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1. Introduction

In this paper, the evaporation process of an spherical droplet is studied. We consider a liquid fuel droplet,
initially at a variable temperature Ty = To(r) and of radius Ry immersed into a gas at constant tem-
perature T, > Ty (). This evaporation process can be mathematically modelled, in a similar way as in
[10], through a Stefan-like problem which consists in finding the droplet’s temperature 7' = T'(r, t) and
the droplet’s radius, the free boundary. R = R(t) such that

pedy, = (IQTT) - 0<r<R(),0<t<te, (1.1a)
T(O t) 0, 0<t<t,, (1.1b)

T.(R(t),t) + h(t)(Ts — T,) = pLR(t),  0<t <t,, (1.1c)
T(-,-, 0)=To(r),  0<r<R(0), (1.1d)
T(R(t).t)=T,, 0<t<t,, (1.1e)
R(0) = Ry, (1.1f)

where ¢ is the specific heat capacity, k is the thermal conductivity and 7 is the density of the liquid
fuel. We assume that T is the droplet’s boiling point with T (rr) < T < T, and the initial temperature
Ty € C0, Ry] satisfies Ty(Ry) = 7. In the Stefan-like condition (1.1c), L denotes the specific heat
of evaporation and the continuous function h(t) > 0 represents the convective heat transfer coefficient.
At the surface of the droplet, evaporation and convection are assumed to be the dominant cooling and
heating mechanisms, and the radius of the droplet R(¢) is expected to decrease with time. The time where
R(t) reaches zero, i.e., the time taken for the droplet to evaporate completely, is called “extinction time”
and it is denoted by t.. In [16], a numerical scheme to obtain an approximate solution to the problem
(1.1a)—(1.1f) has been developed assuming not only that h depends on R but also that a particular
condition on R(t) holds. In this manuseript, we assume h to be independent of the unknown function
R(t) as it was taken in [14].

Several articles regarding Stefan problems for spheres can be found in the solidification of an ice ball
[8], in the solidification of a molten material [11,15] or in the course of drug diffusion [9]. In [6] the melting
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of a metal sphere immersed into its own liquid is studied. In this problem, the solid shell freezes around
the sphere which first grows and then melts again. Using the Green’s function, an integral equation is
obtained and solved numerically.

The goal of this paper is to prove existence and uniqueness of the solution to the free boundary
problem (1.1a)—(1.1f) through its integral formulation by solving a nonlinear integral equation through a
fixed point theorem.

This paper is divided into four sections. Section 1 gives a brief introduction with the background and
statement of the problem. In Sect. 2 we rewrite the problem in a nondimensional form considering that
the domain of the Stefan problem is up to a time o < ¢.. We also summarize the most relevant preliminary
results about the fundamental solution of equation (2.2a). Section 3 is devoted to obtaining an integral
formulation to the nondimensional problem (2.2a)—(2.2f) whose solution depends on the solution of an
integral equation of Volterra type. Finally, in Sect. 4, our main result is stated and proved. We use the
Banach fixed point theorem to prove the existence and uniqueness local in time of the solution of the
Volterra integral equation.

2. Nondimensionalization of the problem and preliminaries

Let us study the Stefan problem (1.1a)—(1.1f) for 0 <t < &, being o <{.. In order to obtain its integral
formulation, it will be convenient to proceed in non-dimensional variables. For this purpose, we introduce
the following function » and the variables @« and T

_ T(r,t) T, r o

. r=—, = =t 2.1
T,-T. ° "~ R T RZ (2.1)

v(w, 7)

2
where we have chosen the fime scale % from the heat conduction equation (1.1a), with a = %.

Under (2.1), the governing dimensionless equations for the problem (1.1a)—(1.1f) become:

vr = — (2vg) 2, D<o <X(r),0< T <7, (2.2a)
v (0,7) = 0, 0<71<7, (2.2b)
v (X(7),7)— H(T) = %X(T) 0<7<7, (2.2¢)
e
v(,0) = vo(x), 0 << X(0), (2.2d)
v(X(7),7) =0, 0<r<7, (2.2¢)
X(0) =1, (2.2f)
where Ste = C(LL_TS) is the Stefan number and

_ o« — h(t)Ro

O':R—g('f H(r)= e (2.3)
R(t) . To(r) =T

X( ) - Rio lO(J.-) == ) — TS . (24)

In order to give an integral representation of the free boundary problem (2.2a)—(2.2f), we will study
the fundamental solution of the heat-conduction equation in spherical coordinates (2.2a).
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Let us consider the fundamental solution K to the heat equation in Cartesian coordinates, the Green
function &G and the Neumann function N given by

. ) i
F(LT:P; 7?) - 2\/W(7_W) P ( A(r—n) if N
0 iftn=>r,
é(“5' . P 77) - K(LL‘. T Ps 77) o F(i"’l;ﬁ T. P, T?)
W(;L’, 7.0 5’7) - E(J;' T Ps TI) + F(i‘l’.ﬁ T P T?)

Then, we define the following functions [3], for =, p # 0:

K(erpn) = ST gy = GETom), (2.5)
xrp €xrp
_ N(x, T, s
N(x,7,p,m) = (7'07]) (2.6)

xp
Taking into account the known properties available in the literature of the functions K, G and N (sce

[4,7]), we can determine the following results which will be useful for obtaining the integral formulation
for the Stefan problem (2.2a)—(2.2f).

Lemma 2.1. We have the following properties

i Ky — & (K ) =0, K +—g( 2Kp)p=0.
. Ky(e,7,p,m) = ILK (x, 7, pym), Ky(e.m,p.m) = m—lpfn(;c, T, 0 1)
ili. Ky(x,7,p,m) = K(.L, .0 + TLPFI(QL', T, 0,1).

I
. Kapo(x,m,p.m) = —%R (w7, pym) — ;%—pKI(;L‘,T, p.m) + ILDIT{II(J:; T, p,1).
v. Functions G and N satisfy properties i)-iv).
vi. The derivative G pp 15 given by

Gpe(x, T, p_T]) = ?%;a(w, T,&?]) Eg(’ (x, 7, p,7)
+55 N (o, 7 p.m) + 55 Ny, 7 p,1).

vii. For every ¢ continuous in [0, 7], we have the following Jump formulas:
T
; " c (o _ —_em)
Tjjl(n(lﬂi/Y‘(’?)Ar(i!TvX("’?)»n)dW Taxon
0
-

4 [ P e (X(7), 7, X (n), n)dn

0

T

; X2V (2 Ny — = 2T
Iﬂljl(n(lﬂi]v(n)X () Ko (a0, 7, X (), )dn = F 55
1]

-
+ [ o XA KX (). X ). )
0
Proof. Properties i) —vi) follow immediately from definitions (2.5)(2.6) and properties of functions K, G
and N available in [4]. The jump formulas given in vii) arise from following relation [7]

lim i/s-c(vy)E%w,T,X(n).r;)dn: e +f@(n)E(X(T)mX(n):?r)dn‘
0

r— X (1)
0
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The next inequality will be also useful in the following sections.
Lemma 2.2. For 3,0 >0, 7 >n, nc N we have

2 n
exp | 5= g\ 2

(r—n) 3 2eu?

3. Integral formulation

In this section, we will give an integral formulation of the free boundary problem (2.2a)—(2.2f). The
following lemmas will allow us to prove our main results.

Lemma 3.1. Ifv =wv(x,7), X = X(7) satisfy (2.2a)—(2.2f) we have

X(r)=1-Ste /ﬁ(?])dﬂ’] - /'l-‘I(X(?)).‘T])d‘T] , 0<7<7. (3.1)
0 0
Proof. Tt is immediately obtained from (2.2¢) and (2.2f). O

Lemma 3.2. Let M > 0 such that |v.(X(7),7)| < M, Y7 €[0,7]. Then, X = X(7), given by (3.1),

satisfies
X(7)— X(n)| < AM,5)|r -5/, ¥r,nel0,7], (3.2)
where A(M,7) :=Ste {M + | H|[z} and |[H|7 = m[aX] |H (7).
70,7

Moreover, if

A(M,5)7 < (3.3)

n
withn € N, n > 2, then we have

< X(r) < 1. (3.4)

T

Proof. Formula (3.2) follows from the integral representation of X (7) given by (3.1) and the definition
of A(M,7).

In addition, taking into account that X (7) is a decreasing function in the variable 7, we get X (7) < 1,
V7 > 0. Considering formula (3.1) and assuming (3.3) gives

0 < Ste /F(n)dn — /-vx(X(n).n)d-r; < A(M,7)7,
0 0
from where it follows that
1>X(7) >1-AMzF>1-2—1_1
n n

O

Then, we are able to obtain the integral formulation of the free boundary problem (2.2a)—(2.2f) which
is established in the next theorem.
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Theorem 3.3. The solution v = v(x,7), X = X(7) ,0 < < X(7), 0 < 7 <7 of the free boundary
problem (2.2a)—(2.2[) has the following integral representation

v, T) :fpgv (p)G(a, 7, p,0)dp + /X nw(n)G(ae, 7, X(n),n)dn. (3.5)

IA
-‘

[A
Ql
W
=

X(r)=1-Ste / ndn—/ (n)dn | . 0

0
where w(n) = v2(X(n).n) if and only if w such that |w(n)| < M, ¥y € [0,7] with 0 < A(M.7)7 < =1
satisfies the Volterra integral equation

1

wir) =2 j Puo(p)Ga(X (7). 7, 9. 0)dp

0

T ] X2 () w(n)Ca (X (7). 7, X (), m)ely b (3.7)

Proof. Let v = v(x, 7) be the solution of problem (2.2a)—(2.2f). If we integrate the Green identity
[p*o(p.mG (w7 p.)] ) — [0* (vplp. )G, 7. p.0) — v(p, )G (. 7, p,))] , = O, (3.8)

over the domain D; . ={(p.n) : 0 < p < X(n),e < n <7 — €} we get:

X(€)

0= p*u(p, €)G (i, 7. p,e) dp
/
/X (MX2(n)o(X(n),n)G (e, 7, X (n),n) dy

+ /Xg(n) (X (n),n)G(x, 7, X (n),1) — v(X(n), NG ,(x, 7, X(n),n)] dn

X (1—¢€)

— / pv(p. T — )G, 7, p, 7 — €) dp. (3.9)

0

Taking € — 0, by using the Poisson formula, we get (3.5).

It we differentiate (3.5) with respect to variable & and we take = — X (7)~, by the jump formula given
by Lemma 2.1, we obtain the Volterra integral equation (3.7) for w. Formula (3.6) for the free boundary
X (1) follows immediately from Lemma 3.1.

Conversely, by elementary computations we can verify that if w satisfies (3.7) then v and X given by
(3.5) and (3.6), respectively, satisfy (2.2a)—(2.2d).

In order to prove (2.2¢), we define ¢(7) = v(X(7),7),7 > 0 and we take M such that |w(r) < M
v7 € [0,7]. If we integrate the Green identity (3.8) over the domain D, and we let ¢ — 0 in (3.9), we
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pPoo(p)G i, 7, p, 0)dp

v(e,7) =

—_—

+Ste [ X2()o(X (n),n)Cr.7. X (n)n) [w(n) — H(n)] dn

Dk"‘-\—a o

+ / X2 () [w(m) G (e, 7, X (). 1) — v(X (), m)Cplw. 7, X (). m)] d.

Then, if we compare this last expression with (3.5), we deduce that

r

[ o X2 [Ste () = ) G 7. X)) = Gyl X)) by = 0.

0

Then, if we let & — X (7)~ and apply Lemma 2.1, we obtain

0(27') _ / )G;((rj—)) [ X (n) (w(n) - ﬁ(ﬁ)) G(X(1),7,X(n),n)

—G(X(7), 7, X(n).n) — X(n)G (X (7). 7, R(n).n)| dn.
By using Lemmas 2.1 and 2.2 and taking into account [3], we have
1
A(M.7) n3 3\ /2
ey an ()

[G(X(7),7, X (n),n)| <

Go(X(7), 7. X(n),n)| <

and
m(n) = ' % ) [SteX (n) (w(n) — H(n)) G(X (), 7, X (1), 1)
—G(X(7),7, X (1),n) = X(MGp(X(7),7, X (n),n)]|
<7

(Ucr +4+ nd (3\?
T—n Qﬁ 46 '

o(T)] < [ |d(n)|m(n)dn,
/

Therefore, we have

ZAMP

(3.10)

(3.11)

(3.12)

(3.13)

(3.14)

(3.15)

where m € L1(0,7),m > 0. As a consequence, if we take into account Gronwall’s inequality, we get

&(7) =0, for all 0 < 7 < 7, Le., ¢ vanishes identically in [0,7].

4. Existence and uniqueness of solution

O

We will use the Banach fixed point theorem to prove existence and uniqueness of the solution w € C[0, 7
for the Volterra integral equation (3.7), where 7 is a positive number to be determined (see references

1,2)).
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We consider the following closed set of the Banach space C°[0,5] given by
Conr = {w e C°[0,7] : |w||s < M},
with the norm ||w|lz = m[a)(J |w(7)| where M is a constant to be determined.
TE|0,0

In the remainder of this paper, unless otherwise stated, we will write ||w| to denote [|w/|5.

We define on Cz pr the operator ¥ given by
1

P(w)(r) =2 /pzvg(p)GI(X(T).T, p, 0)dp

0
+/XQ(H)U?(T])GE(X(T).TﬁX(‘T]L’I])d?] . (4.1)
0

Remark 4.1. Tt should be noticed that in the definition of the operator ¥, the tunction X (7) depends on
w(7) by formula (3.6).
We must prove that there exist £ > 0,7 > 0 and M > 0 such that
i) Y(w) < Com. Yw € Ca 1. (4.2)
i) |[U(wy) — U(ws)| < El|lwg —ws, E<1, Ywr,wz € Cam. (4.3)

To this end, we will need the following preliminary lemmas

Lemma 4.2. The operator W can be rewritten as
1

W(w)(r) =24 - [ [RHET().7.0.0) + REOR(X (7). 7.p,0)] dp
0

+ / X2()w(n) G (X (7), 7, X (n),n)dn (4.4)

Proof. It we replace G, by the formula given in Lemma 2.1 and use the identity G, = ,Wp, then we can

integrate by parts. Taking into account that vg(Xy) = 0, we get:

1 1
/Q%MMGAX(>TPO / .7, 0)dp
0 0

1
+f@w¥%ﬂﬂNuw>nmm@.
0

O

Lemma 4.3. Let wi,wy € Cq s and X; be defined by (3.6) corresponding to w;, ¢ = 1,2. Then, the
following inequalities hold
(i) |X1(7) — Xo(7)| £ Ste 7 [|wy —ws||, 7>0,

(i) | — Xgl('r)’ < n*Stealjw —wal, 7 >0,

cse 1 1
(i) )X?(r) X3

(iv) }%Ef; ﬁ:ETH <n(l+n)Ste 7wy —ws|, 7>0,

< 2'Ste 7wy —ws, T3>0,
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(v) X1(n — XQT(”) < 3n*Ste Tllwy — wal|,

X0 X3 > 0.

Proof. It. follows immediately from the integral representation (3.6) of the free houndary and Lemma 3.2.

O
Lemma 4.4. If we assume (3.3) and @ < 1, then we have the following inequalities
1
f [54OG(X (7). 7..0) + 2O (x (7). 7. p,0)] dp| < T, (45)
/ (M) w(n)Ge(X (1), 7, X (n).n)dn| < CaV7, (4.6)
0

where

Ty = n((n+ Dllvoll + llch]) -

@:M{Q:;E (A1) + 0% (£)77) + 37;}

with ||va|| = 01252(1 lva(p)|.

Proof. Taking into account that

[ (58 Tt p,0) + 2 BZOT X (7). 7..0)] 0

0
1
<n? [|vol| / B
Jo

1
(el + 1) f N(X(r).7..0)| dp.
0

(T)%Tr p.,0)| dp

and

1
G(X(7),7,p,0)|dp <1, / |N(X(t),7.p,0)]dp <1,
0

we obtain (4.5).
From Lemma 2.1, we have

X2 (0)Ga(X (1), 7, X (1),m) = X (n) [*X%(T)@X(T)- 7. X(n),n)

+ﬁéx(){(7’). 7, X(n), 77)] .

Since

_ 1
G(X(7), 7. X(n).n)| £ ————=, (4.7)
m(t—n)
by Lemma 3.2, we obtain
I it — MmN
[ E G X man| < 227
0
By using [3]. we can find that
r — nM 3/2
f% Go(X (7), 7, X () )| < 5= (A(M 1) +n3(2)Y )\/E (4.8)

0
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Therefore, we get (4.6). O
Lemma 4.5. Let

M =20, +1 (4.9)
If we assume (3.3) and @ < 1 such that

20, Vo < 1, (4.10)

then we have that W(w) € Cx a1, Yw € Co pr, 6., (4.2) is verified.
Proof. Due to the definitions of M and Lemma 4.4, we can observe that
T (w)(7)] < (M — 1) + 2C5 V7.

Therefore, if (4.10) holds then |¥(w)(7)| < M, ¥r € [0,7]. The continuity of U(w) arises immediately
from definition (4.1). O

Let w; € Cz p and X defined by (3.6) corresponding to w;, i = 1,2, respectively. Then, we can state
the following lemma.

Lemma 4.6. If we assume (3.3) and & < 1 such that
2M Ste A(M,7) & < 1, (4.11)

then we have the following inequalities

fimo

[ vo(p) + vy (p)

0

G(Xi(7),7.p,0)  G(Xa(7),
X3(7) X3(

1)- )‘dp<51\/§w1 — wal|, (4.12)

F(Xl(‘r)%ﬂ P O) B W(XZ(TLT: Py 0)
XI(T) XQ(T)

dp < Dy ||Jwy — wy, (4.13)

/ [ XE (w1 () Ca( X1 (7), 7, X1 (), m) — X3 (m)w2(n)Ga(Xa(7), 7, Xa(n), m)| dn
0

< DsVa|wy —wyl, (4.14)
where
D, =2 Ste n? ||vg| (% —0—71.2) ,
Do = (voll + [[vgl) m Ste (Z +n)
D3 = (Mn®Py + Po + MnP3 +nPy(1+ Ste M(1+n))),
with
Py = S (A(M D+ (2)7 "), Py = 22 (14 3Mn? Ste)
1_33:8713;( (M, 1) (;5/2725‘4 ))

Proof. We can observe that

CX et SO0 < 8 (X4 (7),7,p,0) ~ C (Xa(7), 7 0,0) |

+ |G (Xa(t),7,p,0) | —zm——zl—)

Xa(r
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By using [3], Lemma 3.2 and Lemma 4.3 iii), we obtain (4.12). Repeating similar arguments, we get
(4.13).
In the following reasoning, we will provide a detailed proof of (4.14). Taking into account Lemma 2.1
iii), v) and adding and subtracting suitable terms, we get
| XT ()wi ()G (X1 (7). 7. X1(n). n) — X3 (n)w2 ()G (X2(7). 7, Xa(n). 1)
< My + My + Ms + My,
where

My = | X [G(X,(7), 7, X1 (n), ) — G(Xa(7), 7, Xa(n), )]

Mj = [G(Xa(7), 7, Xa(n), )| | Xigha ) Xolgpuat|,

AI‘B — )%&m EE(XI T) T, Xl('”)* 77) - EI(X2(T)7T: XQ(”):”)] ) ’

My = |G (Xa(r), 7, Xa(n), 7 )Xlxi u:)(n) XQEEJQ)?i%(n) ) :

-
We are going to bound each integral f M;dn.

0
First, applying the definition of G we immediately obtain

G(X1(r), 7. X1(n),n) — G(X2(7), 7, X2(n),n)|
< |K(X1(7), 7, X1(n),n) — K(X2(7). 7, Xa(n), n)|
+ K (=X1(7), 7, X1 (n),m) — K(=Xa(7), 7, X1 (n), )] (4.15)
Using the mean value theorem, we get, by following [2,13], that

Sy = iF(Xl(T),T, X1(n),n) — K(X(7), 7, Xa(n), T}){

< s gty o (35 ) (%a(7) = Xa(7)] + X () = Xa(n)])

where ¢ < max |X;(7) — X;(n)]. Then, by Lemmas 3.2 and 4.3 we find that
=1,

Sl < A(sz/)_gtecr Hzi,/lewngH (416)

In a similar way, we get
Sy = }F (=X1(7), 7 X1(n), 1) — K (—Xa2(7), 7, X2(n) .7;)}

< 2\/W17 - 2‘(? 7‘;) exp (4(7 n)) | Xa2(7) + Xa(n) — Xu(r) — Xa(n)l,

where ¢* is between Xi(7) + X1(n) and Xs(7) + Xs(n). Then, due to Lemma 3.2, we can claim that
2 < ¢* < 2. In consequence, by formula (2.7), it follows

7(‘*2 1
exp(‘lﬁ*”)) < eXp(n?('r—'ﬂ)) < (3712)3/2 _ (1)3/2 n3

(T—m)372 — (1—m)3/2 — \ 2e — \2e :
Thus, we get

Sy < (&) 280 Ty — . (4.17)

Taking into account (4.15), (4.16) and (4.17), we obtain, by just integrating, that
f\a(Xl(T);T- X1(n),m) — G (Xa(7), 7, Xa(n), n) |dy < P1va|lwy —wsl,
0
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with Py = f (A(M 1)+ (3 6)3/2 3) Therefore, by Lemma 3.2 we get
T
/Aﬁdn < Mn?PiV7 |lwy — wal|.
0

From (4.7) and Lemmas 3.2, 4.3, it follows that

G (Xa(7). 7, Xa2(n), n) llé%wl(n) —Q(Tug 7))|

S S €10)) —w , Xi(n _ Xo(m)
< m(x (|wy UQHJFHUJZ”} X2(r )
Therefore,
fﬂ[QdT] S Fg\/g | wy — lL‘Q”,
0

with Py = 22 (1 +3Mn? Ste).
In a similar way to what we have done for A7, we obtain that
|G (X1(7), 7. X1(n),n) = Go(Xa(7), 7, X2(n),n)|
< Ko (Xa(r), 7, X (), n) — Ko(Xa(7), 7, Xa(n), )|
- |Fx(fX1(T), 7. X1(n),n) — Ko(—Xo(7), 7, X2(n). n)} .
On the one hand, we can check that

|F$(X1 ('T), T, Xl(”)r 77) - FI(XQ(T)J—? X2(77)5W)|

= % (K (X1(7),7, X1(n), ) (X1(1) — X1(n))
2|7 —n

—K(Xy(7). 7, Xa(n),n)(X2(7) — Xa(n))|
|F(X1(T)575 X1(77)5W)|
2|7 —n|

. ’ o F(XQ(T)*T= XQ(U)» 77)
H1Xa(7) — Xa(n)| |1 F(Xl(ﬂr),nxl(n),n)’}‘

{X1 (1) = Xi(n) = Xa(7) + Xa(n)]

and we can observe that

?(XQ (T),T,XQ(T]),T]) —
?(Xl (T),T,X1 (ﬂ):ﬂ) - eXp(f(T; 77)) )

with
flr.n) = *(XQ(T)*X2(1))T{":(5(1(T)*X1(n))2
_ (X1(T)*X1(71)+X2(T)*X2(477())(X)1(T)*Xl(n)*Xa(THXg(n))_
T

Taking into account Lemmas 3.2 and 4.3, we can obtain that

|f(r.m)| < Ste A(M,7) 7 ||wy — wa|| <2M A(M, 7) Ste 5.
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(4.18)

We know that if |y| < 1 then |1 — exp(y)| < 2|y|. Therefore, if we assume (4.11) and calling y = f(7, 1)

we get

[T —exp(f(m, )| < 2|f (7, )| < 2A(M,7) Ste 7|wy — wal|.
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In consequence,

|Ko (X1 (7), 7 X1(n),m) — Ko (Xa(7), 7. X2(n), m)|

< Ste A°(M, - 4.19
= m(2+ (M,7)7 )ul wal|. ( )
On the other hand, by the mean value theorem we can ascertain that
|K$(—X1(7), 7, X1(n),n) — Ko (=Xa(7), 7, Xa(n), r})|
< | Kaa(g(r,m), 7.0.0)[ [ X1(7) + X1(n) — Xa(7) — Xa2(n)],

with g(7,n) between Xo(7) + Xa(n) and X1 (7) + X1(n).
From Lemma 3.2, we have % < g(7,n) < 2. Then, by formula (2.7) we can derive the following
inequality

g~ (T.m)
_ ()
Rl 01 € e (4655 + 2)

exp

T n2(t—1n) n)
= 2\/11'(7' ) ( (T—n)? + 2(m— Tl))

1 5n2 5/2
<m= (%) ¥
n’ 5/2 NI
<2 ((2) ?) (4.20)
Due to (4.19) and (4.20), by integrating, we obtain

T

[ Gala(7).m X)) = B Xa(r). 7 Xali) )y < P

w1 — wQHr
0
5/2
with P = 32 (3 + 2700 1) + 02 ((£) 00 + 1)),
Then,
/ Msdn < MnPs V& |w, — ws. (4.21)
0

Following similar arguments, we deduce that

.
/ G (X2(7), 7, Xo(n),n)|dn < PG,
0

with Py = Z(i\f’%l) + % and therefore
T
/!\1’4dn < Pyn (1+ Ste M(1+4 n))Va|w; — ws]. (4.22)
0
From the above inequalities, we conclude that (4.14) holds. U

Lemma 4.7. Let M given by (4.9) and
F:=2(D, + D, + Ds), (4.23)
where Dy, i = 1,2,3 are given in Lemma 4.6. If we assume (3.3), (4.11) and & < 1 such that
FVa <1, (4.24)
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then we have that W is a contraction mapping, i.c., (4.3) is verified.

Proof. From Lemma 4.6, we can observe that
[T (wy) — T(wsy)|| < FVE|wy —ws||, Vwy.wy € Conr-
Therefore, by condition (4.24), ¥ turns out to be a contraction mapping. ]

Therefore, we can obtain the following main result:

Theorem 4.8. For M given by (4.9), if we choose T < 1 such that the conditions (3.3), (4.10), (4.11)
and (4.24) are satisfied, then the Volterra integral equation (3.7) has a unique solution w on Cz . Then,
there exists a unique solution to the free boundary problem (2.2a)—(2.2f) given by v = v(x,7), X = X(7)
,0<w < X(7), 7 € [0,7] whose integral representation is given by (3.5)—(3.6).

Proof. The proof of the theorem follows from the results obtained in the previous sections applying the
methodology of the integral representation of Friedman-Rubinstein [7,12]. ]

Once we have proved the existence and uniqueness of solution to the problem (2.2a)—(2.2f), let us
return to the original problem (1.1a)—(1.1f) and state the following main result:

Theorem 4.9. Let us define M by
2n

M= ————[(n+1)[|To — Ts T 4.25
(Tg *Ts) [(ﬂ+ )H 0 L”Ro +” O”Ro}v ( ))

where T} denotes the derivative of the function Ty = To(r) with respect to r. If we choose the supremum

2
of o such that o < % and the following conditions hold

. [RE(n—1) R2
A(M,0)o < o ; o , 4.26
(7)o < mm{ an QQJ\ISte} / (4.26)

pL 7 (A (ar BB s (2)27) 4 20 B
QM{Q\/E(A@I, 5) +n* (£) )+ﬁ}\/5<\/% (4.27)

2(D1+4 D2+ D3) Vo < %, (4.28)
where ne N, n > 2,
A(M, o) := Ste {ﬂf + %ha} \ (4.29)
and
D, — 2 Ste T(L;!T:DT—;AIRD (ﬁ 4 nQ) ’
Ds = (ITo ~ Tullry + 1 T3l1m) ofSy (& +1).
Dy = (Mn?® Py + P, + MnPs+nP,(1+Ste M (1+n))).
with

P (a00 )5 7). m 2 (st
VT

sz—;(%+A2(ﬂJ,%)+n (21 523 4 ;))
2
A(M,%) 12n3/2

Py = 2./7 (2e)372°
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then, there exvist a unique solution to problem (1.1a)—(1.1f) given by T = T(r,t), R = R(t), 0 < r < R(t),
t € [0, 0] whose integral representation is given by:

Rp
/ To(z)=Ts
T(rt)= (T, —Ts) /22 (%) G(r,at,2,0) dz
0
i
+% /RQ(I/) Wi(v) G(r,at, R(v),av)drv p + T, (4.30)
0
S 1 / 1 /
aSte . )
R(t)=Ro¢1— R\ % /h(u) dv — T / W(v)dv (4.31)
0 0
where W(t) is the unique solution of Volterra integral equation
Ro
W(t) =2 RO/ (%) 22GL(R(t), at, z,0)dz
0
¢
+o / R*(v) W(v) G(R(t), ot, R(v),v)dv 3 . (4.32)

0

Remark 4.10. In the special case that the extinction time ¢, is smaller than R2/a, the assumption
o < R2/a is not longer necessary for the proof of Theorem 4.9.

Remark 4.11. (Extension of the solution) In order to extend the solution for all times, following [7], for

a sufficiently small 7, we can consider the problem defined on ¢ — ) < ¢ < 0 + € with € > 0 that consists
of finding 7% = T (., t) and R* = RY(t) such that:

el = %(T-QT,})T, O<r<RY(t),.oc—n<t<o+e, (4.33a)
TH0,t) =0, oc—n<it<o+e, (4.33Dh)
KTH(RY(t).1) + h(t)(Ts — T,) = pLRY(t), o—n<t<o+e, (4.33¢)
THr,o—n)=T(r,o—n), 0<r<R(a—n), (4.33d)
TY R (t),t) = Ts, g-—n<t<ote, (4.33¢)
RYo —n) =R(c — 7). (4.331)

where T, R is the solution to the problem (1.1a)—(1.1f).
Setting the following change of variables t* =+ — (¢ —n), T*(r,t*) = T (r,t) and R*(t*) = R(#), we
obtain:

pely = 7’.‘—’2(7‘2T:),ﬂ, 0<r<R(),0<t* <p+e, (4.34a)
TA0.4) =0, 0<t<n+te, (4.34h)
KT (R*(#), %) + h*(t*)(T, — T,) = pLR*(t*), 0 <t* <n+e, (4.34¢)
T*(r,0) =T}(r), 0<r <R, (4.34d)
T*(R*(t"),t") = Ts, 0<t" <n+e, (4.34e)
R*(0) = R}, (4.34f)

with h*(t*) = h(t), T1(r) = T(r,o0 —n) and R} = R(o — 7).
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Repeating the prior analysis that led us to Theorem 4.9, we can prove existence and uniqueness of
the solution T, Ry for the problem (4.33a)—(4.33f) for o —n < t < o + ¢, which coincides with 7', R in the
common interval of existence (o — 1, ). Then, we can repeat this process until we reach the extinction
time t,.

Remark 4.12. (Extinction time) From equation (4.31), we have that R(t) = RoV (t) where

t t
V(t)=1- Oz;(t)e %/h(i/) dv — Rig / W (v)dv
0 0
satisfies V(0) =1, V'(¥) < 0, and lim V(¢) = 0.

t—te
Then, there exists the inverse function V=1 : (0,1] = [0,¢,) that satisfies
te = lim V7l(z).

z—0+

5. Conclusion

In this paper,, we have studied the evaporation process of a spherical droplet through a one-dimensional
Stefan problem with spherical symmetry. An equivalent integral formulation for the corresponding dimen-
sionless problem has been obtained and we have proved existence and uniqueness of the solution, applying
the methodology of Friedman—Rubinstein. Then, we have returned to the original problem obtaining also
its integral formulation and proving existence and uniqueness of solution.
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