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Abstract We consider a nonlinear one-dimensional Stefan problem for a semi-infinite mate-
rial x > 0, with phase change temperature T f . We assume that the heat capacity and the
thermal conductivity satisfy a Storm’s condition. A convective boundary condition and a heat
flux over-specified condition on the fixed face x = 0 are considered. Unknown thermal coef-
ficients are determined for the free boundary problem and for the associate moving boundary
problem andwe give sufficient conditions to obtain a parametric representation of a similarity
type solution. Moreover, we give formulae for the thermal coefficients in both cases.

Keywords Stefan problem · Free boundary problem · Phase-change process · Similarity
solution · Unknown thermal coefficient · Over-specified boundary condition

Mathematics Subject Classification 35R35 · 80A22 · 35C05

1 Introduction

Heat transfer problem with change-phase such as melting and freezing has been studied in
the last century due to their wide scientific and technological applications (Alexiades and
Solomon 1993; Cannon 1984; Carslaw and Jaeger 1965; Crank 1984; Fasano 2005; Gupta
2003; Lunardini 1991; Rubinstein 1971).

We consider the following one phase nonlinear unidimensional Stefan problem for a semi-
infinitematerial x > 0,with phase change temperature T f andwith a over-specified condition
at the fixed face x = 0, (Briozzo and Natale 2014, 2016; Hill and Hart 1986; Solomon et al.
1983; Tarzia 1981)
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A. C. Briozzo

ρc(T )
∂T

∂t
= ∂

∂x

[
k(T )

∂T

∂x

]
, 0 < x < X (t), t > 0, (1)

k(T (0, t))
∂T

∂x
(0, t) = h√

t
[T (0, t) − Tm], h > 0, t > 0, (2)

k(T (0, t))
∂T

∂x
(0, t) = q0√

t
, q0 > 0, t > 0, (3)

T (X (t), t) = T f , (4)

k(T f )
∂T

∂x
(X (t), t) = ρL

•
X (t), t > 0, (5)

X (0) = 0 (6)

where L is the latent heat of fusion of the medium, ρ is the density (assumed constant), Tm is
the temperature of the medium Tm < T (0, t) < T f , h is the positive heat transfer coefficient
and q0 is the coefficient which characterize the heat flux on the fixed face x = 0.

We assume that the metal exhibits nonlinear thermal characteristics such that the heat
capacity c(T ) > 0 and the thermal conductivity k(T ) > 0 satisfy a Storm’s condition
(Briozzo et al. 1999; Briozzo and Natale 2014, 2016; Knight and Philip 1974; Natale and
Tarzia 2000; Storm 1951)

d
dT

(√
ρc(T )
k(T )

)
ρc(T )

= λ = const. > 0, (7)

Condition (7) was originally obtained by Storm (1951) in an investigation of heat conduc-
tion in simple monoatomicmetals. There, the validity of the approximation (7) was examined
for aluminum, silver, sodium, cadmium, zinc, copper and lead.

In Briozzo and Natale (2014) two nonlinear Stefan problems analogous to (1)–(6) with
phase change temperature T f and the Storm’s condition (7) are considered. In one case a heat
flux boundary condition of the type q(t) = q0√

t
and in the other case a temperature boundary

condition T = Ts < T f at the fixed face x = 0 are assumed. Solutions of similarity type are
obtained in both cases and the equivalence of the two problems is demonstrated. In Briozzo
and Natale (2016) the analogous one phase nonlinear Stefan problem for a with phase change
temperature T f is considered with the assumption of a Storm’s condition for the heat capacity
and thermal conductivity and a convective condition at the fixed face given by (2). Existence
and uniqueness of a similarity type solution are obtained. Moreover, the convergence of this
problem to problemwith temperature condition at the fixed face when h → +∞was proved.

In this paper the convective over-specified boundary condition on the fixed face to the
semi-infinite material allows us to consider some thermal coefficients as unknowns and to
calculate them, under certain specified restrictions upon data.

Several papers on the determination of thermal coefficients in free boundary problems are
found in the bibliography, see Briozzo et al. (1999), Ceretani and Tarzia (2015), Ceretani
and Tarzia (2016), Tarzia (1982, 1983, 1998). Determination of one and two unknown
constant thermal coefficients through an inverse one-phase Stefan problemwith a temperature
boundary condition and an overspecied heat flux condition at fixed face were considered in
Tarzia (1982, 1983). An analogous problem for a thermal conductivity as an affine function
of the temperature was given in Tarzia (1998). In Briozzo et al. (1999) unknown thermal
coefficients of a semi-infinite material of Storm’s type through a phase-change process,
analogous to Stefan problem here considered, with temperature boundary condition and a
heat flux over-specified condition on the fixed face, was determined. That is a similar Stefan
problem to the one considered here, but this manuscript differs from that in the over condition
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imposed on the fixed face. In Ceretani and Tarzia (2015) and Ceretani and Tarzia (2016)
determination of one and two constant unknown thermal coefficients through a mushy zone
model with a convective over-specified boundary condition, for the free boundary problem
and for themoving boundary problem, respectively,were considered. In Tarzia (2015) explicit
expression for one unknown thermal coefficient of the semi-infinite material through the one-
phase fractional Lamé-Clapeyron Stefan problem with an over-specified boundary condition
on the fixed face x = 0 is obtained.

The goal of this paper is to determine the temperature T = T (x, t), one or two unknown
thermal coefficients chosen among ρ, L , k(T ) and c(T ) as a function of data q0, T f , T0, λ
depending if X = X (t) is a free (unknown function) or a moving (known function) boundary,
which satisfies the problem (1)–(7). In Sect. 2 we show how to find a unique solution of the
similarity type for the free boundary problem and we give the corresponding restrictions
of data and formulas to determine one unknown thermal coefficient and the coefficient that
characterizes the free boundary.

In Sect. 3 we consider the moving boundary problem (1)–(7) where X = X (t) is assumed
known. We determine the temperature T = T (x, t) and two unknown thermal coefficients
chosen among ρ, L , k(T ) and c(T ). Since inverse Stefan problems are usually ill-posed
problems, it is expected that restrictions on data have to be set to obtain solution to problem
(1)–(7).

The results are summarized in Tables 1 and 2.

2 Unknown thermal coefficients through a free boundary problem

Following Briozzo andNatale (2014, 2016), Carslaw and Jaeger (1965), Hill and Hart (1986)
we consider the problem (1)–(7) and we propose a similarity type solution given by Briozzo
and Natale (2014, 2016), Carslaw and Jaeger (1965), Hill and Hart (1986)

T (x, t) = Φ(ξ), ξ = x

X (t)
(8)

where
X (t) = √2γ t, t > 0 (9)

is the free boundary and γ is assumed a positive constant to be determined.
Then we have that the problem (1)–(6) is equivalent to

k(Φ)Φ ′′(ξ) + k′(Φ)Φ ′2(ξ) + γρc(Φ)Φ ′(ξ)ξ = 0, 0 < ξ < 1, (10)

k(Φ(0))Φ ′(0) = h
√
2γ [Φ(0) − Tm], (11)

k(Φ(0))Φ ′(0) = q0
√
2γ , (12)

φ(1) = T f , (13)

k(Φ(1))Φ ′(1) = ρLγ . (14)

If we define

y(ξ) =
√
k

s
(Φ(ξ)), (15)

then a parametrization of the Storm condition (7) is

c(Φ) = − 1

ρλy2
dy

dΦ
, k(Φ) = − 1

λ

dy

dΦ
(16)
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Table 1 Formulae for the one unknown thermal coefficient and condition on data for the free boundary
problem

Case Formulae for the parame-
ters
ũ0 and ũ1

Formulae for the coeffi-
cient γ and unknown ther-
mal coefficient

Condition for data

1 ũ0 = √
2λq0 γ̃ =

2λ2q20 F
2√
2λq0

(ũ1)Y
2
2

exp(−2λ2q20 )ρ̃
(44)

ũ1 = √
2er f −1(

g
(
λq0,

1√
π

(
1 − Y1

Y0

))) ρ̃ = exp(−ũ21)

Y 2
1 ε2F2√

2λq0
(ũ1)

2 ũ0 = √
2λq0 γ̃ =

2λ2q20 F
2√
2λq0

(ũ1)Y
2
2

exp(−2λ2q20 )ρ̃
(44)

ũ1 = √
2erf−1(

g
(
λq0,

1√
π

(
1 − Y1

Y0

))) L̃ =
exp

(
− ũ21

2

)

Y 2
1 F

√
2λq0

(ũ1)
√

ρ

3 ũ0 = √
2λq0 γ̃ = exp(−2σ̃2)

ρ2ε2 π
2

[
g
(
λq0,

1√
π

)
−erf(σ̃ )

]2

ũ1 = √
2σ̃ k̃(T ) = c(T )⎛

⎝−
√

ρε fλq0
(σ̃ )

exp(−σ̃2)
+√

ρλ
T∫

T f

c(T )dT

⎞
⎠
2

where σ̃ satisfy (63)

4 ũ0 = √
2λq0 γ̃ = exp(−2σ̃2)

ρ2ε2 π
2

[
g
(
λq0,

1√
π

)
−erf(σ̃ )

]2 (70)

ũ1 = √
2σ̃ c̃(T ) = k(T )⎛

⎝ −exp(−σ̃2)√
ρε fλq0

(σ̃
)−√

ρλ
T∫

T f

k(T )dT

⎞
⎠
2

where σ̃ satisfy (75)

and we have that the following problem is equivalent to (10)–(14)

d2y

dξ2
+ γ ξ

y2
dy

dξ
= 0, 0 < ξ < 1, (17)

y′(0) = −λh
√
2γ
[
P(y2(0)) − Tm

]
, (18)

y′(0) = −λq0
√
2γ , (19)

y′(1) = −ρLλγ, (20)

y(1) = y1 =
√

k

ρc
(T f ) . (21)

where P is the inverse function of the decreasing function k
ρc = k

ρc (T ).

A parametric solution to the problem (17)–(21) is given by Briozzo and Natale (2014,
2016), Hill and Hart (1986)

ξ = ϕ1(u) = Fu0(u)

Fu0(u1)
, (22)
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Table 2 Formulae for two unknown thermal coefficients and condition on data for the moving boundary
problem

Case Formulae for the parame-
ters ũ0 and ũ1

Formulae for two
coefficients

Condition

5 ũ0 = √
2λq0 ρ̃ =

Y 2
2 λ2q20 f 2

λq0
(
ũ1√
2
)

γ exp(−2λ2q20 )
(44)

ũ1 = √
2erf−1(

g
(
λq0,

1√
π

(
1 − Y1

Y2

))) L̃ =
exp

(
−ũ21
2

)

λρ̃[g(λq0, 1√
π

)−erf(
ũ1
2 )]

6 ũ0 = √
2λq0 ρ̃ = exp(−σ̃2)

√
γ ε
√

π
2

[
g
(
λq0,

1√
π

)
−erf(σ̃ )

]

ũ1 = √
2σ̃ k̃(T ) = c(T )⎛

⎝−
√

ρ̃ε fλq0
(σ̃ )

exp(−σ̃2)
+√

ρ̃λ
T∫

T f

c(T )dT

⎞
⎠
2

where σ̃ satisfy (98)

7 ũ0 = √
2λq0 ρ̃ = exp(−σ̃2)

√
γ ε
√

π
2

[
g
(
λq0,

1√
π

)
−erf(σ̃ )

] (104)

ũ1 = √
2σ̃ c̃(T ) = k(T )⎛

⎝ −exp(−σ̃2)√
ρε fλq0

(σ̃ )
−√

ρλ
T∫

T f

k(T )dT

⎞
⎠
2

where σ̃ satisfy (109)

8 ũ0 = √
2λq0 L̃ = exp(−σ̃2)

λ
√

γ ρ
√

π
2

[
g
(
λq0,

1√
π

)
−erf(σ̃ )

]

ũ1 = √
2σ̃ k̃(T ) = c(T )⎛

⎝−
√

ρ̃λL̃ fλq0
(σ̃ )

exp(−σ̃2)
+√

ρλ
T∫

T f

c(T )dT

⎞
⎠
2

where σ̃ satisfy (120)

9 ũ0 = √
2λq0 L̃ = exp(−σ̃2)

λ
√

γ ρ
√

π
2

[
g
(
λq0,

1√
π

)
−erf(σ̃ )

] (104)

ũ1 = √
2σ̃ c̃(T ) = k(T )⎛

⎝ −exp(−σ̃2)√
ρλL̃ fλq0

(σ̃ )
−√

ρλ
T∫

T f

k(T )dT

⎞
⎠
2

where σ̃ satisfy (127)

y = ϕ2(u) =
√

γ
√

π
2

[
erf
(

u√
2

)
− g

(
u0√
2
, 1√

π

)]
Fu0(u1)

, (23)

for

u0 ≤ u ≤ u1

the function Fu0 = Fu0(u) was defined in Briozzo and Natale (2014) as follow

Fu0(u) = exp(−u2

2
) + u

⎛
⎝

u∫
u0

exp(− z2

2
)dz − exp(− u20

2 )

u0

⎞
⎠ (24)
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=
√

π

2
u

[
g

(
u√
2
,

1√
π

)
− g

(
u0√
2
,

1√
π

)]
, u ≥ u0 (25)

with u0, u1 are the parameter values which verify that ξ = ϕ1(u0) = 0 and ξ = ϕ1(u1) = 1,

g(x, p) = erf(x) + pR(x), p > 0, x > 0 (26)

where

R(x) = exp(−x2)

x

and

erf(x) = 2√
π

x∫
0

exp(−z2)dz, x > 0.

The unknowns γ, u0, u1 and an unknown coefficient (chosen among ρ, L , k(T ) and c(T ))
must verify the following system of equations

u0 = √
2λq0 (27)√

k

ρc
(T f ) = − exp(− u21

2 )

ρLλFu0(u1)
(28)

√
γ = exp(− u21

2 )

ρLλ
√

π
2

[
g
(

u0√
2
, 1√

π

)
− erf

(
u1√
2

)] (29)

k

ρc

(q0
h

+ Tm
)

= γ exp(−u20)[
u0Fu0(u1))

]2 (30)

Remark 1 From conditions (2) and (3) we have that the temperature at fixed face x = 0 is
constant and it satisfies

T0 := T (0, t) = q0
h

+ Tm (31)

Before to solve the system of Eqs. (27)–(30) we enunciate the following results.

Lemma 1 The function g given by (26) satisfies the following properties (Briozzo et al.
1999):

g(0+, p) = +∞, ∀p > 0, g
(
Q−1(p

√
π), p

) = 1 for 0 < p <
1√
π

,

g(+∞, p) =

⎧⎪⎨
⎪⎩
1+, p ≥ 1√

π
,

1−, 0 < p < 1√
π
,
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∂g

∂x
(x, p) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

< 0, x > 0, p ≥ 1√
π
,

< 0, 0 < x <
√

p
2( 1√

π
−p)

, 0 < p < 1√
π
,

= 0, x =
√

p
2( 1√

π
−p)

, 0 < p < 1√
π
,

> 0, x >
√

p
2( 1√

π
−p)

, 0 < p < 1√
π
.

Lemma 2 The function Fu0 defined by (25) satisfies the following properties (Briozzo et al.
1999; Briozzo and Natale 2014, 2016):

Fu0 (u0) = 0, F (+∞) = −∞ (32)

F ′
u0(x) =

√
π

2

{
erf

(
x√
2

)
− g

(
u0√
2
,

1√
π

)}
< 0. (33)

To simplify the expressions we define the new variables and the parameter

η = u0√
2
, σ = u1√

2
, ε = λL (34)

and we denote

fη(σ ) = √
πσ

[
g

(
σ,

1√
π

)
− g

(
η,

1√
π

)]
= Fu0(u1), σ ≥ η (35)

then the system (27)–(30) can be expressed as follow

η = λq0 (36)√
k

c
(T f ) = − exp(−σ 2)√

ρε fη(σ )
(37)

√
γ = exp(−σ 2)

ρε
√

π
2

[
g
(
η, 1√

π

)
− erf(σ )

] (38)

√
k

c
(T0) = −

√
ρ
√

γ exp(−η2)√
2η fη(σ )

(39)

in the unknowns η, σ, γ and an unknown coefficient chosen among ρ, k(T ), c(T ) and L (or
ε).

We shall give necessary and sufficient conditions to obtain η, σ ( this is u0 and u1) and we
also give formulae for the coefficients γ and an unknown thermal coefficient in the following
four cases:

Case 1: Determination of ρ

Case 2: Determination of L (or ε)
Case 3: Determination of k(T )

Case 4: Determination of c(T )

which are the solutions to system (36)–(39).
To solve Case 3 and Case 4 we will add (7) which is equivalent to the relations established

in the following lemma
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Lemma 3 The condition (7) is equivalent to each of the following relationships

√
c

k
(T ) =

√
c

k
(Tm) + √

ρλ

T∫
Tm

c(T )dT (40)

or

k(T ) = c(T )(√
c
k (Tm) + √

ρλ
T∫

Tm

c(T )dT

)2 (41)

√
k

c
(T ) =

√
k

c
(Tm) − √

ρλ

T∫
Tm

k(T )dT (42)

c(T ) = k(T )(√
k
c (Tm) − √

ρλ
T∫

Tm

k(T )dT

)2 (43)

Proof We solve the ordinary differential Eq. (7) in unknown k(T ) or c(T ). 	

Hereinafter we solve all cases of determination of coefficients whose results are given in

the following lemmas. At the end of the paper, we give a summary table (Table 1) with the
formulae and the corresponding restrictions.

Lemma 4 (Case 1) Let γ and ρ be unknowns.
If

λ >
1

q0
Q−1

⎛
⎝1 −

√
k
c (T f )√
k
c (T0)

⎞
⎠ (44)

then there exists unique solution to (27)–(30) which is given by

ũ0 = √
2λq0 (45)

ũ1 = √
2erf−1

⎛
⎝g
⎛
⎝λq0,

1√
π

⎛
⎝1 −

√
k
c (T f )√
k
c (T0)

⎞
⎠
⎞
⎠
⎞
⎠ (46)

γ̃ =
2λ2q20 F

2√
2λq0

(ũ1)Y 2
2

exp(−2λ2q20 )ρ̃
(47)

and

ρ̃ = exp(−ũ21)

Y 2
1 ε2F2√

2λq0
(ũ1)

(48)

Proof From (36) we have η̃ = λq0.
The Eqs. (37) and (39) are equivalent to

√
ρ = − exp(−σ 2)

Y1ε fη(σ )
(49)
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and
√

γ = −
√
2η fη(σ )Y2

exp(−η2)
√

ρ
(50)

respectively, where Y1 =
√

k
c (T f ) and Y2 =

√
k
c (T0). Then, from (35), (38), (49) and (50)

we have

g

(
λq0,

1√
π

(
1 − Y1

Y2

))
= erf(σ ). (51)

By T0 < T f we have
Y1
Y2

< 1. If η̃ > Q−1
(
1 − Y1

Y2

)
, this is (44), it follows that

σ̃ = erf−1
(
g

(
η̃,

1√
π

(
1 − Y1

Y2

)))
. (52)

The solutions γ̃ and ρ̃ are given by

√
γ̃ = −

√
2λq0 fλq0(σ̃ )Y2

exp(−λ2q20 )
√

ρ̃
(53)

and √
ρ̃ = − exp(−σ̃ 2)

Y1ε fλq0(σ̃ )
(54)

respectively. With (34) the proof is completed. 	

Lemma 5 (Case 2) If the coefficients γ and L (i.e ε) are unknowns and the coefficients
satisfy (44) then there exists a unique solution to (27)–(30) given by

ũ0 = √
2λq0 (55)

ũ1 = √
2erf−1

⎛
⎝g
⎛
⎝λq0,

1√
π

⎛
⎝1 −

√
k
c (T f )√
k
c (T0)

⎞
⎠
⎞
⎠
⎞
⎠ (56)

γ̃ =
2λ2q20 F

2√
2λq0

(ũ1)Y 2
2

exp(−2λ2q20 )ρ̃
(57)

and

L =
exp

(
− ũ21

2

)

Y 2
1 F

√
2λq0

(ũ1)
√

ρ
(58)

Proof It follows with analogous reasoning of Lemma 2.

Lemma 6 (Case 3) If the coefficients γ and k(T ) are unknowns then there exists a unique
solution to (27)–(30) given by

ũ0 = √
2λq0 (59)

ũ1 = √
2σ̃ (60)

γ̃ = exp(−2σ̃ 2)

ρ2ε2 π
2

[
g
(
λq0,

1√
π

)
− erf(σ̃ )

]2 (61)
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and

k̃(T ) = c(T )(
−

√
ρε fλq0 (σ̃ )

exp(−σ̃ 2)
+ √

ρλ
T∫
T f

c(T )dT

)2 (62)

where σ̃ is the unique solution of equation

ε fλq0(σ )

exp(−σ 2)

{
λq0exp(λ

2q20 )
√

π

[
g

(
λq0,

1√
π

)
− erf(σ )

]
− 1

}
= λ

T0∫
T f

c(T )dT (63)

Proof Taking into account (40) we can rewrite (37) and (39) as follow

−√
ρε fη(σ )

exp(−σ 2)
=
√
c

k
(Tm) + √

ρλ

T f∫
Tm

c(T )dT (64)

√
c

k
(Tm) + √

ρλ

T f∫
Tm

c(T )dT + √
ρλ

T0∫
T f

c(T )dT = −
√
2η fη(σ )√

ρ
√

γ exp(−η2)
(65)

Now we solve the system (36), (64), (38) and (65) in the unknowns η, σ , γ and
√

c
k (Tm).

From (36) we determine η̃ = λq0. By (64) and (65) we have

√
2η̃ fη̃(σ )√

ρ
√

γ exp(−η̃2)
− √

ρλ

T f∫
T0

c(T )dT =
√

ρε fη̃(σ )

exp(−σ 2)
(66)

Taking into account (38) the Eq. (66) is equivalent to

ε fη̃(σ )

exp(−σ 2)

{
η̃exp(η̃2)

√
π

[
g

(
η̃,

1√
π

)
− erf(σ )

]
− 1

}
= λ

T f∫
T0

c(T )dT (67)

in unknown σ .
The function

Z(σ ) = ε fη̃(σ )

exp(−σ 2)

{
η̃exp(η̃2)

√
π

[
g

(
η̃,

1√
π

)
− erf(σ )

]
− 1

}

satisfies

Z(η̃) = 0, Z(+∞) = +∞ Z ′(σ ) > 0

therefore there exist a unique solution σ̃ to the Eq. (67).
From (38) we have

γ̃ = exp(−2σ̃ 2)

ρ2ε2 π
2

[
g
(
η̃, 1√

π

)
− erf(σ̃ )

]2 (68)

and from (64) we obtain

√
c

k
(Tm) = −

√
ρε fη̃(σ̃ )

exp(−σ̃ 2)
− √

ρλ

T f∫
Tm

c(T )dT . (69)
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Then by (41) we determine k̃(T ) which is given by (62). 	

Lemma 7 (Case 4) If the coefficients γ and c(T ) are unknowns and the data satisfy

T f∫
T0

k(T )dT >
4q20
ρL

(70)

then there exists a unique solution to (27)–(30) given by

ũ0 = √
2λq0 (71)

ũ1 = √
2σ̃ (72)

γ̃ = exp(−2σ̃ 2)

ρ2ε2 π
2

[
g
(
λq0,

1√
π

)
− erf(σ̃ )

]2 (73)

and

c̃(T ) = k(T )(
−exp(−σ̃ 2)√

ρε fλq0 (σ̃
) − √

ρλ
T∫
T f

k(T )dT

)2 (74)

where σ̃ is the unique solution of equation

exp(−σ 2)√
ρε fλq0(σ )

⎧⎨
⎩1 − exp(−λ2q20 )√

πλq0
[
g
(
λq0,

1√
π

)
− erf(σ )

]
⎫⎬
⎭ = √

ρλ

T f∫
T0

k(T )dT (75)

Proof By (43) we will to find
√

k
c (Tm) to obtain c(T ). Taking into account (42) we can

rewrite (37) and (39) as follow

−exp(−σ 2)√
ρε fη(σ )

=
√
k

c
(Tm) − √

ρλ

T f∫
Tm

k(T )dT (76)

−exp(−η2)
√

ρ
√

γ√
2η fη(σ )

=
√
k

c
(Tm) − √

ρλ

T0∫
Tm

k(T )dT (77)

Now we solve the system given by (36), (76), (38) and (77) in the unknowns η, σ , γ and√
k
c (Tm). From (36) we determine η̃ = λq0.
By (76) and (77) we have

−exp(−η2)
√

ρ
√

γ√
2η fη(σ )

= −exp(−σ 2)√
ρε fη(σ )

+ √
ρλ

T f∫
T0

k(T )dT (78)

Taking into account (38) the Eq. (78) is equivalent to equation

exp(−σ 2)√
ρε fη̃(σ )

⎧⎨
⎩1 − exp(−η̃2)

η̃
√

π
[
g
(
η̃, 1√

π

)
− erf(σ )

]
⎫⎬
⎭ = √

ρλ

T f∫
q0
h +Tm

k(T )dT (79)

in unknown σ .
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The function

Y (σ ) = exp(−σ 2)√
ρε fη̃(σ )

⎧⎨
⎩1 − exp(−η̃2)

η̃
√

π
[
g
(
η̃, 1√

π

)
− erf(σ )

]
⎫⎬
⎭

= exp(−σ 2)√
ρε fη̃(σ )

⎡
⎣ erf(η̃) − erf(σ )

g
(
η̃, 1√

π

)
− erf(σ )

⎤
⎦

satisfies

Y (η̃) = 4η̃2

ε
√

ρ
, Y (+∞) = +∞, Y ′(σ ) > 0

therefore, if

√
ρλ

T f∫
T0

k(T )dT >
4η̃2

ε
√

ρ

(this is (70)), there exist a unique solution σ̃ to Eq. (79) .
From (38) we have

γ̃ = exp(−2σ̃ 2)

ρ2ε2 π
2

[
g
(
η̃, 1√

π

)
− erf(σ̃ )

]2 (80)

and from (76) we obtain

√
k

c
(Tm) = −exp(−σ 2)√

ρε fη(σ )
+ √

ρλ

T f∫
Tm

k(T )dT (81)

then by (43) we determine

c̃(T ) = k(T )(
−exp(−σ̃ 2)√

ρε fη̃(σ̃
) − √

ρλ
T∫
T f

k(T )dT

)2 .

	

Now, we enunciate the following Theorem

Theorem 1 Under the corresponding hypothesis established in the previous Lemmas, the
free boundary problem (1)–(7) has a unique similarity type solution given by

T (x, t) = P

((
ϕ2

(
ϕ−1
1 (x/X (t))

))2)
, 0 < x < X (t) (82)

where
X (t) = √2γ̃ t, t > 0 (83)

is the free boundary,

ϕ1(u) = Fũ0(u)

Fũ0(ũ1)
, (84)
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ϕ2(u) =
√

γ̃
√

π
2

[
erf
(

u√
2

)
− g

(
ũ0√
2
, 1√

π

)]
Fũ0(ũ1)

, (85)

ũ0, ũ1, γ̃ and a thermal coefficient chosen among ρ, L, k(T ) and c(T ) is the unique solution

of (27)–(30) and P =
(

k
ρc

)−1
is the inverse function of the function k

ρc .

Proof Fixed the data of the problem (1)–(7), under the corresponding restrictions on them
(see previous lemmas) we obtain the solutions of the Eqs. (27)–(30) given by ũ0, ũ1, γ̃ and
the corresponding thermal coefficient (see Table 1).

Next, we obtainϕ1 andϕ2 given by (84), (85) respectively and the free boundary is X (t) =√
2γ̃ t . Taking into account thatϕ1 is an increasing functionwedetermineϕ−1

1

(
x

X (t)

)
. Finally,

we invert the relation (15) and from (8) we obtain (82). 	


3 Determination of two thermal coefficients through a moving boundary
problem

To determine two unknown thermal coefficients we consider the inverse Stefan problem (1)–
(6). We assume that X = X (t) is known and it is defined by X (t) = √

2γ t for a given
γ > 0, and the thermal coefficients of material verify condition (7). The temperature T
of this problem is given by (82) where φ1 and φ2 are given by (84) and (85) respectively.
Then the two unknown coefficients can be chosen among ρ, L (or ε), k(T ) and c(T ), which
must verify Eqs. (36)–(39) and the condition (7) when k(T ) or c(T ) is one of the thermal
coefficient to determinate.

We shall give necessary and sufficient conditions to obtain η, σ ( this is u0 and u1) and
we also give formulae for the two unknown thermal coefficients which are the solutions to
system (36)–(39) in the following five cases:

Case 5: Determination of ρ and L
Case 6: Determination of ρ and k(T )

Case 7: Determination of ρ and c(T )

Case 8: Determination of L and k(T )

Case 9: Determination of L and c(T )

The results are summarize in Table 2.

Lemma 8 (Case 5) Let L and ρ be unknowns. If (44) its satisfied then there exists unique
solution to (27)–(30) which is given by

ũ0 = √
2λq0 (86)

ũ1 = √
2erf−1

⎛
⎝g
⎛
⎝λq0,

1√
π

⎛
⎝1 −

√
k
c (T f )√
k
c (T0)

⎞
⎠
⎞
⎠
⎞
⎠ (87)

ρ̃ =
Y 2
2 λ2q20 f 2λq0(

ũ1√
2
)

γ exp(−2λ2q20 )
(88)

L̃ =
exp

(
−ũ21
2

)

λρ̃[g(λq0, 1√
π
) − erf( ũ12 )] (89)
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Proof From (36) we have η̃ = λq0. From (37), (38) and (39) we obtain

g

(
λq0,

1√
π

(
1 − Y1

Y2

))
= erf(σ ). (90)

where Y1 =
√

k
c (T f ) and Y2 =

√
k
c (T0).

If η̃ > Q−1
(
1 − Y1

Y2

)
, this is (44), it follows that

σ̃ = erf−1
(
g

(
λq0,

1√
π

(
1 − Y1

Y2

)))
. (91)

The solutions ρ̃ and L̃ are given by

ρ̃ = Y 2
2 η̃2 f 2

η̃
(σ̃ )

γ exp(−2η̃2)
(92)

L̃ = exp
(−σ̃ 2

)
λρ̃[g(λq0, 1√

π
) − erf(σ̃ )] (93)

With (34) the proof is completed. 	

Lemma 9 (Case 6) If the coefficients ρ and k(T ) are unknowns then there exists a unique
solution to (27)–(30) given by

ũ0 = √
2λq0 (94)

ũ1 = √
2σ̃ (95)

ρ̃ = exp(−σ̃ 2)

√
γ ε
√

π
2

[
g
(
λq0,

1√
π

)
− erf(σ̃ )

] (96)

and

k̃(T ) = c(T )(
−

√
ρ̃ε fλq0 (σ̃ )

exp(−σ̃ 2)
+√ρ̃λ

T∫
T f

c(T )dT

)2 (97)

where σ̃ is the unique solution of equation

ε fλq0(σ )

exp(−σ 2)

{
λq0exp(λ

2q20 )
√

π

[
g

(
λq0,

1√
π

)
− erf(σ )

]
− 1

}
= λ

T0∫
T f

c(T )dT (98)

Proof As in Case 3, taking into account (40) we can rewrite (37) and (39) as follow

−√
ρε fη(σ )

exp(−σ 2)
=
√
c

k
(Tm) + √

ρλ

T f∫
Tm

c(T )dT (99)

√
c

k
(Tm) + √

ρλ

T f∫
Tm

c(T )dT + √
ρλ

T0∫
T f

c(T )dT = −
√
2η fη(σ )√

ρ
√

γ exp(−η2)
(100)

Now we solve the system (36), (99), (38) and (100) in the unknowns η, σ , ρ and
√

c
k (Tm).
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From (36) we determine η̃ = λq0. By (99) and (100) we have

√
2η̃ fη̃(σ )√

ρ
√

γ exp(−η̃2)
− √

ρλ

T f∫
T0

c(T )dT =
√

ρε fη̃(σ )

exp(−σ 2)
(101)

Taking into account (38) the Eq. (101) is equivalent to

ε fη̃(σ )

exp(−σ 2)

{
η̃exp(η̃2)

√
π

[
g

(
η̃,

1√
π

)
− erf(σ )

]
− 1

}
= λ

T f∫
T0

c(T )dT (102)

which has a unique solution σ̃ .
From (38) we have (96) and from (99) we obtain

√
c

k
(Tm) = −

√
ρε fη̃(σ̃ )

exp(−σ̃ 2)
− √

ρλ

T f∫
Tm

c(T )dT . (103)

Then by (41) we determine k̃(T ) which is given by (97). 	

Lemma 10 (Case 7) If the coefficients ρ and c(T ) are unknowns and the data satisfy

T f∫
T0

k(T )dT ≤ 2q0
√

γ√
2

(104)

then there exists a unique solution to (27)–(30) given by

ũ0 = √
2λq0 (105)

ũ1 = √
2σ̃ (106)

ρ̃ = exp(−σ̃ 2)

√
γ ε
√

π
2

[
g
(
λq0,

1√
π

)
− erf(σ̃ )

] (107)

and

c̃(T ) = k(T )(
−exp(−σ̃ 2)√

ρε fλq0 (σ̃ )
− √

ρλ
T∫
T f

k(T )dT

)2 (108)

where σ̃ is solution of equation

√
γπ√

2 fη̃(σ )

[
erf(η̃) − erf(σ )

] = λ

T f∫
T0

k(T )dT (109)

Proof By (43) we will to find
√

k
c (Tm) to obtain c(T ). Taking into account (42) we can

rewrite (37) and (39) as follow

−exp(−σ 2)√
ρε fη(σ )

=
√
k

c
(Tm) − √

ρλ

T f∫
Tm

k(T )dT (110)
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−exp(−η2)
√

ρ
√

γ√
2η fη(σ )

=
√
k

c
(Tm) − √

ρλ

T0∫
Tm

k(T )dT (111)

Now we solve the system given by (36), (110), (38) and (111) in the unknowns η, σ , ρ and√
k
c (Tm). From (36) we determine η̃ = λq0.
By (110) and (111) we have

−exp(−η2)
√

ρ
√

γ√
2η fη(σ )

= −exp(−σ 2)√
ρε fη(σ )

+ √
ρλ

T f∫
T0

k(T )dT (112)

Taking into account (38) the Eq. (112) is equivalent to equation

√
γπ√

2 fη̃(σ )

[
erf(η̃) − erf(σ )

] = λ

T f∫
T0

k(T )dT (113)

in unknown σ .
The function

U (σ ) =
√

γπ√
2 fη̃(σ )

[
erf(η̃) − erf(σ )

]

satisfies

U (η̃) = 2η̃
√

γ√
2

, U (+∞) = 0

therefore, if

λ

T f∫
T0

k(T )dT ≤ 2η̃
√

γ√
2

(this is (104)), there exist at least a solution σ̃ to Eq. (113) .
From (38) we have

ρ̃ = exp(−σ̃ 2)

√
γ ε
√

π
2

[
g
(
λq0,

1√
π

)
− erf(σ̃ )

] (114)

and from (110) we obtain

√
k

c
(Tm) = −exp(−σ 2)√

ρ̃ε fη̃(σ̃ )
+√ρ̃λ

T f∫
Tm

k(T )dT (115)

then by (43) we determine

c̃(T ) = k(T )(
−exp(−σ̃ 2)√

ρε fη̃(σ̃ )
−√ρ̃λ

T∫
T f

k(T )dT

)2
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Lemma 11 (Case 8) If the coefficients L and k(T ) are unknowns then there exists a unique
solution to (27)–(30) given by

ũ0 = √
2λq0 (116)

ũ1 = √
2σ̃ (117)

L̃ = exp(−σ̃ 2)

λ
√

γ ρ
√

π
2

[
g
(
λq0,

1√
π

)
− erf(σ̃ )

] (118)

and

k̃(T ) = c(T )(
−

√
ρ̃λL̃ fλq0 (σ̃ )

exp(−σ̃ 2)
+ √

ρλ
T∫
T f

c(T )dT

)2 (119)

where σ̃ is the unique solution of equation

λq0exp(λ2q20 )
√
2 fλq0(σ ) [erf(σ ) − erf(λq0)]

ρ
√

γ
[
g
(
λq0,

1√
π

)
− erf(σ )

] = −λ

T f∫
T0

c(T )dT (120)

Proof From (36) we determine η̃ = λq0. By (38), (99) and (66) we have

η̃exp(η̃2)
√
2 fη̃(σ )

[
erf(σ ) − erf(η̃)

]
ρ
√

γ
[
g
(
η̃, 1√

π

)
− erf(σ )

] = −λ

T f∫
T0

c(T )dT (121)

The function J = J (σ ) given by

J (σ ) = η̃exp(η̃2)
√
2 fη̃(σ )

[
erf(σ ) − erf(η̃)

]
ρ
√

γ
[
g
(
η̃, 1√

π

)
− erf(σ )

] (122)

satisfies J (η̃) = 0, J (+∞) = −∞ and J ′(σ ) < 0.
Then there exists unique σ̃ which solve (121).
From (38) we have (118). From (64), (118) and (41) we determine k̃(T ) which is given

by (119). 	


Lemma 12 (Case 9) If the coefficients L and c(T ) are unknowns and the data satisfy (104)
then there exists a unique solution to (27)–(30) given by

ũ0 = √
2λq0 (123)

ũ1 = √
2σ̃ (124)

L̃ = exp(−σ̃ 2)

λ
√

γ ρ
√

π
2

[
g
(
λq0,

1√
π

)
− erf(σ̃ )

] (125)

and

c̃(T ) = k(T )(
−exp(−σ̃ 2)√
ρλL̃ fλq0 (σ̃ )

− √
ρλ

T∫
T f

k(T )dT

)2 (126)
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where σ̃ is solution of equation

√
γπ√

2 fη̃(σ )

[
erf(η̃) − erf(σ )

] = λ

T f∫
T0

k(T )dT (127)

Proof The proof is similar to that given in Case 7. 	


4 Conclusions

A nonlinear one-dimensional Stefan problem for a semi-infinite material x > 0, with phase
change temperature T f was considered. The heat capacity and the thermal conductivity was
assumed to satisfy a Storm’s condition. A convective boundary condition and a heat flux
over-specified condition at the fixed face x = 0 were considered. Under certain restrictions
on data, a similarity type solution, the free boundary and one unknown thermal coefficient
were determined. Then, the associate moving boundary problem with the same boundary
conditions and assumption on the thermal conductivity and heat capacity was considered.
In this problem, five different cases were considered and two unknowns thermal coefficients
were determined in each one. From four cases of single parameter identification studied in
the free boundary problem (1)–(7) we conclude that case 3 and case 4 are the most difficult
to solve since the determined thermal coefficients depend on a parameter that is a unique
solution of a given transcendental equation. For the same reason, we remark that cases 6–9
are the most difficult to solve in the simultaneous identification of two parameters in the
moving boundary problem (1)–(7) where the phase change position is known. The results
are summarized in Tables 1 and 2.
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