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a b s t r a c t

A non-classical one dimensional Stefan problem with thermal coefficients temper-
ature dependent and a Robin type condition at fixed face x = 0 for a semi-infinite
material is considered. The source function depends on the evolution the heat flux
at the fixed face x = 0. Existence of a similarity type solution is obtained and
the asymptotic behaviour of free boundary with respect to latent heat fusion is
studied. The analysis of several particular cases are given.
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1. Introduction

The study of heat transfer problems with phase change such as melting and freezing has attracted
growing attention in the last decades due to their wide range of engineering and industrial applications.
Stefan problems can be modelled as basic phase-change processes where the location of the interface is a
priori unknown. They arise in a broad variety of fields like melting, freezing, drying, friction, lubrication,
combustion, finance, molecular diffusion, metallurgy and crystal growth. Due to their importance, they have
been largely studied since the last century [1–8].

The Stefan problem is nonlinear even in its simplest form due to the free boundary conditions. When
the thermal coefficients are temperature dependent there exists a double nonlinearity of the free boundary
problem. Some problems in this area can be seen in [9–15].

We are concerned with the following Stefan problem which is governed by a non-classical and nonlinear
heat equation with heat source F , thermal coefficients which depend on the temperature and a convective
boundary condition at fixed face x = 0. We aim to determine the temperature T = T (x, t) and the free
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boundary s = s(t) such that the following equations are verified:

ρ(T )c(T )Tt = (k(T )Tx)x − F (Z(t), t) , 0 < x < s(t), t > 0 (1)

k(T (0, t))Tx(0, t) = h√
t
(T (0, t) − T ∗) , h > 0 (2)

T (s(t), t) = Tm (3)

k (T (s(t), t)) Tx(s(t), t) = −ρ0 l
•
s (t) (4)

s(0) = 0 (5)

where ρ(T ), c(T ) and k(T ) are the density of the material, its specific heat, and its thermal conductivity,
respectively; Tm is the phase-change temperature, ρ0 > 0 its the constant density of mass at the melting
temperature; l > 0 is the latent heat of fusion by unity of mass and s(t) is the position of phase change
location. We assume that the temperature of the medium T ∗ satisfies Tm < T (0, t) < T ∗, t > 0.

We assume that the control function F depends on the evolution of the heat flux at the boundary x = 0
as follows

Z(t) = Tx(0, t) , F (Z(t), t) = F (Tx(0, t), t) = λ√
t
Tx(0, t) (6)

where λ is a given positive constant, whose physical dimensions are [λ] = m/Tt5/2.
The non-classical heat conduction problem for a semi-infinite material was motivated by the modelling of

a system of temperature regulation in isotropic media and the source term F (Tx(0, t)) describes a cooling or
heating effect depending on the properties of F which are related to the evolution of the heat flux Tx(0, t) in
this article. Some problems of this type were studied in [5,16–20]. Non-classical free boundary problems of
the Stefan type were considered in [21,22] from a theoretical point of view by using an equivalent formulation
through a system of nonlinear integral equations. In [23] explicit solutions of similarity type to one-phase
Stefan problems for non-classical heat equation with constants thermal coefficients and a source F depending
on the evolution of the temperature or the heat flux at the fixed face x = 0 were obtained. In [24] the existence
and uniqueness, local in time, of the solution of a one-phase Stefan problem for a non-classical heat equation
with constants thermal coefficients and a convective boundary conditions, was proved. Here the heat source
depends on the temperature at x = 0. The Friedman–Rubinstein integral representation method and Banach
contraction theorem was used.

The analogous Stefan problem to (1)–(5) for a Dirichlet or a Neumann conditions at the fixed face x = 0,
with a null control function, was considered in [25] where an equivalent integral equation was obtained,
but no mathematical justifications are given therein. For this problem, in [26] the existence of an explicit
similarity type solution, by using a double fixed point, was given.

The mathematical analysis of two one-phase unidimensional and non-classical Stefan problems with
nonlinear thermal coefficients was considered in [27]. Two related cases were studied, one of them has a
temperature condition on the fixed face x = 0 and the other one with a flux condition of the type −q0/

√
t

(q0 > 0). In the first case the source function depends on the heat flux and in the other case it depends on
the temperature at the fixed face x = 0. In both cases sufficient conditions for data in order to have the
existence of an explicit solution of a similarity type were obtained by using a double fixed point.

The goal of this paper is to obtain sufficient conditions on data to prove existence of solution of similarity
type to problem (1)–(6).

In Section 2, under certain hypothesis of thermal coefficients, we prove the existence of at least one
similarity type solution of a problem (1)–(6) by using a Banach contraction theorem for an integral equation
and solving a transcendental equation to prove the existence of the coefficient that characterize the free
boundary.
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In Section 3 we analyse the behaviour of free boundary with respect to latent heat of fusion l. We prove
that for sufficiently large values of l the phase change is a much slower process.

In Section 4 we present some particular cases: the solution of (1)–(6) when it has a null source and then,
we give two examples: one of them for constant thermal coefficients and the another example for a linear
conductivity related to the temperature.

2. Solving nonclassical Stefan problem

We define the following transformation [27]

θ(x, t) = T (x, t) − T ∗

Tm − T ∗ (7)

then the problem (1)–(6) becomes

N(θ)θt = α0 (L(θ)θx)x − λ

c0ρ0
√

t
θx(0, t), 0 < x < s(t), t > 0 (8)

k ((Tm − T ∗)θ(0, t) + T ∗) θx(0, t) = h√
t
θ(0, t), t > 0 (9)

θ(s(t), t) = 1, t > 0 (10)

k(Tm)θx(s(t), t) = ρ0 l

Tm − T ∗
•
s (t), t > 0 (11)

s(0) = 0 (12)

where
N(T ) = ρ(T )c(T )

ρ0c0
, L(T ) = k(T )

k0
, (13)

and k0, ρ0, c0 and α0 = k0
ρ0c0

are the reference thermal conductivity, density of mass, specific heat and thermal
diffusivity respectively.

Now we assume a similarity solution of the type

θ(x, t) = f(ξ) , ξ = x

2
√

α0t
(14)

then the conditions (10) and (11) imply that the free boundary s(t) must be

s(t) = 2ξ0
√

α0t (15)

where ξ0 is a positive parameter to be determined later.
Therefore, the conditions (8)–(11) reduce to the following problem:

[L(f)f ′(ξ)]′ + 2ξN(f)f ′(ξ) = Af ′(0), 0 < ξ < ξ0 (16)

L(f(0))f ′(0) = pf(0) (17)

f(ξ0) = 1 (18)

f ′(ξ0) = Mξ0 (19)

where
L(f(x)) = k((Tm−T ∗)f(x)+T ∗)

k0
, N(f(x)) = ρc(((Tm−T ∗)f(x)+T ∗))

ρ0c0
(20)

and
A = 2λ√

c0ρ0k0
, p = 2Bi, M = 2k0

k(Tm)Ste
. (21)

with Bi =
√

α0h0
k0

> 0 (generalized Biot number) and Ste = c(T ∗−Tm)
l > 0 (Stefan number).
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From (16)–(18) we have that f must satisfy the following nonlinear integral equation of Volterra type:

f(ξ) = L(f(0)) + pΦ [ξ, L(f), N(f)]
L(f(0)) + pΦ [ξ0, L(f), N(f)] , (22)

where Φ is given by

Φ [ξ, L(f), N(f)] :=
∫ ξ

0

1
G(f)(u) du + A

∫ ξ

0

w(f)(u)
G(f)(u) du, (23)

G(f)(x) := L(f(x))
L(f(0)) I(f)(x) , I(f)(x) := exp

(∫ x

0
2s

N(f(s))
L(f(s)) ds

)
, (24)

w(f)(x) :=
∫ x

0

G(f)(u)
L(f)(u) du = 1

L(f(0))

∫ x

0
I(f)(u)du (25)

The condition (19) for the unknown ξ0 can be rewritten as

1
G(f)(ξ0) + A

w(f)(ξ0)
G(f)(ξ0) = Mξ0

[
L(f(0))

p
+ Φ [ξ0, L(f), N(f)]

]
(26)

In order to prove the existence of solution f and ξ0 to (22) and (26), we begin by analysing (22) for any
given ξ0 > 0.

We consider C0 [0, ξ0], the space of continuous real functions defined on [0, ξ0], with the norm

∥f∥ = max
ξ∈[0,ξ0]

|f(ξ)| (27)

and we define the operator H : C0[0, ξ0] −→ C0[0, ξ0] given by

H(f)(ξ) = L(f(0)) + pΦ [ξ, L(f), N(f)]
L(f(0)) + pΦ [ξ0, L(f), N(f)] (28)

By using the Banach fixed point theorem we will demonstrate that for each ξ0 > 0 there exists a unique f

such that
H(f(ξ)) = f(ξ) , 0 < ξ < ξ0 (29)

which is the solution of (22).
For this, we assume the following hypothesis for dimensionless thermal conductivity and specific heat

Lm ≤ L(T ) ≤ LM , Nm ≤ N(T ) ≤ NM (30)

|L(g) − L(h)| ≤ L̃ ∥g − h∥ , ∀g, h ∈ C0 (R+
0
)

∩ L∞ (R+
0
)

(31)

|N(g) − N(h)| ≤ Ñ ∥g − h∥ , ∀g, h ∈ C0 (R+
0
)

∩ L∞ (R+
0
)

(32)

where Nm, NM , Lm, LM are positive constants and L̃ and Ñ are the Lipschitz constants.
For the convenience of the reader we repeat the relevant material from [27] without proofs, thus making

our exposition self-contained.

Lemma 1. Let ξ0 be a given positive real number. For all f, f∗ ∈ C0 [0, ξ0], and ξ ∈ (0, ξ0) we have

Lm

LM
ξ0 exp

(
−NM

Lm
ξ2

0

)
≤ Φ [ξ, L(f), N(f)] ≤ R(ξ0), (33)

|Φ [ξ, L(f), N(f)] − Φ [ξ, L(f∗), N(f∗)]| ≤ C(ξ0) ∥f − f∗∥ . (34)



A.C. Briozzo and M.F. Natale / Nonlinear Analysis: Real World Applications 49 (2019) 159–168 163

where

R(ξ0) = LM

Lm
ξ0 + A

ξ3
0LM exp

(
NM
Lm

ξ2
0

)
2L2

m

, C(ξ0) = ξ0 (C1(ξ0) + AC2(ξ0)) (35)

C1(ξ0) = L2
M

L2
m

C3(ξ0), C2(ξ0) =
exp

(
NM
Lm

ξ2
0

)
L2

M

L3
m

[
ξ2

0
2 C3(ξ0) + LM C6(ξ0)

]

C3(ξ0) =
L2

M C4(ξ0) + C5(ξ0) exp
(

NM ξ2
0

Lm

)
L2

m

, C4(ξ0) =
exp

(
NM
Lm

ξ2
0

)
ξ2

0

L2
m

(
ÑLM + NM L̃

)

C5(ξ0) = 2LM L̃, C6(ξ0) = ξ0
LM

L2
m

⎡⎣ L̃ exp
(

NM
Lm

ξ2
0

)
Lm

+ C3(ξ0)

⎤⎦
Theorem 1. Let ξ0 > 0 be a given number. We assume that (30)–(32) hold. If ξ0 satisfies the inequality

ϵ(ξ0) := p

L2
m

[
C(ξ0) (2LM + 2pR(ξ0)) + 2R(ξ0)L̃

]
< 1 (36)

then there exists a unique solution f ∈ C0 [0, ξ0] of the integral equation (22).

Proof. Assuming the hypothesis given by (30)–(32) we will prove that H is a contraction mapping from
C0 [0, ξ0] to itself.

From properties of thermal coefficients and (28) we have that the operator H is in fact self mapping on
C0 [0, ξ0].

Let f, f∗ ∈ C0[0, ξ0], then we obtain

|H(f(ξ)) − H(f∗(ξ))| =
⏐⏐⏐⏐ L(f(0)) + pΦ [ξ, f ]
L(f(0)) + pΦ [ξ0, f ] − L(f∗(0)) + pΦ [ξ, f∗]

L(f∗(0)) + pΦ [ξ0, f∗]

⏐⏐⏐⏐ (37)

where we have denoted Φ [ξ, f ] = Φ [ξ, L(f), N(f)].
We have⏐⏐⏐⏐ L(f(0)) + pΦ [ξ, f ]

L(f(0)) + pΦ [ξ0, f ] − L(f∗(0)) + pΦ [ξ, f∗]
L(f∗(0)) + pΦ [ξ0, f∗]

⏐⏐⏐⏐
=
⏐⏐⏐⏐ (L(f(0)) + pΦ [ξ, f ]) (L(f∗(0)) + pΦ [ξ0, f∗]) − (L(f∗(0)) + pΦ [ξ, f∗]) (L(f(0)) + pΦ [ξ0, f ])

[L(f(0)) + pΦ [ξ0, f ]][L(f∗(0)) + pΦ [ξ0, f∗]]

⏐⏐⏐⏐
≤

∑6
i=1 Ii

[L(f(0)) + pΦ [ξ0, f ]][L(f∗(0)) + pΦ [ξ0, f∗]]

where

I1 = pL(f∗(0)) |Φ [ξ0, f ] − Φ [ξ0, f∗]| ≤ pLM C(ξ0) ∥f − f∗∥

I2 = pΦ [ξ0, f∗] |L(f(0)) − L(f∗(0))| ≤ pL̃R(ξ0) ∥f − f∗∥

I3 = pL(f(0)) |Φ [ξ, f ] − Φ [ξ, f∗]| p ≤ LM C(ξ0) ∥f − f∗∥

I4 = pΦ [ξ, f ] |L(f(0)) − L(f∗(0))| ≤ pL̃R(ξ0) ∥f − f∗∥

I5 = p2Φ [ξ, f∗] |Φ [ξ0, f ] − Φ [ξ0, f∗]| ≤ p2R(ξ0)C(ξ0) ∥f − f∗∥

I6 = p2Φ [ξ0, f∗] |Φ [ξ, f ] − Φ [ξ, f∗]| ≤ p2R(ξ0)C(ξ0) ∥f − f∗∥
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Taking into account above inequalities and the fact that

L(f(0)) + pΦ [ξ0, f ] ≥ Lm

[
1 + p

LM
ξ0exp

(
−NM

Lm
ξ2

0

)]
≥ Lm

we have
∥H(f) − H(f∗)∥ = max

ξ∈[0,ξ0]
|H(f(ξ)) − H(f∗(ξ))| ≤ ϵ(ξ0) ∥f − f∗∥ (38)

where ϵ(ξ0) is defined by (36).
If ϵ(ξ0) < 1 then the operator H is a contraction mapping from C0 [0, ξ0] to itself. Therefore, there exists

unique fixed point f ∈ C0 [0, ξ0] for H, that is to say, there exists a unique solution f ∈ C0 [0, ξ0] of the
integral equation (22). □

Remark 1. The solution f of (22), depends on the real number ξ0 > 0. We can denote

f(ξ) = fξ0(ξ) = f(ξ0, ξ) , 0 < ξ < ξ0 , ξ0 > 0. (39)

Lemma 2. There exists a positive number ξ∗
0 such that

ϵ(ξ∗
0) = 1, ϵ(ξ0) < 1 if 0 ≤ ξ0 < ξ∗

0 , ϵ(ξ0) > 1 if ξ0 > ξ∗
0 .

Proof. We have ϵ(0) = 0 , ϵ(+∞) = +∞ and ϵ′(ξ0) > 0 for all ξ0 > 0. Then there exists ξ∗
0 > 0 such that

ϵ(ξ∗
0) = 1 and

ϵ(ξ0) < 1 if 0 ≤ ξ0 < ξ∗
0 , ϵ(ξ0) > 1 if ξ0 > ξ∗

0 . □

Next, we must prove that there exists 0 < ξ̂0 < ξ∗
0 such that it satisfies Eq. (26).

We define the function V = V (x), for x ∈ [0, ξ∗
0) as follows

V (x) := 1 + Aw(fx)(x)
G(fx)(x)M

[
L(fx(0))

p + Φ(x, fx)
] (40)

where we denote fx to the unique solution of (22) for each x ∈ [0, ξ∗
0). Then, Eq. (26) is equivalent to

V (x) = x , x ∈ [0, ξ∗
0). (41)

We give the following preliminary results:

Lemma 3. Under hypothesis (30) we have:

1. g1(x) ≤
∫ x

0
I(fx)(u)du

I(fx(x)) ≤ g2(x)
2. g3(x) ≤ 1

G(fx)(x) ≤ g4(x)
3. g3(x) + A

LM
g1(x) ≤ 1+Aw(fx)(x)

G(fx)(x) ≤ g4(x) + A
Lm

g2(x)

where

g1(x) :=
√

LM

Nm
f1

(√
Nm

LM
x

)
, g2(x) :=

√
Lm

NM
f1

(√
NM

Lm
x

)
,

function f1 is the Dawson’s function defined by [23]

f1(x) = exp(−x2)
∫ x

0
exp(z2)dz

and
g3(x) := Lm

LM
exp

(
−NM

Lm
x2
)

, g4(x) := LM

Lm
exp

(
−Nm

LM
x2
)

.



A.C. Briozzo and M.F. Natale / Nonlinear Analysis: Real World Applications 49 (2019) 159–168 165

Lemma 4. For x ∈ [0, ξ∗
0) we have:

V2(x) ≤ V (x) ≤ V1(x),

where

V1(x) = p

MLm

[
g4(x) + A

Lm
g2(x)

]
, x ≥ 0 (42)

V2(x) = p

MLM

[
g3(x) + A

LM
g1(x)

]
, x ≥ 0 (43)

which satisfy the following properties

V1(0) = pLM

ML2
m

, V1(+∞) = 0, V ′
1(x) < 0

V2(0) = pLm

ML2
M

, V2(+∞) = 0, V ′
2(x) < 0.

Theorem 2. (a) There exist unique x1 > 0 and x2 > 0 solutions of equations V1(x) = x and V2(x) = x,
respectively.

(b) If

x1 < ξ∗
0 (44)

then Eq. (26) has at least one solution ξ̂0 ∈ (x2, x1).

Proof. It follows easily from the previous lemmas. □

Remark 2. The inequality (44) is equivalent to the following condition for the latent heat fusion

l > l̂ := pB(ξ∗
0)k(Tm)(T ∗ − Tm)

2ρ0α0L2
m

(45)

where B = B(x) is a decreasing function given by:

B(x) =
LM exp

(
− NM

Lm
x2
)

+ A
√

Lm
NM

f1

(√
NM
Lm

x
)

x

Finally, we can enunciate the following theorem of existence of the solution.

Theorem 3. If N and L verify the conditions (30)–(32) and data satisfies (45) then there exists at least one
solution of the problem (1)–(6) where the free boundary is given by

s(t) = 2ξ̂0
√

α0t

with ξ̂0 established by Theorem 2, the temperature is given by

T (x, t) = (Tm − T ∗)fξ̂0
(ξ) + T ∗,

with ξ = x/2
√

α0t and fξ̂0
is the unique solution of the integral equation (22) on the interval [0, ξ̂0] .
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3. Asymptotic behaviour of free boundary with respect to latent heat fusion

From previous section we have that the existence of solution of problem (1)–(6) is given for sufficiently
large latent heat of fusion.

We will analyse the behaviour of the free boundary s(t) = 2ξ̂0
√

α0t with respect to the latent heat.
We consider Eq. (26) for the coefficient ξ̂0 which characterizes the free boundary. Taking into account

definition (21) we note that coefficient M is directly proportional to latent heat l and we can write M = M(l).
Moreover the notation V = Vl(x) and ξ̂0(l) is adopted in order to emphasize the dependence of the solution
of (26) on l. This fact is going to facilitate the subsequent analysis of the asymptotic behaviour of the free
boundary, that is

Vl(x) = 1 + Aw(fx)(x)
G(fx)(x)M(l)

[
L(fx(0))

p + Φ(x, fx)
] , x ∈ [0, ξ∗

0) (46)

for latent heat l > l̂ and ξ̂0(l) is a solution of equation

Vl(x) = x

Thus, we obtain the following result:

Lemma 5. If l̂ < l1 < l2 we have

ξ̂0(l1) > ξ̂0(l2), sl1(t) > sl2(t),

for each t > 0. Moreover
lim

l→+∞
ξ̂0(l) = 0.

Proof. Let l1, l2 be such that l̂ < l1 < l2. From (46) we have for each x ∈ [0, ξ∗
0) :

Vl2(x) < Vl1(x)

then ξ̂0(l1) > ξ̂0(l2) and sl1(t) > sl2(t), for each t > 0.
From Theorem 2 we have that if l > l̂ then

x2(l) < ξ̂0(l) < x1(l)

where x1(l) and x2(l) are the unique solutions of equations V1l(x) = x and V2l(x) = x respectively, where
V1l and V2l are given by (42) and (43). Therefore, taking into account properties of Vil we have

lim
l→+∞

ξ̂0(l) = 0. □

Corollary 1. For each t > 0 we have
lim

l→+∞
sl(t) = 0

that is, when l grows up the phase change is a much slower process.

4. Particular cases

4.1. Stefan problem with null source

We now turn to the case λ = 0, that is, we have that (1)–(6) is a Stefan problem with null source. The
solution to (16)–(19), for A = 0, must satisfies the integral equation

f(ξ) = L(f(0)) + pΦ0 [ξ, L(f), N(f)]
L(f(0)) + pΦ0 [ξ0, L(f), N(f)] ,
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with
Φ0 [ξ, L(f), N(f)] :=

∫ ξ

0

1
G(f)(u) du = L(f)(0)

∫ ξ

0

1
L(f)(u)I(f)(u) du (47)

and the condition for the coefficient ξ00 which characterizes the free boundary is
1

G(f)(ξ00) = Mξ00

[
L(f(0))

p
+ Φ0 [ξ00, L(f), N(f)]

]
(48)

In this case the condition (45) that guarantees the existence of at least a solution ξ̂00 of (48) turns out

l > l̂00 := pB0(ξ∗
00)k(Tm)(T ∗ − Tm)

2ρ0α0L2
m

(49)

where

B0(x) =
LM exp

(
− NM

Lm
x2
)

x
(50)

and ξ∗
00 satisfies

ϵ0(ξ∗
00) = LM pξ∗

00
L2

m

[
C1(ξ∗

00)
(

3 + 2pξ∗
00

Lm

)
+ 2L̃

Lm

]
= 1. (51)

4.2. Constant thermal coefficients

For the particular case of constant thermal coefficients we have L = N = 1 and the explicit solution to
(16)–(19) is given by

f(ξ) =
1 + p

√
π
2

[
erf(ξ) + 2A√

π

∫ ξ

0 f1(x) dx
]

1 + p
√

π
2

[
erf(ξ̂0) + 2A√

π

∫ ξ̂0
0 f1(x) dx

] (52)

with ξ̂0 the unique solution of

exp
(
−ξ2

0
)

+ Af1(ξ0) = Mξ0

[
1
p +

√
π
2 erf(ξ0) + A

∫ ξ0

0
f1(x) dx

]
(53)

and M = 2
Ste .

4.3. Linear conductivity

The case ρ(T ) = ρ0, c(T ) = c0 and k(T ) = k0

[
1 + η T −T ∗

Tm−T ∗

]
= k0 [1 + ηf ] implies N(f) = 1 and

L(f) = 1 + ηf . The problem (16)–(19) becomes

((1 + ηf)f ′)′ + 2ξf ′ = Af ′(0). (54)

(1 + ηf(0))f ′(0) = pf(0) (55)
f(ξ0) = 1 (56)

f ′(ξ0) = 2ξ0

(1 + η)Ste
(57)

which was studied in [11] for A = 0. A result on existence and uniqueness of solution of nonlinear boundary
problem of second order (54)–(57) was proved and this solution was defined as a Generalized Modified Error
(GME) function. Therefore the existence of similarity type solution to (1)–(6) was proved. Moreover it was
shown that the solution to problem with Dirichlet boundary condition in place of the convective one, can
be obtained at the limit case of the solution to problem (1)–(6) when the coefficient h that characterizes the
heat transfer at x = 0 goes to infinity. GME function is a non-negative bounded analytic function which is
increasing and concave, just as the classical error is. Finally, it was proposed a strategy to obtain explicit
approximations for the GME.
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