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1. Introduction

Supercooled Stefan problems describe the freezing of a liquid initially cooled
below its freezing point. The practical importance of solids formed from a
supercooled liquid motivates the need for the theorical understanding of the
associated phase change process.

We study a one-phase supercooled Stefan problem in one space dimen-
sion for a non-linear heat conduction equation on a semi-infinite region x > 0
with a nonlinear thermal conductivity k(θ) given by

k(θ) =
ρc

(a+ bθ)
2 (1.1)

where a, b are positive parameters, c, ρ are the specific heat and the density
of the medium respectively. This kind of thermal conductivity or diffusion
coefficient was considered in [2, 3, 6, 7, 20, 28, 33, 40].

In [5] one-phase Stefan problem with this non-linear thermal conductiv-
ity with a boundary Robin condition at the fixed face is considered. Sufficient
conditions for data in order to have a parametric representation of the solu-
tion of similarity type for t ≥ t0 are obtained, where t0 is a positive arbitrary
time. In [31] analogous problems with temperature and flux-type conditions
on the fixed face x = 0 were studied and parametric representations of the
similarity type solutions were obtained. In such context, free boundary prob-
lems for a non linear diffusion equation and convective term with the same
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type of conductivity given by (1.1) was also considered in [4, 30, 37]. In [4] un-
der the Bäcklund transformation a Stefan problem with a Dirichlet boundary
condition at the fixed face x = 0 is reduced to an associated free boundary
problem, the existence and uniqueness local in time of the solution is proved
by using the Friedman Rubinstein integral representation and the Banach
contraction theorem. Necessary and sufficient conditions for the existence of
a parametric representation of the solution of the similarity type was found in
[30]. On the other hand, in [37] a Neumann boundary condition at the fixed
face x = 0 is studied. A reciprocal transformation to the Stefan problem is
applied and a parametric representation of the similarity type of the solution
is obtained through the unique solution of a Cauchy problem.

Several free boundary problems with constant thermal conductivity
have been studied by other authors in conection with the freezing of a super-
cooled liquid. In [32] a supercooled one-phase Stefan problem with constant
coefficients and a temperature boundary condition at the fixed face was con-
sidered. The explicit solutions are obtained and the relation between the
temperature boundary data and the posibility of continuing the solution for
arbitrary large time intervals was analyzed. The relationship between the
time for which there exists solution to one-phase Stefan problem and the
behavior of initial variable temperature was analyzed in [18]. In [10] a one-
phase Stefan problem with initial temperature equal to zero and a heat flux
depends on the time at the fixed face was analyzed. The behaviour of the
free boundary of the solution of a Stefan problem when an integral condition
is assigned, is considered in [11]. On the other hand, convexity and smooth-
ness properties of the free boundary were showed in [16, 22, 23, 26] and a
review of this subject was given in [34]. Some remarks on the regularization
of supercooled one-phase Stefan problems can be seen in [17]. Other papers
in the subject are [14, 15, 24, 25].

The mathematical formulation of our free boundary problem consists in
determining the evolution of the moving phase separation x = s(t) and the
temperature distribution θ = θ(x, t) ≥ 0 satisfying the conditions

ρc
∂θ

∂t
=

∂

∂x

(
k(θ)

∂θ

∂x

)
, 0 < x < s(t) , t > 0 (1.2)

θ(0, t) = −B < 0, t > 0 (1.3)

k (θ (s(t), t))
∂θ

∂x
(s(t), t) = −ρlṡ(t) , t > 0 (1.4)

θ (s(t), t) = 0 , t > 0 (1.5)

θ(x, 0) = h(x) < 0 , 0 < x < 1 , (1.6)

s(0) = 1 (1.7)

where l is the latent heat of fusion of the medium, the phase change tempera-
ture is θf = 0 and h(x) is the initial temperature of the material. We impose a
temperature boundary condition −B < h(x) < 0 on x = 0 which corresponds
to a supercooled liquid. The classical Stefan problem (−B > 0, h > 0) was
well studied in the literature, as for example [8, 21, 38].
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In Section 2 under reciprocal transformations the Stefan problem is
reduced to an associated free boundary problem which admits a similarity
type solution.

In Section 3 we give some preliminary results to prove the existence
and uniqueness of a solution local in time and finite time blow-up of problem
(1.2) − (1.7) through the unique solution of an integral equation with the
time as a parameter.

This type of exact solution to problems with parameters is useful to test
by benchmarking with numerical methods for different data values. Phase-
change problems appear frequently in industrial processes and other problems
of technological interest [1, 8, 9, 12, 13, 19, 27, 29]. A large bibliography on
the subject is given in [39].

2. Application of reciprocal transformations. A similarity type
solution

We consider the free boundary problem (1.2) − (1.7) where the parameters
a, b, the coefficients l, c, the temperature on the fixed face (−B) and the initial
temperature h satisfy the following conditions

bl − ac > 0, a− bB > 0, −B < h(x) < 0, 0 ≤ x ≤ 1 (2.1)

We give several transformations [35, 36] to obtain an equivalent problem
to (1.2)− (1.7) which admits a similarity type solution. Firstly we define

Θ =
1

a+ bθ
, (2.2)

then the problem (1.2)− (1.7) becomes

∂Θ

∂t
= Θ2 ∂

2Θ

∂x2
, 0 < x < s(t) , t > 0 (2.3)

Θ(0, t) =
1

a− bB
, t > 0 (2.4)

∂Θ

∂x
(s(t), t) =

bl

c
ṡ(t) , t > 0 (2.5)

Θ(s(t), t) =
1

a
, t > 0 (2.6)

Θ(x, 0) =
1

a+ bh(x)
, 0 < x < 1 (2.7)

s(0) = 1. (2.8)

Let us perform the transformation

χ(x, t) =

∫ x

0

dη

Θ(η, t)
, Ψ (χ, t) = Θ(x, t) (2.9)

and

S(t) = χ(s(t), t) . (2.10)
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then the problem (2.3)− (2.8) becomes

∂Ψ

∂t
=
∂2Ψ

∂χ2
− (a− bB)

∂Ψ

∂χ
(0, t)

∂Ψ

∂χ
, 0 < χ < S(t) , t > 0 (2.11)

Ψ(0, t) =
1

a− bB
, t > 0 (2.12)

∂Ψ

∂χ
(S(t), t) =

bl

a (ac− bl)

[
Ṡ(t)− ∂Ψ

∂χ
(0, t)(a− bB)

]
, t > 0 (2.13)

Ψ(S(t), t) =
1

a
, t > 0 (2.14)

Ψ(χ, 0) = H(χ) =
1

a+ bh(W (χ))
(2.15)

S(0) = A =

∫ 1

0

(a+ bh(η))dη (2.16)

where

W (χ) =

∫ χ

0

Ψ(η, 0)dη (2.17)

and

Ṡ(t) =

(
a− bl

c

)
ṡ(t) + (a− bB)

∂Ψ

∂χ
(0, t) . (2.18)

If we introduce the similarity variable

ξ =
χ

S(t)
(2.19)

and the solution is sought of type

Ψ (χ, t) = ϕ (ξ) = ϕ

(
χ

S(t)

)
(2.20)

then the free boundary S(t) of the problem (2.11)− (2.16) must satisfies

S(t)Ṡ(t) = λ , t > 0 (2.21)

with λ is an unknown coefficient to be determined.
The problem (2.11)− (2.16) yields

ϕ′′ (ξ) + ϕ′ (ξ) (ξλ− w) = 0 , 0 < ξ < 1 (2.22)

ϕ (0) =
1

a− bB
(2.23)

ϕ (1) =
1

a
(2.24)

ϕ′ (1) =
bl

a(ac− bl)
(λ− w) (2.25)

where

w = ϕ′ (0) (a− bB) < 0 (2.26)

and the condition (2.15) becomes

ϕ(
χ

A
) = H(χ), 0 < χ < A (2.27)
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where

χ = χ(x, 0) =

∫ x

0

dη

Θ(η, 0)
=

∫ x

0

a+ bh(η)dη.

If we integrate (2.22) we obtain

ϕ (ξ) = C

∫ ξ

0

exp

(
−z

2

2
λ+ wz

)
dz +D, 0 < ξ < 1 (2.28)

from conditions (2.23)− (2.24) we have that

C =
−bB

a(a− bB)
∫ 1

0
exp

(
− z2

2 λ+ wz
)
dz

(2.29)

D =
1

a− bB
(2.30)

where the unknowns λ and w will be determined from (2.25) and (2.26) which
are equivalent to

bBexp
(
−λ2 + w

)
a(a− bB)

∫ 1

0
exp

(
− z2

2 λ+ wz
)
dz

= p (λ− w) (2.31)

w =
−bB

a
∫ 1

0
exp

(
− z2

2 λ+ wz
)
dz

(2.32)

with

p =
bl

a(bl − ac)
> 0. (2.33)

Moreover from (2.27), we have function h satisfies

ϕ

(∫ x
0
a+ bh(η)dη∫ 1

0
a+ bh(η)dη

)
= C

∫ ∫x
0 a+bh(η)dη∫ 1
0 a+bh(η)dη

0

exp

(
−z

2

2
λ+ wz

)
dz +D. (2.34)

3. Preliminary results

Returning to (2.21) two possible cases for the free boundary S(t) we should
consider, one of this is with λ < 0 and the other one is with λ > 0.

Next we are going to analyze the existence the solution to system of
equations (2.31)− (2.32) for the two cases.

First we consider
λ < 0 (3.1)

We can enunciate the following results:

Lemma 3.1. Under the hypothesis (2.1), if there exist λ < 0 and w solutions
to (2.31)− (2.32) then the following statements hold:

a) Ṡ(t) < 0 and

S(t) =
√

2λt+A2, 0 ≤ t ≤ −A
2

2λ
, (3.2)

b) ṡ(t) < 0,
c) w < λ,
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d) the free boundary s(t) is given by

s(t) = 1 +
λ− w

λ
(
a− bl

c

) (√A2 + 2λt−A
)
, 0 ≤ t < −A

2

2λ
(3.3)

e)

A =

(
a− bl

c

)
λ

λ− w
(3.4)

Proof. a) If we consider λ < 0 from (2.21) we have Ṡ(t) < 0 and(
S2(t)

2

)′
= λ.

Integrating and taking into account S(0) = A we have

S(t) =
√

2λt+A2, 0 ≤ t ≤ −A
2

2λ
. (3.5)

b) From (2.3)− (2.8) it follows that Θx(s(t), t) < 0 then ṡ(t) < 0.
c) By (2.9) and (2.20) we have that (2.5) is equivalent to

ϕ′(1)

S(t)

1

Θ(S(t), t)
=
bl

c
ṡ(t),

and taking into account (2.25) we obtain

ṡ(t) =
λ− w

S(t)
(
a− bl

c

) (3.6)

and because ac− bl < 0 we have that w < λ < 0.
d) On substituting (3.2) into (3.6) and integrating we have (3.3).
e) From (2.9), (2.10)

S(t) = χ(s(t), t) =

∫ s(t)

0

dη

Θ(η, t)

then

s(t) = 0⇔ S(t) = 0⇔ t =
−A2

2λ
thus

s

(
−A2

2λ

)
= 0⇔ A =

(
a− bl

c

)
λ

λ− w
.

�

Corollary 3.2. For the case λ < 0 the free boundary is given by

s(t) =
1

A

√
A2 + 2λt , 0 ≤ t < −A

2

2λ
(3.7)

which satisfies

lim
t→
(

−A2

2λ

)−
s(t) = 0, lim

t→
(

−A2

2λ

)−
ṡ(t) = −∞ (3.8)

so finite time blow-up occurs.
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To solve (2.31)− (2.32) it is convenient to define

σ =
λ− w√
−2λ

> 0, µ =

√
−λ
2

(3.9)

then equations (2.31)− (2.32) are equivalent to

bB

2pa(a− bB)

exp(σ2)

σ
=

∫ σ+µ

σ

exp(z2)dz (3.10)

bB

2a

exp((σ + µ)2)

σ + µ
=

∫ σ+µ

σ

exp(z2)dz (3.11)

in the unknowns σ and µ.

Lemma 3.3. Under the hypothesis (2.1) we have:
If ∫ √0.5

σ0

exp(z2)dz >
bB
√

2e

2a
(3.12)

then there exist unique solution w, λ < 0 to (2.31) − (2.32) with the co-

efficient σ0 = J−1
1 (p(a − bB)

√
2e) where J−1

1 is the inverse function of

J1 = J/(0,
√

0.5) the restriction of J(x) = exp(x2)
x to the interval

(
0,
√

0.5
)
.

Proof. First, we define

J(x) =
exp(x2)

x
(3.13)

which satisfies
J(0) = +∞, J(+∞) = +∞,

J ′(x) =


< 0, 0 < x <

√
0.5

= 0, x =
√

0.5

> 0, x >
√

0.5

Then, from (3.10) and (3.11) we have

J(σ)

p(a− bB)
= J(σ + µ) (3.14)

In fact,
µ = V1(σ)− σ, 0 ≤ σ < σ0 (3.15)

where

V1(σ) = J−1
1

(
J1(σ)

p(a− bB)

)
, (3.16)

J−1
1 is the inverse function of J1 = J/(0,

√
0.5) the restriction of J to the

interval
(
0,
√

0.5
)

and σ0 = J−1
1 (p(a− bB)

√
2e).

Under the hypotheses (2.1) and (2.33) we have that p(a− bB) > 1.
If we replace (3.15) in (3.10) we have the following equation in unknown

σ
bB

2pa(a− bB)
J1(σ) = P (σ), 0 ≤ σ < σ0 (3.17)
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where the function P (σ) =
∫ V1(σ)

σ
exp(z2)dz is an increasing function, P (0) =

0 and P (σ0) =
∫√0.5

σ0
exp(z2)dz.

Since the properties of functions J and P it is enough to ask

P (σ0) >
bB
√

2e

2a

then there exists a unique σ ∈ (0, σ0) which satisfies (3.17). So there exists a
unique

µ = V1(σ)− σ
such that σ, µ are the solutions of (3.10) − (3.11). Therefore, we have that
there exist unique solutions to the system (2.31)− (2.32) given by

w = −2µ(σ + µ), λ = −2µ2.

�

Theorem 3.4. Under the hypothesis (2.1) and (3.12) the problem (2.22) −
(2.26) has a unique solution given by

ϕ (ξ) =
−bB

∫ ξ
0
exp

(
− z

2

2 λ+ wz
)
dz

a(a− bB)
∫ 1

0
exp

(
− z2

2 λ+ wz
)
dz

+
1

a− bB
, 0 < ξ < 1 (3.18)

where w, λ < 0 is the unique solution to (2.31)− (2.32).

Now, we analize the existence of solution to problem (2.22)− (2.26) for
the case

λ > 0.

We define η = −w > 0 .

Lemma 3.5. There is not solution λ > 0, w = −η to (2.31)− (2.32).

Proof. Let α = λ+η√
2λ

and ε = η√
2λ

be. Then the conditions (2.31) and (2.32)

are equivalent to

bB

ap(a− bB)
√
π
R(α) = erf (α)− erf (ε) (3.19)

bB

a
√
π
R(ε) = erf (α)− erf (ε) (3.20)

where R(x) = exp(−x2)/x and p is given as before.
From (3.19) − (3.20) we have α = W (ε) = R−1(p(a − bB)R(ε)) which

is an increasing and convex function that satisfies W (0) = 0 and W (+∞) =
+∞.

Then the equation (3.20) become

W (ε) = F (ε), ε > Q−1

(
bB

a

)
= ε0 (3.21)

where

F (ε) = erf−1

(
g

(
ε,

bB

a
√
π

))
(3.22)
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and

Q(x) =
√
πxexp(x2)(1− erf(x)). (3.23)

It’s easy to see that W (ε) < F (ε) for all ε > ε0, then there is not solution
whatever the initial data of the problem.

�

Remark 3.6. There is not solution to problem (2.22)− (2.26) with λ > 0.

4. Existence and uniqueness of solution to the nonlinear
supercooled Stefan problem

Therefore, under hypothesis (2.1) and (3.12) if we invert the transformation
(2.20) we have that there exist unique solution to (2.11)− (2.17) given by

Ψ(χ, t) =
−bB

∫ χ
S(t)

0 exp
(
− z

2

2 λ+ wz
)
dz

a(a− bB)
∫ 1

0
exp

(
− z2

2 λ+ wz
)
dz

+
1

a− bB
, 0 < χ < S(t), (4.1)

S(t) =
√

2λt+A2 , 0 ≤ t ≤ −A
2

2λ
(4.2)

where λ < 0 and w are the unique solutions of equations (2.31) and (2.32).
Then, by transformation (2.9) and taking into account (2.18) we have

Θ(x, t) =

−bB
[
U

(√
−λ
2

∫ x
0

dη
Θ(η,t)√

A2+2λt
+ w√

−2λ

)
− U

(
w√
−2λ

)]
a(a− bB)

[
U

(√
−λ
2 + w√

−2λ

)
− U

[
w√
−2λ

)] +
1

a− bB
, (4.3)

for 0 ≤ x ≤ s(t), the free boundary s(t) is given by (3.3) and

U(x) =

∫ x

0

exp(z2)dz.

An equivalent formulation of (4.3) is

Θ(x, t) =

−bB
[
U (σ + µ)− U

(
σ + µ−

µ
∫ x
0

dη
Θ(η,t)√

A2−4µ2t

)]
a(a− bB) [U(σ + µ)− U(σ)]

+
1

a− bB
, (4.4)

for 0 ≤ x ≤ s(t), 0 ≤ t < A2

4µ2 , where µ and σ are the unique solutions of

(3.10)− (3.11) and the free boundary is

s(t) =
1

A

√
A2 − 4µ2t, 0 ≤ t < A2

4µ2
(4.5)

with

A =
(bl − ac)µ

cσ
. (4.6)

Note that we have actually proved that Θ = Θ(x, t) is a solution, in
variable x, of the integral equation (4.4) .
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Theorem 4.1. Let us assume the hypothesis (2.1) and (3.12).
(i) If (Θ, s) is a solution of the free boundary problem (2.3)− (2.8) then

Θ = Θ(x, t) is a solution, in variable x, of the integral equation (4.4) and the
free boundary is given by (4.5) .

Moreover, the function Y (x, t) defined by

Y (x, t) = σ + µ−
µ
∫ x

0
dη

Θ(η,t)√
A2 − 4µ2t

, 0 ≤ x ≤ s(t) , 0 ≤ t < A2

4µ2
(4.7)

satisfies the conditions

∂Y

∂x
(x, t) =

−µ√
A2 − 4µ2t

1

Θ(x, t)
(4.8)

Y (0, t) = σ + µ (4.9)

∂Y

∂t
(x, t) =

−µ2

A2 − 4µ2t

(
bBexp(Y 2(x, t))

(a− bB)aΘ(x, t) [U(σ + µ)− U(σ)]
− 2Y (x, t)

)
(4.10)

Y (s(t), t) = σ (4.11)

Y (x, 0) = σ + µ−
µ
∫ x

0
a+ bh(z)dz

A
. (4.12)

(ii) Conversely, if Θ is a solution of the integral equation (4.4) with s given
by (4.5) and function Y defined by (4.7) satisfies the conditions (4.8)− (4.12)
where σ and µ are the unique solutions of equations (3.10)−(3.11) then (Θ, s)
is a solution of the free boundary problem (2.3)− (2.8) .

Proof. (i) From the previous computation we have Θ = Θ(x, t) is a solution
of the integral equation (4.4) . It follows easily that function Y , defined by
(4.7) , satisfies the conditions (4.8) , (4.9) , (4.12) and

∂Y

∂t
(x, t) =

−µ√
A2 − 4µ2t

(∫ x

0

−∂Θ
∂t dη

Θ2(η, t)
+

2µ2

A2 − 4µ2t

∫ x

0

dη

Θ(η, t)

)
=

=
−µ√

A2 − 4µ2t

(
−Θx(x, t) + Θx(0, t) +

2µ2

A2 − 4µ2t

∫ x

0

dη

Θ(η, t)

)
=

=
−µ2

A2 − 4µ2t

(
bBexp

(
Y 2(x, t)

)
a(a− bB)Θ(x, t) [U(σ + µ)− U(σ)]

− bBexp(σ + µ)2

a [U(σ + µ)− U(σ)]
+

2µ√
A2 − 4µ2t

∫ x

0

dη

Θ(η, t)

)
and from (3.11) we obtain (4.10) .

Finally we get

Y (s(t), t) = σ + µ−
µ
∫ s(t)

0
dη

Θ(η,t)√
A2 − 4µ2t

= σ + µ− µ S(t)√
A2 − 4µ2t

= σ

that is (4.11) .
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(ii) Conversely, let Θ the solution an integral equation (4.4). In order to
prove that (Θ, s) is a solution of the free boundary problem (2.3)− (2.8) we
get:

a)

Θx(x, t) =
bBexp

(
Y 2(x, t)

)
a(a− bB) [U(σ + µ)− U(σ)]

∂Y

∂x

and

Θxx(x, t) =
bBexp

(
Y 2(x, t)

)
a(a− bB) [U(σ + µ)− U(σ)]

(
2Y (x, t)

(
∂Y

∂x

)2

+
∂2Y

∂x2

)
By using (4.8) we obtain

∂2Y

∂x2
(x, t) =

µ√
A2 − 4µ2t

1

Θ2(x, t)

∂Θ

∂x

and

Θxx(x, t)Θ2(x, t) =
bBexp

(
Y 2(x, t)

)
a(a− bB) [U(σ + µ)− U(σ)]

(
2Y (x, t)µ2

A2 − 4µ2t
+

µΘx√
A2 − 4µ2t

)

=
bBµ2exp

(
Y 2(x, t)

)
a(a− bB)(A2 − 4µ2t) [U(σ + µ)− U(σ)]

2 ·

·

(
2Y (x, t) [U(σ + µ)− U(σ)]−

bBexp
(
Y 2(x, t)

)
a(a− bB)Θ(x, t)

)
b)

Θt(x, t) =
−bBexp

(
Y 2(x, t)

)
µ2

a(a− bB) (A2 − 4µ2t) [U(σ + µ)− U(σ)]
2 ·

·

(
bBexp

(
Y 2(x, t)

]
a(a− bB)Θ(x, t)

− 2Y (x, t) [U(σ + µ)− U(σ)]

)
then (2.3) holds.
c) It is easy to see

Θ(0, t) =
1

a− bB
.

d) By (4.11) we have

Θ(s(t), t) =
−bB [U (σ + µ)− U (Y (s(t), t))]

a(a− bB) [U(σ + µ)− U(σ)]
+

1

a− bB
=

1

a
.

e) We have

Θx(s(t), t) =
−bBexp

(
σ2
)
∂Y
∂x (s(t), t)

a(a− bB) [U(σ + µ)− U(σ)]
,

from (4.8) and the above item we have

∂Y

∂x
(s(t), t) =

−µa√
A2 − 4µ2t
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then by (4.5) and since σ, µ satisfy (3.10) we obtain

Θx(s(t), t) =
−2µσbl

(bl − ac)
√
A2 − 4µ2t

=
bl

c
ṡ(t) ,

that is (2.5).
f) Taking into account (4.8) and (4.12) we get

∂Y

∂x
(x, 0) =

µ

A

1

Θ(x, 0)
,

and
∂Y

∂x
(x, 0) = −µa+ bh(x)

A
then we deduce (2.7). �

Theorem 4.2. Let us assume the hypothesis (2.1) and (3.12).

(i) The integral equation (4.4) has a unique solution for 0 ≤ t ≤ t0 < A2

4µ2

where t0 is an arbitrary positive time.
(ii) The free boundary problem (1.2)− (1.7) has a unique similarity type

solution (θ, s) for 0 ≤ t ≤ t0 <
A2

4µ2 and a finite blow-up ocurrs at t = A2

4µ2

which is given by

θ(x, t) =
1

b

[
1

Θ(x, t)
− a
]
, 0 < x < s(t), (4.13)

s(t) given by (4.5), where Θ is the unique solution of the integral equation
(4.4) and the coefficients µ and σ are the unique solutions of equations (3.10)
and (3.11) with A given by (4.6) .

Proof. (i) If we define Y (x, t) by (4.7) then (4.4) is equivalent to the following
Cauchy differential problem{

∂Y
∂x (x, t) = −µ√

A2−4µ2t
= 1

C1+D1U(Y (x,t)) , 0 < x < s(t) ,

Y (0, t) = σ + µ ,
(4.14)

with a parameter 0 ≤ t ≤ t0 < A2

4µ2 , the coefficients C1, D1 are given by

C1 =
1

a− bB
− bBU (σ + µ)

a(a− bB) [U(σ + µ)− U(σ)]

and

D1 =
bBU (σ + µ)

a(a− bB) [U(σ + µ)− U(σ)]
.

We have
∂G

∂Y
=

µ√
A2 − 4µ2t

D1exp(Y
2)

[C1 +D1U(Y )]
2

If we define the function p(z) = exp(z2)

[C1+D1U(z)]2
it’s easy to see that there exists

K > 0 such that ∣∣∣∣∂G∂Y
∣∣∣∣ ≤ D1µK√

A2 − 4µ2t
,
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which is bounded for all 0 ≤ t ≤ t0 <
A2

4µ2 , 0 ≤ x ≤ s(t), for an arbitrary
positive time t0.

(ii) It follows taking into account Theorem 4.1, Corollary 3.2 and ele-
mentary computations.

�

5. Conclusions

A supercooled one-phase Stefan problem for a semi-infinite material with
temperature-dependent thermal conductivity at the fixed face x = 0 was
studied. In order to have existence of solution of similarity type, local in
time, we obtained sufficient conditions for the data. Moreover we showed
that finite time blow-up occurs. This explicit solution was obtained through
the unique solution of an integral equation with the time as a parameter.
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