be constant or linear functions of the
temperature.
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