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Nonlinear Stefan problem with convective boundary condition in Storm’s materials

Adriana C. Briozzo and Maria F. Natale

Abstract. We consider a nonlinear one-dimensional Stefan problem for a semi-infinite material x > 0, with phase change
temperature Tf . We assume that the heat capacity and the thermal conductivity satisfy a Storm’s condition, and we assume
a convective boundary condition at the fixed face x = 0. A unique explicit solution of similarity type is obtained. Moreover,
asymptotic behavior of the solution when h → +∞ is studied.

Mathematics Subject Classification. 35R35 · 80A22 · 35C05.
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1. Introduction

As in [4,11,13], we consider the following one-phase nonlinear unidimensional Stefan problem for a semi-
infinite material x > 0, with phase change temperature Tf

s(T )
∂T

∂t
=

∂

∂x

[
k(T )

∂T

∂x

]
, 0 < x < X(t), t > 0, (1.1)

k(T (0, t))
∂T

∂x
(0, t) =

h√
t
[T (0, t) − Tm], h > 0, t > 0, (1.2)

T (X(t), t) = Tf , (1.3)

k(Tf )
∂T

∂x
(X(t), t) = α

•
X (t), t > 0, (1.4)

X(0) = 0 (1.5)
where the positive constant α is ρL,L is the latent heat of fusion of the medium, ρ is the density (assumed
constant), Tm is the temperature of the medium Tm < T (0, t) < Tf and h0 is the positive heat transfer
coefficient.

We assume that the metal exhibits nonlinear thermal characteristics such that the heat capacity
cp(T ) > 0 and the thermal conductivity k(T ) > 0 satisfy a Storm’s condition [1,2,5–7,12]

d
dT

(√
s(T )
k(T )

)
s(T )

= λ = const. > 0, (1.6)

where s(T ) = ρcp(T ).
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Condition (1.6) was originally obtained by [12] in an investigation of heat conduction in simple
monoatomic metals. There, the validity of the approximation (1.6) was examined for aluminum, silver,
sodium, cadmium, zinc, copper and lead.

This class of moving boundary problems for Storm materials was originally solved in [9,10] by using a
reciprocal transformation. Reciprocal Bäcklund transformations were used in [8] to obtain solutions both
a one-phase and a two-phase Stefan problems in nonlinear heat conduction.

In [7], the free boundary problem (1.1)–(1.6) (fusion case) for the particular case k(T ) = ρc/ (a + bT )2

and s(T ) = ρc = constant was studied. The explicit solution of this problem was obtained through
the unique solution of an integral equation with time as a parameter. A similar case with the constant
temperature at the fixed face x = 0 was also studied.

In [2], two nonlinear Stefan problems analogous to (1.1)–(1.5) with phase change temperature Tf and
the Storm’s condition (1.6) were considered. In one case, a heat flux boundary condition of the type
q(t) = q0√

t
and in the other case a temperature boundary condition T = Ts < Tf at the fixed face x = 0

were assumed. Solutions of similarity type were obtained in both cases, and the equivalence of the two
problems was demonstrated.

The goal of this paper is to determine the temperature T = T (x, t) and the position of the phase
change boundary at time t, X = X(t), which satisfy the problem (1.1)–(1.6). In Sect. 2, we show how
to find a unique solution of the similarity type for this problem. In Sect. 3, we study the asymptotic
behavior when h → +∞. We prove that the solutions T = Th(x, t),X = Xh(t) of (1.1)–(1.6) converge
to the solution T = T∞(x, t),X = X∞(t) of an analogous Stefan problem with temperature condition
T (0, t) = Tm when h → +∞.

2. Existence and uniqueness of the solution to the Stefan problem with convective boundary
condition on the fixed face

We consider the problem (1.1)–(1.6), and we propose a similarity-type solution given by [2–4]

T (x, t) = Φ(ξ), ξ =
x

X(t)
(2.1)

where
X(t) =

√
2γt, t > 0 (2.2)

is the free boundary and γ is assumed a positive constant to be determined. Then, we have that the
problem (1.1)–(1.5) is equivalent to

k(Φ)Φ′′(ξ) + k′(Φ)Φ′2(ξ) + γs(Φ)Φ′(ξ)ξ = 0, 0 < ξ < 1, (2.3)

k(Φ(0))Φ′(0) = h
√

2γ[Φ(0) − Tm], (2.4)
φ(1) = Tf , (2.5)

k(Φ(1))Φ′(1) = αγ. (2.6)
If we define

y(ξ) =

√
k

s
(Φ(ξ)), (2.7)

then a parameterization of the Storm condition (1.6) is

s(Φ) = − 1
λy2

dy

dΦ
, k(Φ) = − 1

λ

dy

dΦ
(2.8)

and then we have that the following problem is equivalent to (2.3)–(2.6)

d2y

dξ2
+

γξ

y2

dy

dξ
= 0, 0 < ξ < 1, (2.9)
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y′(0) = −λh
√

2γ
[
P (y2(0)) − Tm

]
, (2.10)

y′(1) = −αλγ, (2.11)

y(1) = y1 =

√
k(Tf )
s(Tf )

(2.12)

where P is the inverse function of the decreasing function k
s .

Lemma 2.1. A parametric solution to the problem (2.9)–(2.12) is given by

ξ = ϕ1(u) =
Fu0(u)
Fu0(u1)

, (2.13)

y = ϕ2(u) =

√
γ
√

π
2

[
erf
(

u√
2

)
− g
(

u0√
2
, 1√

π

)]
Fu0(u1)

, (2.14)

for

u0 ≤ u ≤ u1

where the function Fu0 = Fu0(u) was defined in [2] as follows

Fu0(u) = exp
(
−u2

2

)
+ u

⎛
⎜⎝

u∫
u0

exp
(
− z2

2

)
dz −

exp

(
− u2

0
2

)

u0

⎞
⎟⎠

=
√

π
2u
[
g
(

u√
2
, 1√

π

)
− g
(

u0√
2
, 1√

π

)]
, u ≥ u0

with u0, u1 are the parameter values which verify that ξ = ϕ1(u0) = 0 and ξ = ϕ1(u1) = 1,

g(x, p) = erf(x) + p
exp(−x2)

x
, p > 0, x > 0 (2.15)

and

erf(x) =
2√
π

x∫
0

exp(−z2)dz, x > 0.

The unknowns γ, u0 and u1 must verify the following system of equations

u0 =
√

2λh

[
P

(
γ exp(−u2

0)
[u0Fu0(u1)]

2

)
− Tm

]
, (2.16)

√
γ =

exp
(
−u2

1
2

)
√

π
2αλ

[
g
(

u0√
2
, 1√

π

)
− erf

(
u1√
2

)] (2.17)

y1 =
− exp

(
−u2

1
2

)
αλFu0(u1)

(2.18)

Proof. A parametric solution of (2.9) was deduced in [4], and it is given by

ξ = ϕ1(u) = C2

⎛
⎝exp

(
−u2

2

)
+ u

⎛
⎝

u∫
0

exp
(

−x2

2

)
dx + C1

⎞
⎠
⎞
⎠ (2.19)

y = ϕ2(u) =
√

γC2

⎛
⎝

u∫
0

exp
(

−x2

2

)
dx + C1

⎞
⎠ u > 0 (2.20)
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where C1 and C2 are integration constants to be determined.
We choose u0 and u1 be such that ϕ1(u0) = 0 and ϕ1(u1) = 1; we obtain that

C1 = −
exp

(
− u2

0
2

)

u0
−

u0∫
0

exp
(
−x2

2

)
dx, (2.21)

C2 =

⎧⎪⎨
⎪⎩exp

(
−u2

1
2

)
+ u1

⎛
⎜⎝−

exp

(
− u2

0
2

)

u0
+

u1∫
u0

exp
(
−x2

2

)
dx

⎞
⎟⎠
⎫⎪⎬
⎪⎭

−1

. (2.22)

Then, we have

ξ = ϕ1(u) =

exp
(
−u2

2

)
+ u

⎛
⎝ u∫

u0

exp
(
−x2

2

)
dx −

exp

(
− u2

0
2

)

u0

⎞
⎠

exp
(
−u2

1
2

)
+ u1

⎛
⎝−

exp

(
− u2

0
2

)

u0
+

u1∫
u0

exp
(−x2

2

)
dx

⎞
⎠

, u0 ≤ u ≤ u1 (2.23)

and

y = ϕ2(u) =

√
γ

⎧⎨
⎩−

exp

(
− u2

0
2

)

u0
+

u∫
u0

exp
(
−x2

2

)
dx

⎫⎬
⎭

exp
(
−u2

1
2

)
+ u1

⎛
⎝−

exp

(
− u2

0
2

)

u0
+

u1∫
u0

exp
(−x2

2

)
dx

⎞
⎠

, u0 ≤ u ≤ u1 (2.24)

that is (2.13)–(2.14).
Next we prove that the unknowns u0, u1 and γ must satisfy (2.16)–(2.18). From (2.23) and (2.24),

we have

y′(ξ) =
ϕ′
2(u)

ϕ′
1(u)

=

√
γ exp

(
−u2

2

)

u∫
u0

exp
(−x2

2

)
dx −

exp

(
− u2

0
2

)

u0

(2.25)

then

y′(0) = −√
γu0 (2.26)

and taking into account that

y(0) =
−√

γ exp(−u2
0
2 )

u0Fu0(u1)

and from (2.10), we have (2.16).
Analogously we have

y′(1) =
ϕ′
2(u1)

ϕ′
1(u1)

=

√
γ exp

(
−u2

1
2

)

u1∫
u0

exp
(−x2

2

)
dx −

exp

(
− u2

0
2

)

u0

(2.27)
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and by (2.11) we have
√

γ exp
(
−u2

1
2

)

u1∫
u0

exp
(−x2

2

)
dx −

exp

(
− u2

0
2

)

u0

= −αλγ (2.28)

that is (2.17).
Last, we have

y(1) = ϕ2(u1) =

√
γ

⎧⎨
⎩−

exp

(
− u2

0
2

)

u0
+

u1∫
u0

exp
(
−x2

2

)
dx

⎫⎬
⎭

exp
(
−u2

1
2

)
+ u1

⎛
⎝−

exp

(
− u2

0
2

)

u0
+

u1∫
u0

exp
(−x2

2

)
dx

⎞
⎠

(2.29)

and taking into account (2.12) and (2.17) we obtain (2.18). �

Next we want to find u0, u1 and γ the solutions to the equations (2.16)–(2.18). We can rewrite the
system (2.16)–(2.18) as follows

P−1

(
u0√
2hλ

+ Tm

)
=

γ exp(−u2
0)

[u0Fu0(u1))]
2 (2.30)

√
γ =

exp
(
−u2

1
2

)

αλ
√

π
2

[
g
(

u0√
2
, 1√

π

)
− erf

(
u1√
2

)] (2.31)

M(u1) = g

(
u0√

2
,

1√
π

)
(2.32)

where

M(x) = g

(
x√
2
,

1√
π

(
1

αλy1
+ 1
))

. (2.33)

Lemma 2.2. The real function Fu0 and M satisfy the following properties:

Fu0 (u0) = 0, F (+∞) = −∞ (2.34)

F ′
u0

(x) =
√

π

2

{
erf
(

x√
2

)
− g
(

u0√
2
, 1√

π

)}
< 0 (2.35)

M(0) = +∞, M(+∞) = 1 and M ′(x) < 0. (2.36)

Proof. See [1] and [2]. �

Lemma 2.3. (Existence of the solution)
There exists a solution of the system (2.30)–(2.32) given by

ũ1 = M−1

(
g

(
ũ0√

2
,

1√
π

))
(2.37)

γ̃ =
exp
(−ũ2

1

)

α2λ2

⎛
⎝ exp

(
− ũ2

0
2

)

ũ0
−

ũ1∫
ũ0

exp
(−x2

2

)
dx

⎞
⎠

2 (2.38)
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where ũ0 is a solution of

P−1

(
u0√
2hλ

+ Tm

)
=

γ exp(−u2
0)[

u0Fu0

(
M−1

(
g
(

u0√
2
, 1√

π

)))]2 . (2.39)

Proof. Because M is a decreasing function, there exists the inverse function M−1, and from (2.32) for
each u0 there exists a unique u1 given by

u1(u0) = M−1

(
g

(
u0√

2
,

1√
π

))
. (2.40)

If we replace (2.40) in (2.31) and (2.30), we have

γ(u0) =
exp
(−u2

1(u0)
)

α2λ2

⎛
⎝ exp

(
− u2

0
2

)

u0
−

u1(u0)∫
u0

exp
(−x2

2

)
dx

⎞
⎠

2 (2.41)

and

P−1

(
u0√
2hλ

+ Tm

)
=

γ(u0) exp(−u2
0)

[u0Fu0(u1(u0))]
2 . (2.42)

We define the function

G(u0) := P−1

(
u0√
2hλ

+ Tm

)

which satisfies G(0) = k
s (Tm) and G′(u0) < 0, and let

H(u0) :=
γ(u0) exp(−u2

0)
[u0Fu0(u1(u0))]

2 .

From (2.18), (2.40) and (2.41), it follows that

H(u0) =
2y2

1 exp(−u2
0)

u2
0π

[
erf
(

M−1
(
g
(

u0√
2
, 1√

π

))
√
2

)
− g
(

u0√
2
, 1√

π

)]2 ,

H(0) = y2
1 , H(+∞) = +∞ and H(u0) ≥ y2

1 ,∀u0 ≥ 0.

Since Tm < Tf , we conclude G(0) =
k

s
(Tm) >

k

s
(Tf ) = y2

1 = H(0).

Taking into account the properties of G and H, there exists ũ0 < u∗
0 = (Tf − Tm)

√
2hλ which satisfies

(2.42).

Then by (2.40) and (2.41), we complete the solution ũ1 = u1(ũ0) and γ̃ = γ(ũ0) to the system
(2.30)–(2.32). �

Lemma 2.4. (Uniqueness of the solution)
The solution (ũ0, ũ1, γ̃) to the system (2.16)–(2.18) is unique.

Proof. Suppose the assertion of the lemma is false. That is there exist two solutions (ũ0, ũ1, γ̃) and
(u∗

0, u
∗
1, γ

∗) to (2.16)–(2.18).
We assume that ũ0 < u∗

0; then, by (2.13) we have

ξ =
Fu∗

0
(u)

Fu∗
0
(u∗

1)
=

Fũ0(u)
Fũ0(ũ1)

, for u∗
0 ≤ u ≤ min(ũ1, u

∗
1). (2.43)
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For u = u∗
0, we have

0 =
Fu∗

0
(u∗

0)
Fu∗

0
(u∗

1)
=

Fũ0(u
∗
0)

Fũ0(ũ1)
(2.44)

then Fũ0(u
∗
0) = 0. This is a contradiction because Fũ0(u

∗
0) = 0 if and only if u = ũ0. �

Theorem 2.5. The problem (1.1)–(1.6) has a unique similarity-type solution given by

T (x, t) = P
((

ϕ2

(
ϕ−1
1 (x/X(t))

))2)
, 0 < x < X(t) (2.45)

where
X(t) =

√
2γ̃t, t > 0 (2.46)

is the free boundary,

ϕ1(u) =
Fũ0(u)
Fũ0(ũ1)

, (2.47)

ϕ2(u) =

√
γ̃
√

π
2

[
erf
(

u√
2

)
− g
(

ũ0√
2
, 1√

π

)]
Fũ0(ũ1)

, (2.48)

(ũ0, ũ1, γ̃) is the unique solution of (2.16)–(2.18) and P =
(

k
s

)−1
is the inverse function of the function

k
s .

Proof. Fixed the data: α, λ, h, Tf of the problem (1.1)–(1.6), we obtain the solutions of the equations
(2.16)–(2.18) given by (2.37), (2.38) and ũ0 is the solution of (2.39).

Next, we obtain ϕ1 and ϕ2 given by (2.47), (2.48), respectively, and the free boundary is X(t) =
√

2γ̃t.
Taking into account that ϕ1 is an increasing function, we determine ϕ−1

1

(
x

X(t)

)
. Finally, we invert the

relation (2.7), and from (2.1) we obtain (2.45). �

Remark 2.6. If T (0, t) = Ts is constant, the convective condition (1.2) at the fixed face x = 0 of the
problem (1.1)–(1.6) becomes a Neumann boundary condition given by

k(T (0, t))
∂T

∂x
(0, t) =

q0√
t

(2.49)

with

q0 = h[Ts − Tm].

The Stefan problem (1.1)–(1.6) with the condition (2.49) instead (1.2) was studied in [2].

3. Asymptotic behavior of the solution when h → +∞

Let h > 0 and T = Th(x, t),X = Xh(t) denote the solution to the problem (1.1)–(1.6) given by (2.45)–
(2.48). We will study the behavior of this solution when the transfer coefficient h → +∞. We will prove
that Th,Xh converges to the solution T∞,X∞ of the following parabolic free boundary problem:

s(T )
∂T

∂t
=

∂

∂x

[
k(T )

∂T

∂x

]
, 0 < x < X(t), t > 0, (3.1)

T (0, t) = Tm, t > 0, (3.2)

T (X(t), t) = Tf , t > 0, (3.3)

k(Tf )
∂T

∂x
(X(t), t) = α

•
X (t), t > 0, (3.4)

X(0) = 0 (3.5)

Author's personal copy
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with the Storm’s condition
d

dT

(√
s(T )
k(T )

)
s(T )

= λ. (3.6)

The problem (3.1)–(3.6) was studied in [2]. The solution is given by

T∞(x, t) = P
((

ϕ2∞
(
ϕ−1
1∞ (x/X∞(t))

))2)
(3.7)

X∞(t) =
√

2γ∞t (3.8)

where

ϕ1∞(u) =
Fv0(u)
Fv0(v1)

, (3.9)

ϕ2∞(u) =

√
γ∞
√

π
2

[
erf
(

u√
2

)
− g
(

v0√
2
, 1√

π

)]
Fv0(v1)

(3.10)

with v0 ≤ u ≤ v1. The parameters v0, v1 and γ∞ satisfy the following equations

y1 =
√

γ∞
Fv0(v1) − exp

(
− v2

1
2

)
v1Fv0(v1)

(3.11)

√
γ∞ =

v1y1
1 + αλy1

(3.12)

k

s
(Tm) = y0 = −√

γ∞
exp
(
− v2

0
2

)
v0Fv0(v1)

(3.13)

which are equivalent to

k

s
(Tm) = H(v0) =

2y2
1 exp

(−v2
0

)

v2
0π

[
erf
(

M−1
(
g
(

v0√
2
, 1√

π

))
√
2

)
− g
(

v0√
2
, 1√

π

)]2 (3.14)

√
γ∞ =

exp
(
− v2

1
2

)

αλ
√

π
2

[
g
(

v0√
2
, 1√

π

)
− erf

(
v1√
2

)] (3.15)

v1 = M−1

(
g

(
v0√
2
,

1√
π

))
. (3.16)

For simplicity of notation, we write (u0h, u1h, γh) instead of (ũ0h, ũ1h, γ̃h), which is the solution of
(2.30)–(2.32). Firstly, we will prove that (u0h, u1h, γh) converges to (v0, v1, γ∞) when h → +∞. The
proof of this statement is based on the following lemma:

Lemma 3.1. The sequences {u0h}, {u1h} and {γh} are increasing and bounded. Moreover,

lim
h→+∞

u0h = v0, lim
h→+∞

u1h = v1, and lim
h→+∞

γh = γ∞.

Proof. From properties of function G = Gh(x) = P−1
(

x√
2hλ

+ Tm

)
, we have

a) h1 ≤ h2 ⇒ Gh1(x) ≤ Gh2(x), ∀x ≥ 0
b) Gh(x) ≤ k

s (Tm), ∀x ≥ 0, h > 0.
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We consider h1 < h2, if u0h1 and u0h2 are the solutions of Gh1(x) = H(x) and Gh2(x) = H(x),
respectively, by a) and properties of function H we have that u0h1 < u0h2 . Moreover, from b) results
u0h ≤ v0 for all h > 0. Then, {u0h} is an increasing bounded sequence, and there exists ũ0 such that

lim
h→+∞

u0h = ũ0.

Letting h → +∞ on Gh(u0h) = H(u0h) yields k
s (Tm) = H(ũ0). By uniqueness of the solution of (3.14)

results ũ0 = v0.
From (2.32), we have

u1h = M−1

(
g

(
u0h√

2
,

1√
π

))
(3.17)

Because {u0h} is increasing, M and g are decreasing functions we have that the sequence {u1h} is
increasing. Moreover, taking into account u0h ≤ v0 and (3.16) follows

u1h = M−1

(
g

(
u0h√

2
,

1√
π

))
≤ M−1

(
g

(
v0√
2
,

1√
π

))
= v1

for all h > 0.
By (3.17), we obtain

lim
h→+∞

u1h = lim
h→+∞

M−1

(
g

(
u0h√

2
,

1√
π

))
= M−1

(
g

(
v0√
2
,

1√
π

))
= v1.

Finally, letting h → +∞ in (2.31) we have

lim
h→+∞

γh = γ∞.

It follows easily of (2.31) and (2.32) that
√

γh =
u1hy1

1 + αλy1
. Taking into account u1h ≤ v1, we have

√
γh =

u1hy1
1 + αλy1

≤ v1y1
1 + αλy1

=
√

γ∞ ∀h > 0.

�

Corollary 3.2. For each t > 0, the sequence {Xh(t)} is monotonically increasing and lim
h→+∞

Xh(t) =

X∞(t).

We can now define an extension T̃h = T̃h(x, t) ∈ C1 [0,X∞(t)] of Th(x, t) as follows

T̃h(x, t) =

⎧⎪⎪⎨
⎪⎪⎩

Th(x, t) if 0 ≤ x < Xh(t)

α
√

2γh

2k(Tf )
√

t
(x − Xh(t)) + Tf if Xh(t) ≤ x ≤ X∞(t)

(3.18)

Lemma 3.3. The functions T̃h ∈ C1 [0,X∞(t))] satisfy

∣∣∣∣∣
∂T̃h

∂x

∣∣∣∣∣ ≤ M on [0,X∞(t)] for all h > 0, t > 0.

Proof. Let t > 0 and x ∈ [0,X∞(t)].
If x ∈ [Xh(t),X∞(t)], then ∣∣∣∣∣

∂T̃h(x, t)
∂x

∣∣∣∣∣ =
α
√

2γ∞
2k(Tf )

√
t
.
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For otherwise, this is x ∈ [0,Xh(t)) according to (2.1) and (2.7) we have

∂T̃h

∂x
(x, t) = P ′

(
y2

h

(
x

Xh(t)

))
2yh

(
x

Xh(t)

)
y′

h

(
x

Xh(t)

) 1
Xh(t)

Since
k

s
is decreasing and Tm ≤ Th(x, t) ≤ Tf , from (2.7) we have y1 ≤ yh

(
x

Xh(t)

)
≤ y0, for all h > 0.

From (1.6), it follows that ∣∣∣P ′
(
y2

h

(
x

Xh(t)

))∣∣∣ ≤ 1
2λy1km

where km = min {k(T ), Tm ≤ T ≤ Tf}. Taking into account (2.23), (2.24), (2.47) and Lemma 3.1, we
have ∣∣∣∣y′

h

(
x

Xh(t)

) 1
Xh(t)

∣∣∣∣ ≤ 1
√

πt
[
1 − erf

(
v1√
2

)] .
Then for x ∈ [0,Xh(t)) results ∣∣∣∣∣

∂T̃h(x, t)
∂x

∣∣∣∣∣ ≤
y0

λy1km

√
πt
[
1 − erf

(
v1√
2

)] .
Summarizing, for all h > 0 and x ∈ [0,X∞(t)] we obtain∣∣∣∣∣

∂T̃h(x, t)
∂x

∣∣∣∣∣ ≤ M = max

⎧⎨
⎩

α
√

2γ∞
2k(Tf )

√
t
,

y0

λy1km

√
πt
[
1 − erf

(
v1√
2

)]
⎫⎬
⎭

and this precisely the assertion of the lemma. �

Lemma 3.4. We have lim
h→+∞

T̃h(x, t) = T∞(x, t) for each t > 0 and x ∈ [0,X∞(t)] .

Proof. Let t > 0 and x ∈ [0,X∞(t)). By Corollary 3.2, there exists h0 = h0(x) > 0 such that x ∈ [0,Xh(t)]
for all h ≥ h0. We consider T̃h(x, t) for h ≥ h0 we have

T̃h(x, t) = Th(x, t) = P
((

ϕ2h

(
ϕ−1
1h (x/Xh(t))

))2)
. (3.19)

Taking into account Lemma 3.1, Corollary 3.2, (2.47) and (2.48) we obtain that the sequence {Th(x, t)}
converges to T∞(x, t). If x = X∞(t), then T̃h(X∞(t), t) = Tf = T∞(X∞(t), t).

Hence, the sequence {T̃h(x, t)} converges to T∞(x, t) pointwise on [0,X∞(t)] for each t > 0. �

Theorem 3.5. For each t > 0, we have the family of functions {T̃h} converges uniformly to T∞ for
h −→ +∞ on [0,X∞(t)].

Proof. By Lemma 3.3, for any t > 0 the functions T̃h(x, t) are equicontinuous on [0,X∞(t)] and from
Lemma 3.4 converges pointwise to T∞(x, t) for h −→ +∞. Then, by Ascoli Arzela lemma we obtain their
uniform convergence on [0,X∞(t)]. �

4. Conclusions

One-phase nonlinear, one-dimensional Stefan problem for a semi-infinite material x > 0, with phase
change temperature Tf , has been considered with the assumption of a Storm’s condition for the heat
capacity and thermal conductivity and a convective condition at the fixed face. Existence and uniqueness
of a similarity-type solution have been obtained. Moreover, the convergence of this problem to problem
with temperature condition at the fixed face when h → +∞ has been proved.
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mation. Int. J. Nonlinear Mech. 21, 249–256 (1986)
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